Lithosphere-Atmosphere-Ionosphere Coupling during Earthquake Preparation: Recent Advances and Future Perspectives

A special issue of Geosciences (ISSN 2076-3263). This special issue belongs to the section "Natural Hazards".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 7041

Special Issue Editor


E-Mail Website
Guest Editor
1. Hayakawa Institute of Seismo Electromagnetics, Co. Ltd. (Hi-SEM), UEC Alliance Center, 1-1-1 Kojima-cho, Chofu 182-0026, Japan
2. Advanced Wireless & Communication Research Center (AWCC), The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu 182-8585, Japan
Interests: space physics (magnetosphere/ionosphere); space plasma physics; plasma waves (wave-particle interactions and wave propagation); planetary magnetospheres; atmospheric electricity; lightning physics; VLF/ELF sferics; schumann resonances; direction finding; seismo-electromagnetics; critical analysis; lithosphere-atmosphere-ionosphere coupling; earthquake prediction; signal processing

Special Issue Information

Dear Colleagues,

Earthquake (EQ) prediction (especially short-term) is one of the most challenging subjects left in the field of geoscience. Over the last three decades, it was found, based on enormous effort by enthusiastic scientists globally, that non-seismic (mainly electromagnetic) precursors do exist before an EQ, which could be a possible candidate of short-term EQ prediction. Even though an EQ is a tectonic phenomenon which is the consequence of pressure accumulation in the fault regions of lithosphere, electromagnetic precursors appear not only in the lithosphere, but also in the atmosphere and ionosphere. Additionally, the most surprising finding was that the upper ionosphere is extremely sensitive to pre-EQ lithospheric seismic activity, and a new concept of lithosphere–atmosphere–ionosphere coupling (LAIC) has appeared, indicating the coupling and feedback of various phenomena in different layers of the Earth. Several hypotheses have been proposed to explain this LAIC process based on ground- and satellite-based measurements as well as theoretical modeling, but, of course, with some arguments against this idea. Enormous progress has been achieved in the field of the LAIC process in recent years with the use of new ideas, new observational findings, and theoretical modeling. Therefore, this Special Issue is intended to collect recent advances in EQ precursor studies and also recent activities for different channels of this LAIC. Additionally, we aim to discuss future perspectives as a further step for the future realization of short-term EQ prediction. This Special Issue aims to collect mainly extensive papers (either reviews or original articles) by active scientists in this particular field, but we also welcome any contributions which will provide readers with new insights into our complicated but very attractive topic of the LAIC process during the preparation phase of EQs.  

Prof. Dr. Masashi Hayakawa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • earthquake (EQ) precursors
  • short-term EQ prediction
  • lithosphere–atmosphere–ionosphere coupling (LAIC)
  • multi-parameter observations of seismogenic effects
  • ground- and satellite-based observations
  • theoretical modelling of different channels of LAIC process
  • critical analysis
  • statistical significance of EQ precursors

