The Effect of Abiotic Stress on Grapevine: A Physiological, Transcriptional and Metabolic Perspective

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: closed (20 December 2022) | Viewed by 38524

Special Issue Editors


E-Mail Website
Guest Editor
Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Padova, Italy
Interests: plant ecophysiology; abiotic stress; growth; climate change; sustainable agriculture; proximal and remote sensing

E-Mail Website
Guest Editor
Department of Agricultural, Food, Environmental and Animal Sciences (Di4A) -University of Udine, Udine, Italy
Interests: plant physiology; abiotic stress; canopy management; secondary metabolism; gene; expression

Special Issue Information

Dear Colleagues,

According to WMO and IPCC, the world experienced unprecedented high-impact

climate extremes during the past few decades with droughts, floods, and heat waves occurring in all parts of the world. Under this changing climate, as quality and yield of grapevine are directly linked with local climate variables through the terroir expression, wine-growing regions now perfectly suited to a given cultivar may become less so. However, the potential impact of spatially heterogeneous climate changes on grapevine physiology is still largely unknown. Understanding physiological and metabolic response of plants to challenging environments is essential for preventing and mitigating possible negative effects on yield and grape quality. As stresses involve simultaneous physiological alterations,

a comprehensive characterization of the role of metabolic pathways in stress response needs for high throughput data and genome-scale approaches. Moreover, in different wine growing regions mitigation strategies has been adopted in order to overcome the effects of the excessive temperatures

and water stress (antitranspirants), and to delay the maturation in early ripening grapevine varieties (late apical shoot trimming or leaf removal). Such techniques determine modifications in plant physiology and grape maturation with transcriptome reprogramming and metabolite metabolism shifts that need to be understood. This Special Issue of Plants will highlight the mechanisms of regulation of grapevine physiology, organ metabolism, source-sink signaling, hormone crosstalk, whole plant ecophysiological responses to abiotic stresses expected by current and future climate change scenarios.

Dr. Franco Meggio
Dr. Paolo Sivilotti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant physiology
  • climate change
  • sustainable agriculture
  • secondary metabolism
  • gene expression
  • Vitis

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 1673 KiB  
Article
Benzothiadiazole Affects Grape Polyphenol Metabolism and Wine Quality in Two Greek Cultivars: Effects during Ripening Period over Two Years
by Dimitrios-Evangelos Miliordos, Anastasios Alatzas, Nikolaos Kontoudakis, Marianne Unlubayir, Polydefkis Hatzopoulos, Arnaud Lanoue and Yorgos Kotseridis
Plants 2023, 12(5), 1179; https://0-doi-org.brum.beds.ac.uk/10.3390/plants12051179 - 04 Mar 2023
Cited by 3 | Viewed by 1494
Abstract
Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce [...] Read more.
Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce resistance against plant pathogens. A field experiment was conducted in two growing seasons (2019–2020) to investigate the effect of benzothiadiazole on polyphenol biosynthesis during grape ripening in Mouhtaro (red-colored) and Savvatiano (white-colored) varieties. Grapevines were treated at the stage of veraison with 0.3 mM and 0.6 mM benzothiadiazole. The phenolic content of grapes, as well as the expression level of genes involved in the phenylpropanoid pathway were evaluated and showed an induction of genes specifically engaged in anthocyanins and stilbenoids biosynthesis. Experimental wines deriving from benzothiadiazole-treated grapes exhibited increased amounts of phenolic compounds in both varietal wines, as well as an enhancement in anthocyanin content of Mouhtaro wines. Taken together, benzothiadiazole can be utilized to induce the biosynthesis of secondary metabolites with oenological interest and to improve the quality characteristics of grapes produced under organic conditions. Full article
Show Figures

