Feature Papers in Membrane Analysis and Characterization

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Analysis and Characterization".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 13274

Special Issue Editors


E-Mail Website
Guest Editor
Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
Interests: separation processes based on functionalized membranes; supported liquid membranes; polymer inclusion membranes; membrane systems for the clean-up of natural waters and industrial wastewaters; physico-chemical and electrical characterization of membranes; environmental and industrial sampling and analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute on Membrane Technology, National Research Council, ITM-CNR, 87036 Arcavacata di Rende, Italy
Interests: polymeric membranes; sustainable membrane preparation; bio-polymeric membranes; flat membranes; hollow-fibers; nano fibers; membrane preparation; membrane characterization; pervaporation; antifouling coatings; self-cleaning membranes; ultra-micro filtration
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is our pleasure to announce the launch of a new Special Issue in the Section “Membrane Analysis and Characterization” of the journal Membranes, on the topic “Feature Papers in Membrane Analysis and Characterization”. The Special Issue is open to submissions (research articles, short communications, review articles, etc.) on all aspects relevant to the elucidation of membrane composition, modification, and degradation.

Selected topics include but are not limited to: 

  • Characterization of membrane composition;
  • Characterization of morphology and structure;
  • Characterization of membrane performance;
  • Spectroscopy methods;
  • Electrochemical characterization;
  • Mechanical properties;
  • Microscopy techniques;
  • Thermal analysis;
  • Membrane bulk analysis;
  • Mass transport characterization;
  • Degradation analysis.

We look forward to receiving your outstanding contributions to this Special Issue.

Dr. Clàudia Fontàs
Dr. Alberto Figoli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • porosity
  • pore size
  • pore structure
  • homogeneity
  • fouling
  • morphology
  • hydrophobicity
  • surface modification
  • chemical characteristics
  • physical characteristics
  • mechanical properties
  • thermal stability
  • transport
  • separation
  • membrane conductivity
  • advanced techniques

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 3382 KiB  
Article
A Comprehensive Study on the Effect of Plasticizers on the Characteristics of Polymer Inclusion Membranes (PIMs): Exploring Butyl Stearate as a Promising Alternative
by Berta Alcalde, Gemma Elias, Spas D. Kolev, José Alberto Méndez, Sergi Díez, Helena Oliver-Ortega, Enriqueta Anticó and Clàudia Fontàs
Membranes 2024, 14(1), 19; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes14010019 - 09 Jan 2024
Viewed by 1564
Abstract
This study investigated the influence of various plasticizers commonly used in the manufacture of polymer inclusion membranes (PIMs), such as 2-nitrophenyl octyl ether (NPOE), phthalates, adipates, and sebacates on the mechanical, thermal, and transport properties of membranes. Additionally, butyl stearate (BTS), chosen for [...] Read more.
This study investigated the influence of various plasticizers commonly used in the manufacture of polymer inclusion membranes (PIMs), such as 2-nitrophenyl octyl ether (NPOE), phthalates, adipates, and sebacates on the mechanical, thermal, and transport properties of membranes. Additionally, butyl stearate (BTS), chosen for its non-toxic nature compared to phthalates and its cost-effectiveness relative to adipates and sebacates, was evaluated as a plasticizer in PIMs for the first time. All plasticizers were incorporated in PIMs made of either cellulose triacetate (CTA) or poly(vinyl chloride) (PVC) as the base polymers and the task-specific ionic liquid trioctylmethylammonium thiosalicylate (TOMATS) as the carrier. The plasticizers were found to significantly affect the characteristics of membrane hydrophilicity, mechanical flexibility, and thermal stability. Transport experiments using Hg(II) as a model target ion revealed that, for CTA-based PIMs, the plasticizer did not significantly affect transport efficiency. However, for PVC-based PIMs, BTS exhibited better efficiency when compared to NPOE. These findings highlight the potential of BTS as an attractive alternative to currently used plasticizers in PVC-based PIM formulations. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