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3550 KiB  
Article
Possible Interrelations of Space Weather and Seismic Activity: An Implication for Earthquake Forecast
by Valery Sorokin and Victor Novikov
Geosciences 2024, 14(5), 116; https://0-doi-org.brum.beds.ac.uk/10.3390/geosciences14050116 - 25 Apr 2024
Viewed by 140
Abstract
The statistical analysis of the impact of the top 50 X-class solar flares (1997–2024) on global seismic activity as well as on the earthquake preparation zones located in the illuminated part of the globe and in an area of 5000 km around the [...] Read more.
The statistical analysis of the impact of the top 50 X-class solar flares (1997–2024) on global seismic activity as well as on the earthquake preparation zones located in the illuminated part of the globe and in an area of 5000 km around the subsolar point was carried out. It is shown by a method of epoch superposition that for all cases, an increase in seismicity is observed, especially in the region around the subsolar point (up to 33%) during the 10 days after the solar flare in comparison with the preceding 10 days. The case study of the aftershock sequence of a strong Mw = 9.1 earthquake (Sumatra–Andaman Islands, 26 December 2004) after the solar flare of X10.16 class (20 January 2005) demonstrated that the number of aftershocks with a magnitude of Mw ≥ 2.5 increases more than 17 times after the solar flare with a delay of 7–8 days. For the case of the Darfield earthquake (Mw = 7.1, 3 September 2010, New Zealand), it was shown that X-class solar flares and M probably triggered two strong aftershocks (Mw = 6.1 and Mw = 5.9) with the same delay of 6 days on the Port Hills fault, which is the most sensitive to external electromagnetic impact from the point of view of the fault electrical conductivity and orientation. Based on the obtained results, the possible application of natural electromagnetic triggering of earthquakes is discussed for the earthquake forecast using confidently recorded strong external electromagnetic triggering impacts on the specific earthquake preparation zones, as well as ionospheric perturbations due to aerosol emission from the earthquake sources recorded by satellites. Full article
29 pages, 13747 KiB  
Article
Observation of the Preparation Phase Associated with Mw = 7.2 Haiti Earthquake on 14 August 2021 from a Geophysical Data Point of View
by Dedalo Marchetti
Geosciences 2024, 14(4), 96; https://0-doi-org.brum.beds.ac.uk/10.3390/geosciences14040096 - 30 Mar 2024
Viewed by 889
Abstract
On 14 August 2021, an earthquake of moment magnitude Mw = 7.2 hit Haiti Island. Unfortunately, it caused several victims and economic damage to the island. While predicting earthquakes is still challenging and has not yet been achieved, studying the preparation phase of [...] Read more.
On 14 August 2021, an earthquake of moment magnitude Mw = 7.2 hit Haiti Island. Unfortunately, it caused several victims and economic damage to the island. While predicting earthquakes is still challenging and has not yet been achieved, studying the preparation phase of such catastrophic events may improve our knowledge and pose the basis for future predictions of earthquakes. In this paper, the six months that preceded the Haiti earthquake are analysed, investigating the lithosphere (by seismic catalogue), atmosphere (by climatological archive) and ionosphere by China Seismo-Electromagnetic Satellite (CSES-01) and Swarm satellites, as well as Total Electron Content (TEC) data. Several anomalies have been extracted from the analysed parameters using different techniques. A comparison, especially between the different layers, could increase or decrease the probability that a specific group of anomalies may be (or not) related to the preparation phase of the Haiti 2021 earthquake. In particular, two possible coupling processes have been revealed as part of the earthquake preparation phase. The first one was only between the lithosphere and the atmosphere about 130 days before the mainshock. The second one was about two months before the seismic event. It is exciting to underline that all the geo-layers show anomalies at that time: seismic accumulation of stress showed an increase of its slope, several atmospheric quantities underline abnormal atmospheric conditions, and CSES-01 Ne depicted two consecutive days of ionospheric electron density. This suggested a possible coupling of lithosphere–atmosphere and ionosphere as a sign of the increased stress, i.e., the impending earthquake. Full article
Show Figures

Graphical abstract

15 pages, 2454 KiB  
Article
Thermal Anomalies Observed during the Crete Earthquake on 27 September 2021
by Soujan Ghosh, Sudipta Sasmal, Sovan K. Maity, Stelios M. Potirakis and Masashi Hayakawa
Geosciences 2024, 14(3), 73; https://0-doi-org.brum.beds.ac.uk/10.3390/geosciences14030073 - 09 Mar 2024
Viewed by 910
Abstract
This study examines the response of the thermal channel within the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism during the notable earthquake in Crete, Greece, on 27 September 2021. We analyze spatio-temporal profiles of Surface Latent Heat Flux (SLHF), Outgoing Longwave Radiation (OLR), and Atmospheric Chemical [...] Read more.
This study examines the response of the thermal channel within the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism during the notable earthquake in Crete, Greece, on 27 September 2021. We analyze spatio-temporal profiles of Surface Latent Heat Flux (SLHF), Outgoing Longwave Radiation (OLR), and Atmospheric Chemical Potential (ACP) using reanalysis data from the National Oceanic and Atmospheric Administration (NOAA) satellite. Anomalies in these parameters are computed by removing the background profile for a non-seismic condition. Our findings reveal a substantial anomalous increase in these parameters near the earthquake’s epicenter 3 to 7 days before the main shock. The implications of these observations contribute to a deeper understanding of the LAIC mechanism’s thermal channel in seismic events. Full article
Show Figures