Figure 1

36 pages, 9624 KiB  
Article
Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview
by Alessandro Botton, Francesco Girardi, Benedetto Ruperti, Matteo Brilli, Veronica Tijero, Giulia Eccher, Francesca Populin, Elisabetta Schievano, Tobia Riello, Sergi Munné-Bosch, Monica Canton, Angela Rasori, Valerio Cardillo and Franco Meggio
Plants 2022, 11(24), 3574; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11243574 - 17 Dec 2022
Viewed by 2034
Abstract
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the [...] Read more.
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios. Full article
Show Figures

Figure 1

12 pages, 1299 KiB  
Article
Short-Term CO2 Treatment of Harvested Grapes (Vitis vinifera L., cv. Trebbiano) before Partial Dehydration Affects Berry Secondary Metabolism and the Aromatic Profile of the Resulting Wine
by Marco Santin, Stefano Brizzolara, Antonella Castagna, Annamaria Ranieri and Pietro Tonutti
Plants 2022, 11(15), 1973; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11151973 - 29 Jul 2022
Cited by 2 | Viewed by 1179
Abstract
High CO2 concentrations applied to harvested horticultural products can modify primary and secondary metabolism. This work reports the metabolic responses to short-term CO2 treatments of white-skinned grapes (cv Trebbiano) undergoing postharvest partial dehydration. The influence of CO2 treatments on the [...] Read more.
High CO2 concentrations applied to harvested horticultural products can modify primary and secondary metabolism. This work reports the metabolic responses to short-term CO2 treatments of white-skinned grapes (cv Trebbiano) undergoing postharvest partial dehydration. The influence of CO2 treatments on the aroma profile of the derived sweet wine was also assessed. Harvested grapes were treated with gaseous CO2 (30%) or air (control) for 24 h and then dehydrated (about 45% of weight loss) before vinification. Lipophilic and phenolic compounds of grape skin and the wine aroma profile were analyzed. In CO2-treated berries, the lipophilic and phenolic compounds decreased at a reduced and faster rate, respectively, during dehydration. Aroma profile of wine from CO2-treated grapes showed a slight but significantly higher content of glycosylated C13 and terpene compounds, and a decrease/absence of free acids, vanillin derivates and other phenol volatiles. The higher content of volatile alcohols in wine from treated berries suggests that the alcoholic fermentation was triggered. CO2 application before the withering process of Trebbiano grapes affects the aroma profile of the resulting wine by altering the free:glycosylated volatiles ratio. This study provides information on the possible use of CO2 as metabolic elicitor to modulate the aroma profile of the resulting wines obtained after grape dehydration. Full article
Show Figures

Figure 1

13 pages, 5095 KiB  
Article
Geraniol as a Potential Stimulant for Improving Anthocyanin Accumulation in Grape Berry Skin through ABA Membrane Transport
by Norika Mikami, Mayu Konya, Shinichi Enoki and Shunji Suzuki
Plants 2022, 11(13), 1694; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11131694 - 27 Jun 2022
Viewed by 2314
Abstract
Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated [...] Read more.
Climate change, particularly warmer temperature, has resulted in reduced anthocyanin accumulation in grape berry skin. Because anthocyanin is a crucial determinant of red wine quality, viticulturists need to devise a solution for mitigating the poor coloration of red/black grape berry skin under elevated temperature conditions. In this study, we investigated the effects of geraniol on anthocyanin accumulation in grape berry skins of field-grown grapevines and elucidated the molecular mechanisms of the geraniol-triggered anthocyanin accumulation. Geraniol-treated bunches showed enhanced anthocyanin accumulation in berry skins at harvest (50 days after treatment). Geraniol treatment upregulated the transcription of MybA1 and UFGT, which encode the key factors in anthocyanin biosynthesis, in berry skins. Geraniol treatment also improved anthocyanin accumulation in grape cultured cells. We isolated grape ATP-binding cassette transporter G family protein VvABCG40, encoding abscisic acid (ABA) membrane transporter, from geraniol-treated grape cultured cells. VvABCG40 transcription was upregulated in berry skins 40 days after treatment. Geraniol treatment also upregulated the transcription of VvPP2C24, which encodes ABA-responsible type 2C protein phosphatases, in berry skins, but not the transcription of VvNCED1, which encodes a key enzyme in ABA biosynthesis. Taken together, geraniol-triggered anthocyanin accumulation in berry skins is promoted by ABA membrane transport and not by ABA biosynthesis, and geraniol treatment of field-grown grape bunches may contribute to alleviating the poor coloration of berry skin as a novel technique in viticulture. Full article
Show Figures