16 pages, 12428 KiB  
Article
Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration
by Gunawan Setia Prihandana, Sayed Sulthan Maulana, Rahmat Santoso Soedirdjo, Venni Tanujaya, Desak Made Adya Pramesti, Tutik Sriani, Mohd Fadzil Jamaludin, Farazila Yusof and Muslim Mahardika
Membranes 2023, 13(12), 906; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes13120906 - 12 Dec 2023
Viewed by 1727
Abstract
Ultrafiltration membrane technology holds promise for wastewater treatment, but its widespread application is hindered by fouling and flux reduction issues. One effective strategy for enhancing ultrafiltration membranes involves incorporating activated carbon powder. In this study, composite polyethersulfone (PES) ultrafiltration membranes were fabricated to [...] Read more.
Ultrafiltration membrane technology holds promise for wastewater treatment, but its widespread application is hindered by fouling and flux reduction issues. One effective strategy for enhancing ultrafiltration membranes involves incorporating activated carbon powder. In this study, composite polyethersulfone (PES) ultrafiltration membranes were fabricated to include activated carbon powder concentrations between 0 and 1.5 wt.%, with carbon size fixed at 200 mesh. The ultrafiltration membranes were evaluated in terms of membrane morphology, hydrophilicity, pure water flux, equilibrium water content, porosity, average pore size, protein separation, and E-coli bacteria removal. It was found that the addition of activated carbon to PES membranes resulted in improvements in some key properties. By incorporating activated carbon powder, the hydrophilicity of PES membranes was enhanced, lowering the contact angle from 60° to 47.3° for composite membranes (1.0 wt.% of activated carbon) compared to the pristine PES membrane. Water flux tests showed that the 1.0 wt.% composite membrane yielded the highest flux, with an improvement of nearly double the initial value at 2 bar, without compromising bovine serum albumin rejection or bacterial removal capabilities. This study also found that the inclusion of activated carbon had a minor impact on the membrane’s porosity and equilibrium water content. Overall, these insights will be beneficial in determining the optimal concentration of activated carbon powder for PES ultrafiltration membranes. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

22 pages, 4344 KiB  
Article
Development of a Green Polymeric Membrane for Sodium Diclofenac Removal from Aqueous Solutions
by Camila Suliani Raota, Janaina da Silva Crespo, Camila Baldasso and Marcelo Giovanela
Membranes 2023, 13(7), 662; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes13070662 - 12 Jul 2023
Viewed by 1089
Abstract
Water-soluble polymers provide an alternative to organic solvent requirements in membrane manufacture, aiming at accomplishing the Green Chemistry principles. Poly(vinyl alcohol) (PVA) is a biodegradable and non-toxic polymer renowned for its solubility in water. However, PVA is little explored in membrane processes due [...] Read more.
Water-soluble polymers provide an alternative to organic solvent requirements in membrane manufacture, aiming at accomplishing the Green Chemistry principles. Poly(vinyl alcohol) (PVA) is a biodegradable and non-toxic polymer renowned for its solubility in water. However, PVA is little explored in membrane processes due to its hydrophilicity, which reduces its stability and performance. Crosslinking procedures through an esterification reaction with carboxylic acids can address this concern. For this, experimental design methodology and statistical analysis were employed to achieve the optimal crosslinking conditions of PVA with citric acid as a crosslinker, aiming at the best permeate production and sodium diclofenac (DCF) removal from water. The membranes were produced following an experimental design and characterized using multiple techniques to understand the effect of crosslinking on the membrane performance. Characterization and filtration results demonstrated that crosslinking regulates the membranes’ properties, and the optimized conditions (crosslinking at 110 °C for 110 min) produced a membrane able to remove 44% DCF from water with a permeate production of 2.2 L m−2 h−1 at 3 bar, comparable to commercial loose nanofiltration membranes. This study contributes to a more profound knowledge of green membranes to make water treatment a sustainable practice in the near future. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