Figure 1

10 pages, 2594 KiB  
Article
Global Rayleigh Wave Attenuation and Group Velocity from International Seismological Centre Data
by Thomas Martin Hearn
Geosciences 2024, 14(2), 50; https://0-doi-org.brum.beds.ac.uk/10.3390/geosciences14020050 - 10 Feb 2024
Viewed by 1082
Abstract
This paper presents a study of global Rayleigh wave attenuation and group velocity at a period of around 20 s using data from the International Seismological Centre (ISC) bulletin. Rayleigh waves at this period are sensitive to the crustal structure beneath continents and [...] Read more.
This paper presents a study of global Rayleigh wave attenuation and group velocity at a period of around 20 s using data from the International Seismological Centre (ISC) bulletin. Rayleigh waves at this period are sensitive to the crustal structure beneath continents and the uppermost mantle beneath oceans. Tomographic imaging reveals strong continental-ocean contrasts due to this. Oceanic group velocities are high but vary with seafloor depth, while oceanic attenuation shows mid-ocean ridges. Subduction zone regions display high attenuation but little velocity reduction, indicating scattering attenuation. Low attenuation regions are associated with the Earth’s major cratonic regions, but there are no associated velocity changes. This implies that intrinsic attenuation is low and scattering dominates. Cratonic crustal scatterers have been annealed. A new surface wave magnitude scale is constructed that is valid from near-source to near-antipode distances. Full article
Show Figures

Figure 1

16 pages, 14268 KiB  
Article
Topside Ionospheric Structures Determined via Automatically Detected DEMETER Ion Perturbations during a Geomagnetically Quiet Period
by Mei Li, Hongzhu Yan and Yongxian Zhang
Geosciences 2024, 14(2), 33; https://0-doi-org.brum.beds.ac.uk/10.3390/geosciences14020033 - 28 Jan 2024
Viewed by 1007
Abstract
In this study, 117,718 ionospheric perturbations, with a space size (t) of 20–300 s but no amplitude (A) limit, were automatically globally searched via software utilizing ion density data measured by the DEMETER satellite for over 6 years. The [...] Read more.
In this study, 117,718 ionospheric perturbations, with a space size (t) of 20–300 s but no amplitude (A) limit, were automatically globally searched via software utilizing ion density data measured by the DEMETER satellite for over 6 years. The influence of geomagnetic storms on the ionosphere was first examined. The results demonstrated that storms can globally enhance positive ionospheric irregularities but rarely induce plasma variations of more than 100%. The probability of PERs with a space size falling in 200–300 s (1400–2100 km if a satellite velocity of 7 km/s is considered) occurring in a geomagnetically perturbed period shows more significance than that in a quiet period. Second, statistical work was performed on ion PERs to check their dependence on local time, and it was shown that 24.8% of the perturbations appeared during the daytime (10:30 LT) and 75.2% appeared during the nighttime (22:30 LT). Ionospheric fluctuations with an absolute amplitude of A < 10% tend to be background variations, and the percentages of positive perturbations with a small A < 20% occur at an amount of 64% during the daytime and 26.8% during the nighttime, but this number is reversed for mid–large-amplitude PERs. Large positive PERs with A > 100% mostly occurred at night and negative ones with A < −100% occurred entirely at night. There was a demarcation point in the space size of t = 120 s, and the occurrence probabilities of day PERs were always higher than that of nighttime ones before this point, while this trend was contrary after this point. Finally, distributions of PERs according to different ranges of amplitude and space scale were characterized by typical seasonal variations either in the daytime or nighttime. EIA only exists in the dayside equinox and winter, occupying two low-latitude crests with a lower Np in both hemispheres. Large WSAs appear within all periods, except for dayside summer, and are full of PERs with an enhanced amplitude, especially on winter nights. The WN-like structure is obvious during all seasons, showing large-scale space. On the other hand, several magnetically anomalous zones of planetary-scale non-dipole fields, such as the SAMA, Northern Africa anomaly, and so on, were also successfully detected by extreme negative ion perturbations during this time. Full article
Show Figures