Figure 1

21 pages, 2073 KiB  
Article
Abscisic Acid and Chitosan Modulate Polyphenol Metabolism and Berry Qualities in the Domestic White-Colored Cultivar Savvatiano
by Dimitrios Evangelos Miliordos, Anastasios Alatzas, Nikolaos Kontoudakis, Angeliki Kouki, Marianne Unlubayir, Marin-Pierre Gémin, Alexandros Tako, Polydefkis Hatzopoulos, Arnaud Lanoue and Yorgos Kotseridis
Plants 2022, 11(13), 1648; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11131648 - 22 Jun 2022
Cited by 2 | Viewed by 1886
Abstract
During the last decade, several studies demonstrated the effect of biostimulants on the transcriptional and metabolic profile of grape berries, suggesting their application as a useful viticultural practice to improve grape and wine quality. Herein, we investigated the impact of two biostimulants—abscisic acid [...] Read more.
During the last decade, several studies demonstrated the effect of biostimulants on the transcriptional and metabolic profile of grape berries, suggesting their application as a useful viticultural practice to improve grape and wine quality. Herein, we investigated the impact of two biostimulants—abscisic acid (0.04% w/v and 0.08% w/v) and chitosan (0.3% w/v and 0.6% w/v)—on the polyphenol metabolism of the Greek grapevine cultivar, Savvatiano, in order to determine the impact of biostimulants’ application in the concentration of phenolic compounds. The applications were performed at the veraison stage and the impact on yield, berry quality traits, metabolome and gene expression was examined at three phenological stages (veraison, middle veraison and harvest) during the 2019 and 2020 vintages. Results showed that anthocyanins increased during veraison after treatment with chitosan and abscisic acid. Additionally, stilbenoids were recorded in higher amount following the chitosan and abscisic acid treatments at harvest. Both of the abscisic acid and chitosan applications induced the expression of genes involved in stilbenoids and anthocyanin biosynthesis and resulted in increased accumulation, regardless of the vintage. Alterations in other phenylpropanoid gene expression profiles and phenolic compound concentrations were observed as well. Nevertheless, they were mostly restricted to the first vintage. Therefore, the application of abscisic acid and chitosan on the Greek cultivar Savvatiano showed promising results to induce stilbenoid metabolism and potentially increase grape defense and quality traits. Full article
Show Figures

Figure 1

15 pages, 4528 KiB  
Article
The Physiological Impact of GFLV Virus Infection on Grapevine Water Status: First Observations
by Anastazija Jež-Krebelj, Maja Rupnik-Cigoj, Marija Stele, Marko Chersicola, Maruša Pompe-Novak and Paolo Sivilotti
Plants 2022, 11(2), 161; https://0-doi-org.brum.beds.ac.uk/10.3390/plants11020161 - 07 Jan 2022
Cited by 7 | Viewed by 2267
Abstract
In a vineyard, grapevines are simultaneously exposed to combinations of several abiotic (drought, extreme temperatures, salinity) and biotic stresses (phytoplasmas, viruses, bacteria). With climate change, the incidences of drought in vine growing regions are increased and the host range of pathogens with increased [...] Read more.
In a vineyard, grapevines are simultaneously exposed to combinations of several abiotic (drought, extreme temperatures, salinity) and biotic stresses (phytoplasmas, viruses, bacteria). With climate change, the incidences of drought in vine growing regions are increased and the host range of pathogens with increased chances of virulent strain development has expanded. Therefore, we studied the impact of the combination of abiotic (drought) and biotic (Grapevine fanleaf virus (GFLV) infection) stress on physiological and molecular responses on the grapevine of cv. Schioppettino by studying the influence of drought and GFLV infection on plant water status of grapevines, on grapevine xylem vessel occlusion, and on expression patterns of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1), 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), WRKY encoding transcription factor (WRKY54) and RD22-like protein (RD22) genes in grapevines. A complex response of grapevine to the combination of drought and GFLV infection was shown, including priming in the case of grapevine water status, net effect in the case of area of occluded vessels in xylem, and different types of interaction of both stresses in the case of expression of four abscisic acid-related genes. Our results showed that mild (but not severe) water stress can be better sustained by GFLV infection rather than by healthy vines. GFLV proved to improve the resilience of the plants to water stress, which is an important outcome to cope with the challenges of global warming. Full article
Show Figures