11 pages, 4443 KiB  
Article
Self-Healing Hydrogel Membrane Provides a Strategy for the Steady Production of Clean Water from Organic Wastewater
by Xin Li, Jionghao Feng, Haijun Wang, Florian Ion Tiberiu Petrescu and Ying Li
Membranes 2023, 13(7), 648; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes13070648 - 05 Jul 2023
Viewed by 1081
Abstract
When the typical solar-driven hydrogel water evaporator treats the organic sewage, the organic pollutants will be accumulated in the evaporator and affect the evaporation performance. This issue is resolved by using silver–disulfide bonding to fix the silver oxide/silver (Ag2O/Ag) nanoparticles inside [...] Read more.
When the typical solar-driven hydrogel water evaporator treats the organic sewage, the organic pollutants will be accumulated in the evaporator and affect the evaporation performance. This issue is resolved by using silver–disulfide bonding to fix the silver oxide/silver (Ag2O/Ag) nanoparticles inside the polyacrylamide-acrylic acid hydrogel, resulting in the photocatalytic degradation of methyl orange and solar-driven water evaporation. Ag2O/Ag nanoparticles are a solar–thermal conversion material used to replace the traditional carbon material. On the one hand, the heterojunction structure of Ag2O/Ag enhances the separation ability of the photogenerated carriers, thereby increasing the photocatalytic efficiency. On the other hand, the surface of the nanoparticles is grafted with N, N′-bis(acryloyl) cystamine and becomes the crosslinking agent which is fixed in the hydrogel. Meanwhile, the inverted pyramid structure can be built at the surface of the hydrogel by soft imprinting technology. This kind of structure has excellent light trapping performance, which can increase the efficiency of Ag2O/Ag photocatalysis. Furthermore, the dynamic reversible coordination effect between Fe3+ and carboxyl realizes the self-healing capability of the hydrogel. Here are the properties of hydrogel: the fracture stress is 0.35 MPa, the fracture elongation is 1320%, the evaporation rate is 1.2 kg·m−2·h−1, and the rate of the photocatalytic degradation of methyl orange is 96% in 3 h. This self-healing hydrogel membrane provides a strategy to steadily get clean water from organic sewage. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

21 pages, 14409 KiB  
Article
Programmable Physical Properties of Freestanding Chitosan Membranes Electrofabricated in Microfluidics
by Khanh L. Ly, Piao Hu, Christopher B. Raub and Xiaolong Luo
Membranes 2023, 13(3), 294; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes13030294 - 28 Feb 2023
Viewed by 1259
Abstract
Microfluidic-integrated freestanding membranes with suitable biocompatibility and tunable physicochemical properties are in high demand for a wide range of life science and biological studies. However, there is a lack of facile and rapid methods to integrate such versatile membranes into microfluidics. A recently [...] Read more.
Microfluidic-integrated freestanding membranes with suitable biocompatibility and tunable physicochemical properties are in high demand for a wide range of life science and biological studies. However, there is a lack of facile and rapid methods to integrate such versatile membranes into microfluidics. A recently invented interfacial electrofabrication of chitosan membranes offers an in-situ membrane integration strategy that is flexible, controllable, simple, and biologically friendly. In this follow-up study, we explored the ability to program the physical properties of these chitosan membranes by varying the electrofabrication conditions (e.g., applied voltage and pH of alginate). We found a strong association between membrane growth rate, properties, and fabrication parameters: high electrical stimuli and pH of alginate resulted in high optical retardance and low permeability, and vice versa. This suggests that the molecular alignment and density of electrofabricated chitosan membranes could be actively tailored according to application needs. Lastly, we demonstrated that this interfacial electrofabrication could easily be expanded to produce chitosan membrane arrays with higher uniformity than the previously well-established flow assembly method. This study demonstrates the tunability of the electrofabricated membranes’ properties and functionality, thus expanding the utility of such membranes for broader applications in the future. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Graphical abstract

20 pages, 7500 KiB  
Article
Core-Shell Structured Carbon@Al2O3 Membrane with Enhanced Acid Resistance for Acid Solution Treatment
by Qianlian Wu, Huimiao Zhang, Yi Zhou, Zhishu Tang, Bo Li, Tingming Fu, Yue Zhang and Huaxu Zhu
Membranes 2022, 12(12), 1246; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes12121246 - 09 Dec 2022
Cited by 1 | Viewed by 1303
Abstract
Ceramic membrane has an important application prospect in industrial acid solution treatment. Enhancement of the acid resistance is the key strategy to optimize the membrane treatment effect. This work reports a core–shell structured membrane fabricated on alumina ceramic substrates via a one-step in [...] Read more.
Ceramic membrane has an important application prospect in industrial acid solution treatment. Enhancement of the acid resistance is the key strategy to optimize the membrane treatment effect. This work reports a core–shell structured membrane fabricated on alumina ceramic substrates via a one-step in situ hydrothermal method. The acid resistance of the modified membrane was significantly improved due to the protection provided by a chemically stable carbon layer. After modification, the masses lost by the membrane in the hydrochloric acid solution and the acetic acid solution were sharply reduced by 90.91% and 76.92%, respectively. Kinetic models and isotherm models of adsorption were employed to describe acid adsorption occurring during the membrane process and indicated that the modified membrane exhibited pseudo-second-order kinetics and Langmuir model adsorption. Compared to the pristine membrane, the faster adsorption speed and the lower adsorption capacity were exhibited by the modified membrane, which further had a good performance with treating various kinds of acid solutions. Moreover, the modified membrane could be recycled without obvious flux decay. This modification method provides a facile and efficient strategy for the fabrication of acid-resistant membranes for use in extreme conditions. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Graphical abstract