Figure 1

13 pages, 4619 KiB  
Article
The Lithosphere-Atmosphere-Ionosphere Coupling of Multiple Geophysical Parameters Approximately 3 Hours Prior to the 2022 M6.8 Luding Earthquake
by Chieh-Hung Chen, Shengjia Zhang, Zhiqiang Mao, Yang-Yi Sun, Jing Liu, Tao Chen, Xuemin Zhang, Aisa Yisimayili, Haiyin Qing, Tianya Luo, Yongxin Gao and Fei Wang
Geosciences 2023, 13(12), 356; https://0-doi-org.brum.beds.ac.uk/10.3390/geosciences13120356 - 21 Nov 2023
Viewed by 1260
Abstract
Investigating various geophysical parameters from the Earth’s crust to the upper atmosphere is considered a promising approach for predicting earthquakes. Scientists have observed that changes in these parameters can occur days to months before earthquakes. Understanding and studying the impending abnormal phenomena that [...] Read more.
Investigating various geophysical parameters from the Earth’s crust to the upper atmosphere is considered a promising approach for predicting earthquakes. Scientists have observed that changes in these parameters can occur days to months before earthquakes. Understanding and studying the impending abnormal phenomena that precede earthquakes is both urgent and challenging. On 5 September 2022, a magnitude 6.8 earthquake occurred in Sichuan, China, at 4:52:18 (Universal Time). The earthquake happened approximately 175 km away from an instrumental array established in 2021 for monitoring vibrations and perturbations in the lithosphere, atmosphere, and ionosphere (MVP-LAI). This array consisted of over 15 instruments that regularly monitor changes in various geophysical parameters from the subsurface up to an altitude of approximately 350 km in the ionosphere. Its purpose was to gain insights into the mechanisms behind the coupling of these different geospheres during natural hazards. The seven geophysical parameters from the MVP-LAI system simultaneously exhibited abnormal behaviors approximately 3 h before the Luding earthquake. These parameters include ground tilts, air pressure, radon concentration, atmospheric vertical electric field, geomagnetic field, wind field, and total electron content. The abnormal increase in radon concentration suggests that the chemical channel could be a promising mechanism for the coupling of geospheres. Furthermore, air pressure, the geomagnetic field, and total electron content exhibited abnormal characteristics with similar frequencies. Horizontal wind experienced temporary cessation or weakening, while vertical wind displayed frequent reversals. These anomalies may be attributed to atmospheric resonance before the earthquake. The results demonstrate that the coupling of geospheres, as indicated by the anomalous phenomena preceding an earthquake, could be influenced by multiple potential mechanisms. The multiple anomalies observed in this study provided approximately 3 h of warning for people to prepare for the seismic event and mitigate hazards. Full article
Show Figures

Figure 1

16 pages, 2926 KiB  
Article
Subduction as a Smoothing Machine: How Multiscale Dissipation Relates Precursor Signals to Fault Geometry
by Patricio Venegas-Aravena and Enrique G. Cordaro
Geosciences 2023, 13(8), 243; https://0-doi-org.brum.beds.ac.uk/10.3390/geosciences13080243 - 11 Aug 2023
Cited by 4 | Viewed by 1141
Abstract
Understanding the process of earthquake preparation is of utmost importance in mitigating the potential damage caused by seismic events. That is why the study of seismic precursors is fundamental. However, the community studying non-seismic precursors relies on measurements, methods, and theories that lack [...] Read more.
Understanding the process of earthquake preparation is of utmost importance in mitigating the potential damage caused by seismic events. That is why the study of seismic precursors is fundamental. However, the community studying non-seismic precursors relies on measurements, methods, and theories that lack a causal relationship with the earthquakes they claim to predict, generating skepticism among classical seismologists. Nonetheless, in recent years, a group has emerged that seeks to bridge the gap between these communities by applying fundamental laws of physics, such as the application of the second law of thermodynamics in multiscale systems. These systems, characterized by describing irreversible processes, are described by a global parameter called thermodynamic fractal dimension, denoted as D. A decrease in D indicates that the system starts seeking to release excess energy on a macroscopic scale, increasing entropy. It has been found that the decrease in D prior to major earthquakes is related to the increase in the size of microcracks and the emission of electromagnetic signals in localized zones, as well as the decrease in the ratio of large to small earthquakes known as the b-value. However, it is still necessary to elucidate how D, which is also associated with the roughness of surfaces, relates to other rupture parameters such as residual energy, magnitude, or fracture energy. Hence, this work establishes analytical relationships among them. Particularly, it is found that larger magnitude earthquakes with higher residual energy are associated with smoother faults. This indicates that the pre-seismic processes, which give rise to both seismic and non-seismic precursor signals, must also be accompanied by changes in the geometric properties of faults. Therefore, it can be concluded that all types of precursors (seismic or non-seismic), changes in fault smoothness, and the occurrence of earthquakes are different manifestations of the same multiscale dissipative system. Full article
Show Figures

Figure 1

Back to TopTop