Figure 1

19 pages, 3748 KiB  
Article
The Effect of Water Deficit on Two Greek Vitis vinifera L. Cultivars: Physiology, Grape Composition and Gene Expression during Berry Development
by Anastasios Alatzas, Serafeim Theocharis, Dimitrios-Evangelos Miliordos, Konstantina Leontaridou, Angelos K. Kanellis, Yorgos Kotseridis, Polydefkis Hatzopoulos and Stefanos Koundouras
Plants 2021, 10(9), 1947; https://doi.org/10.3390/plants10091947 - 18 Sep 2021
Cited by 21 | Viewed by 3198
Abstract
Plants are exposed to numerous abiotic stresses. Drought is probably the most important of them and determines crop distribution around the world. Grapevine is considered to be a drought-resilient species, traditionally covering semiarid areas. Moreover, in the case of grapevine, moderate water deficit [...] Read more.
Plants are exposed to numerous abiotic stresses. Drought is probably the most important of them and determines crop distribution around the world. Grapevine is considered to be a drought-resilient species, traditionally covering semiarid areas. Moreover, in the case of grapevine, moderate water deficit is known to improve the quality traits of grape berries and subsequently wine composition. However, against the backdrop of climate change, vines are expected to experience sustained water deficits which could be detrimental to both grape quality and yield. The influence of water deficit on two Greek Vitis vinifera L. cultivars, ‘Agiorgitiko’ and ‘Assyrtiko’, was investigated during the 2019 and 2020 vintages. Vine physiology measurements in irrigated and non-irrigated plants were performed at three time-points throughout berry development (green berry, veraison and harvest). Berry growth and composition were examined during ripening. According to the results, water deficit resulted in reduced berry size and increased levels of soluble sugars, total phenols and anthocyanins. The expression profile of specific genes, known to control grape color, aroma and flavor was altered by water availability during maturation in a cultivar-specific manner. In agreement with the increased concentration of phenolic compounds due to water deficit, genes of the phenylpropanoid pathway in the red-skinned Agiorgitiko exhibited higher expression levels and earlier up-regulation than in the white Assyrtiko. The expression profile of the other genes during maturation or in response to water deficit was depended on the vintage. Full article
Show Figures