22 pages, 7722 KiB  
Article
A Comparative Analysis of the Effect of Carbonaceous Nanoparticles on the Physicochemical Properties of Hybrid Polyethersulfone Ultrafiltration Membranes
by Lubna Jaber, Ismail W. Almanassra, Sumina Namboorimadathil Backer, Viktor Kochkodan, Abdallah Shanableh and Muataz Ali Atieh
Membranes 2022, 12(11), 1143; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes12111143 - 15 Nov 2022
Cited by 8 | Viewed by 2023
Abstract
Numerous studies have been previously reported on the use of nanoscale carbonaceous fillers, such as multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO), in polymeric ultrafiltration (UF) membranes; however, no insight has been clearly reported on which material provides the best enhancements in [...] Read more.
Numerous studies have been previously reported on the use of nanoscale carbonaceous fillers, such as multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO), in polymeric ultrafiltration (UF) membranes; however, no insight has been clearly reported on which material provides the best enhancements in membrane performance. In this study, a comparative analysis was carried out to establish a comprehensible understanding of the physicochemical properties of hybrid polyethersulfone (PES) UF membranes incorporated with MWCNTs and GO nanoparticles at various concentrations. The hybrid membranes were prepared via the non-solvent-induced phase separation process and further characterized by field emission scanning electron microscopy and atomic force microscope (AFM). The AFM images showed homogeneous membrane surfaces with a reduction in the membrane surface roughness from 2.62 nm for bare PES to 2.39 nm for PES/MWCNTs and to 1.68 nm for PES/GO membranes due to improved hydrophilicity of the membranes. Physicochemical properties of the hybrid PES membranes were assessed, and the outcomes showed an enhancement in the porosity, pore size, water contact angle, and water permeability with respect to nanoparticle concentration. GO-incorporated PES membranes exhibited the highest porosity, pore size, and lowest contact angle as compared to PES/MWCNTs, indicating the homogeneous distribution of nanoparticles within the membrane structure. PES/MWCNTs (0.5 wt.%) and PES/GO (1.0 wt.%) hybrid membranes exhibited the highest water flux of 450.0 and 554.8 L m−2 h−1, respectively, at an applied operating pressure of 1 bar. The filtration and antifouling performance of the PES hybrid membranes were evaluated using 50 mg L−1 of humic acid (HA) as a foulant at pH = 7. Compared to the bare PES membrane, the MWCNTs and GO-incorporated PES hybrid membranes exhibited enhanced permeability and HA removal. Moreover, PES/MWCNTs (0.5 wt.%) and PES/GO (1 wt.%) hybrid membranes reported HA rejection of 90.8% and 94.8%, respectively. The abundant oxygen-containing functional groups in GO-incorporated PES membranes resulted in more hydrophilic membranes, leading to enhanced permeability and fouling resistance. The antifouling properties and flux recovery ratio were improved by the addition of both nanoparticles. Given these findings, although both MWCNTs and GO nanoparticles are seen to notably improve the membrane performance, PES membranes with 1 wt.% GO loading provided the highest removal of natural organic matter, such as HA, under the same experimental conditions. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 1859 KiB  
Review
Ongoing Progress on Pervaporation Membranes for Ethanol Separation
by Muhammad Imad and Roberto Castro-Muñoz
Membranes 2023, 13(10), 848; https://0-doi-org.brum.beds.ac.uk/10.3390/membranes13100848 - 23 Oct 2023
Viewed by 1880
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic [...] Read more.
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water–) and concentrated solutions (water-ethanol–). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water–ethanol and ethanol–water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure–performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

Back to TopTop