Figure 1

16 pages, 736 KiB  
Article
Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine
by Runze Yu, Matthew W. Fidelibus, James A. Kennedy and Sahap Kaan Kurtural
Plants 2021, 10(9), 1865; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10091865 - 09 Sep 2021
Cited by 6 | Viewed by 2511
Abstract
Grapevine productivity, and berry and wine flavonoid concentration, depend on the interactions of cultivar, environment, and applied cultural practices. We characterized the effects that mechanical leaf removal and irrigation treatments had on the flavonoid concentration of ‘Merlot’ (Vitis vinifera, L.) grape [...] Read more.
Grapevine productivity, and berry and wine flavonoid concentration, depend on the interactions of cultivar, environment, and applied cultural practices. We characterized the effects that mechanical leaf removal and irrigation treatments had on the flavonoid concentration of ‘Merlot’ (Vitis vinifera, L.) grape berries and wines in a hot climate over two growing seasons with contrasting precipitation patterns. Leaves were removed by machine, either at prebloom (PBLR), or at post-fruit-set (PFLR), or not removed (control) and irrigation was either applied as sustained deficit irrigation (SDI) at 0.8 of crop evapotranspiration (ETc) from budbreak to fruit set, or regulated deficit irrigation (RDI) at 0.8 ETc from bud break to fruit set, 0.5 ETc from fruit set to veraison, and 0.8 ETc from veraison to harvest, of ETc In 2014, PFLR reduced the leaf area index (LAI) compared to control. The RDI decreased season-long leaf water potential (ΨInt) compared to SDI. However, in 2015, none of the treatments affected LAI or ΨInt. In 2014, berry flavonoid concentrations were reduced by PBLR as well as SDI. SDI increased the flavonoid concentrations in wine, and PFLR increased some wine flavonols in one season. No factor affected the concentrations of wine proanthocyanidins or mean degree of polymerization. Thus, mechanical PFLR and RDI may increase berry flavonoid accumulation without yield reduction, in red wine grapes cultivars grown in hot climates when precipitation after bud break is lacking. However, spring precipitation may influence the effectiveness of these practices as evidenced by this work in a changing climate. Full article
Show Figures

Figure 1

16 pages, 3360 KiB  
Article
Impact of Rootstock and Season on Red Blotch Disease Expression in Cabernet Sauvignon (V. vinifera)
by Arran C. Rumbaugh, Raul C. Girardello, Monica L. Cooper, Cassandra Plank, S. Kaan Kurtural and Anita Oberholster
Plants 2021, 10(8), 1583; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10081583 - 31 Jul 2021
Cited by 14 | Viewed by 2250
Abstract
Grapevine red blotch virus (GRBV), the causative agent of grapevine red blotch disease, is widespread across the United States and causes a delay in ripening events in grapes. This study evaluates the effects of GRBV on Cabernet Sauvignon grape berry composition, grafted on [...] Read more.
Grapevine red blotch virus (GRBV), the causative agent of grapevine red blotch disease, is widespread across the United States and causes a delay in ripening events in grapes. This study evaluates the effects of GRBV on Cabernet Sauvignon grape berry composition, grafted on two different rootstocks (110R and 420A) in two seasons (2016 and 2017). Total soluble solids, acidity, and anthocyanin concentrations were monitored through ripening and at harvest. Phenolic and volatile compounds were also analyzed at harvest to determine genotypic and environmental influences on disease outcome. Sugar accumulation through ripening was lower in diseased fruit (RB (+)) than healthy fruit across rootstock and season. GRBV impact was larger in 2016 than 2017, indicating a seasonal effect on disease expression. In general, anthocyanin levels and volatile compound accumulation was lower in RB (+) fruit than healthy fruit. Total phenolic composition and tannin content was higher in RB (+) fruit than healthy fruit in only 110R rootstock. Overall, GRBV impacted Cabernet Sauvignon grape composition crafted on rootstock 110R more than those crafted on rootstock 420A. Full article
Show Figures

Figure 1

10 pages, 1564 KiB  
Article
Electrical Stimulation Enhances Plant Defense Response in Grapevine through Salicylic Acid-Dependent Defense Pathway
by Daisuke Mori, Ayane Moriyama, Hiroshi Kanamaru, Yoshinao Aoki, Yoshiyuki Masumura and Shunji Suzuki
Plants 2021, 10(7), 1316; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10071316 - 28 Jun 2021
Cited by 4 | Viewed by 2654
Abstract
Concern over environmental pollution generated by chemical fungicides has led to the introduction of alternative pest management strategies to chemical fungicide application. One of those strategies is the induction of plant defense response by an abiotic elicitor. In the present study, field-grown grapevines [...] Read more.
Concern over environmental pollution generated by chemical fungicides has led to the introduction of alternative pest management strategies to chemical fungicide application. One of those strategies is the induction of plant defense response by an abiotic elicitor. In the present study, field-grown grapevines were subjected to electrical stimulation using a solar panel from two weeks before flowering to harvest in the 2016 and 2020 growing seasons. In both years, electrical stimulation decreased the incidence of gray mold and/or ripe rot on bunches and downy mildew on leaves of the field-grown grapevine. Transcription of a gene encoding β-1,3-glucanase but not class IV chitinase in leaves of potted grapevine seedlings was upregulated 20 days after electrical stimulation, suggesting that electrical stimulation acts as an abiotic elicitor of plant defense response to fungal diseases. The gene expression of PR1 but not PDF1.2 was upregulated in Arabidopsis plants subjected to electrical stimulation. On the other hand, PR1 gene expression was not induced in salicylic acid (SA)-insensitive Arabidopsis mutant npr1-5 subjected to electrical stimulation. Taken together, electrical stimulation is responsible for plant defense response through the SA-dependent defense pathway. These findings would help us develop a novel and innovative practical technique that uses electrical stimulation in integrated pest management. Full article
Show Figures

Figure 1

17 pages, 2584 KiB  
Article
The Assessment of Agrobiological and Disease Resistance Traits of Grapevine Hybrid Populations (Vitis vinifera L. × Muscadinia rotundifolia Michx.) in the Climatic Conditions of Crimea
by Vladimir Volynkin, Irina Vasylyk, Vitalii Volodin, Elizaveta Grigoreva, Dmitry Karzhaev, Ekaterina Lushchay, Pavel Ulianich, Vladimir Volkov, Valentina Risovannaya, Sofiya Blinova, Jakov Alekseev, Svetlana Gorislavets, Vladimir Likhovskoi, Aleksandar Beatovic and Elena Potokina
Plants 2021, 10(6), 1215; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10061215 - 15 Jun 2021
Cited by 8 | Viewed by 2527
Abstract
The Crimean autochthonous grape varieties are unique by their origin and serve as a valuable source for breeding new cultivars with increased salt and frost resistance, as well as high-quality berries. However, they suffer from fungal pathogens, as the dry and hot summer [...] Read more.
The Crimean autochthonous grape varieties are unique by their origin and serve as a valuable source for breeding new cultivars with increased salt and frost resistance, as well as high-quality berries. However, they suffer from fungal pathogens, as the dry and hot summer months contribute to the epiphytotic course of diseases. An increase in the resistance of Crimean grape varieties is currently achieved through interspecific hybridization. In this study, we describe the genetic and agrobiological diversity of three hybrid populations obtained using the Vitis interspecific hybrid ‘Magarach 31-77-10′ as a female parent and Muscadinia rotundifolia × Vitis vinifera BC5 hybrid plants as male parents. The hybrid nature of the populations was assessed using RADseq high-throughput genotyping. We discovered 12,734 SNPs, which were common to all three hybrid populations. We also proved with the SSR markers that the strong powdery and downy mildew resistance of the paternal genotypes is determined by the dominant Run1/Rpv1 locus inherited from M. rotundifolia. As a result, the disease development score (R, %) for both mildew diseases in the female parent ‘Magarach 31-77-10’ was three times higher than in male parents 2000-305-143 and 2000-305-163 over two years of phytopathological assessment. The highest values of yield-contributing traits (average bunch weight ~197 g and 1.3 kg as yield per plant) were detected in the population 4-11 (♀M. No. 31-77-10 × 2000-305-163). Despite the epiphytotic development of PM, the spread of oidium to the vegetative organs of hybrids 4-11 did not exceed 20%. Some hybrid genotypes with high productivity and resistance to pathogens were selected for further assessment as promising candidates for new varieties. Full article
Show Figures

Figure 1

14 pages, 1665 KiB  
Article
Inherent and Stress-Induced Responses of Fine Root Morphology and Anatomy in Commercial Grapevine Rootstocks with Contrasting Drought Resistance
by Idan Reingwirtz, Jake Uretsky, Italo F. Cuneo, Thorsten Knipfer, Clarissa Reyes, M. Andrew Walker and Andrew J. McElrone
Plants 2021, 10(6), 1121; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10061121 - 01 Jun 2021
Cited by 5 | Viewed by 3060
Abstract
Some grapevine rootstocks perform better than others during and after drought events, yet it is not clear how inherent and stress-induced differences in root morphology and anatomy along the length of fine roots are involved in these responses. Using a variety of growing [...] Read more.
Some grapevine rootstocks perform better than others during and after drought events, yet it is not clear how inherent and stress-induced differences in root morphology and anatomy along the length of fine roots are involved in these responses. Using a variety of growing conditions and plant materials, we observed significant differences in root diameter, specific root length (SRL) and root diameter distribution between two commonly used commercial grapevine rootstocks: Richter 110 (110R; drought resistant) and Millardet et de Grasset 101-14 (101-14Mgt; drought sensitive). The 110R consistently showed greater root diameters with smaller SRL and proportion of root length comprised of fine lateral roots. The 110R also exhibited significantly greater distance from tip to nearest lateral, longer white root length, and larger proportion of root length that is white under drought stress. Mapping of fine root cortical lacunae showed similar patterns between the rootstocks; mechanical failure of cortical cells was common in the maturation zone, limited near the root tip, and increased with drought stress for both genotypes; however, lacuna formed under wetter soil conditions in 110R. Results suggest that drought resistance in grapevine rootstocks is associated with thick, limitedly branched roots with a larger proportion of white-functional roots that tend to form lacuna under more mild water deficit, all of which likely favor continued resource acquisition at depth. Full article
Show Figures

Figure 1

13 pages, 4838 KiB  
Article
Leaf Removal Applied to a Sprawling Canopy to Regulate Fruit Ripening in Cabernet Sauvignon
by Patrick O’Brien, Cassandra Collins and Roberta De Bei
Plants 2021, 10(5), 1017; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10051017 - 19 May 2021
Cited by 8 | Viewed by 2365
Abstract
Under the effects of climate change, it is becoming increasingly common to observe excessively fast grape sugar accumulation while phenolic and flavour development are lagging behind. The aim of this research was to quantify the impacts of three different leaf removal techniques on [...] Read more.
Under the effects of climate change, it is becoming increasingly common to observe excessively fast grape sugar accumulation while phenolic and flavour development are lagging behind. The aim of this research was to quantify the impacts of three different leaf removal techniques on the canopy architecture and ripening of Cabernet Sauvignon trained in a sprawl trellis system. Treatments were performed at veraison (~14 °Brix) and included (i) control; (ii) leaf plucking in the bunch zone; (iii) leaf plucking the top two-thirds of shoots, apical to the bunches; and (iv) shoot trimming. On the date of harvest, no significant difference in total soluble solids was observed between treatments. Other results including the effect of the treatments on fruit acidity, anthocyanins, phenolics, and tannins were somewhat inconclusive. While various other studies have shown the potential of leaf removal to achieve slower grape sugar accumulation without affecting the concentration of anthocyanins, phenolics, and tannins, the results of this study do not indicate a decrease in the rate of grape sugar accumulation as a result of the investigated defoliation techniques. Given the cost of implementing these treatments, the results of this study do not support the use of these methods for the purpose of delaying fruit ripening in a hot Australian climate. Full article
Show Figures

Figure 1

17 pages, 2954 KiB  
Article
Leaf Monoterpene Emission Limits Photosynthetic Downregulation under Heat Stress in Field-Grown Grapevine
by Massimo Bertamini, Michele Faralli, Claudio Varotto, Maria Stella Grando and Luca Cappellin
Plants 2021, 10(1), 181; https://0-doi-org.brum.beds.ac.uk/10.3390/plants10010181 - 19 Jan 2021
Cited by 15 | Viewed by 3393
Abstract
Rising temperature is among the most remarkably stressful phenomena induced by global climate changes with negative impacts on crop productivity and quality. It has been previously shown that volatiles belonging to the isoprenoid family can confer protection against abiotic stresses. In this work, [...] Read more.
Rising temperature is among the most remarkably stressful phenomena induced by global climate changes with negative impacts on crop productivity and quality. It has been previously shown that volatiles belonging to the isoprenoid family can confer protection against abiotic stresses. In this work, two Vitis vinifera cv. ‘Chardonnay’ clones (SMA130 and INRA809) differing due to a mutation (S272P) of the DXS gene encoding for 1-deoxy-D-xylulose-5-phosphate (the first dedicated enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway) and involved in the regulation of isoprenoids biosynthesis were investigated in field trials and laboratory experiments. Leaf monoterpene emission, chlorophyll fluorescence and gas-exchange measurements were assessed over three seasons at different phenological stages and either carried out in in vivo or controlled conditions under contrasting temperatures. A significant (p < 0.001) increase in leaf monoterpene emission was observed in INRA809 when plants were experiencing high temperatures and over two experiments, while no differences were recorded for SMA130. Significant variation was observed for the rate of leaf CO2 assimilation under heat stress, with INRA809 maintaining higher photosynthetic rates and stomatal conductance values than SMA130 (p = 0.003) when leaf temperature increased above 30 °C. At the same time, the maximum photochemical quantum yield of PSII (Fv/Fm) was affected by heat stress in the non-emitting clone (SMA130), while the INRA809 showed a significant resilience of PSII under elevated temperature conditions. Consistent data were recorded between field seasons and temperature treatments in controlled environment conditions, suggesting a strong influence of monoterpene emission on heat tolerance under high temperatures. This work provides further insights on the photoprotective role of isoprenoids in heat-stressed Vitis vinifera, and additional studies should focus on unraveling the mechanisms underlying heat tolerance on the monoterpene-emitter grapevine clone. Full article
Show Figures

Figure 1

16 pages, 2442 KiB  
Article
How Do Novel M-Rootstock (Vitis Spp.) Genotypes Cope with Drought?
by Davide Bianchi, Leila Caramanico, Daniele Grossi, Lucio Brancadoro and Gabriella De Lorenzis
Plants 2020, 9(10), 1385; https://0-doi-org.brum.beds.ac.uk/10.3390/plants9101385 - 17 Oct 2020
Cited by 15 | Viewed by 2852
Abstract
Most of the vineyards around the world are in areas characterized by seasonal drought, where water deficits and high temperatures represent severe constraints on the regular grapevine growth cycle. Although grapevines are well adapted to arid and semi-arid environments, water stress can cause [...] Read more.
Most of the vineyards around the world are in areas characterized by seasonal drought, where water deficits and high temperatures represent severe constraints on the regular grapevine growth cycle. Although grapevines are well adapted to arid and semi-arid environments, water stress can cause physiological changes, from mild to irreversible. Screening of available Vitis spp. genetic diversity for new rootstock breeding programs has been proposed as a way for which new viticulture challenges may be faced. In 2014, novel genotypes (M-rootstocks) were released from the University of Milan. In this work, the behavior of M1, M3 and M4 in response to decreasing water availabilities (80%, 50% and 20% soil water content, SWC) was investigated at the physiological and gene expression levels, evaluating gas exchange, stem water potential and transcript abundances of key genes related to ABA (abscisic acid) biosynthesis (VvZEP, VvNCED1 and VvNCED2) and signaling (VvPP2C4, VvSnRK2.6 and VvABF2), and comparing them to those of cuttings of nine commercial rootstocks widely used in viticulture. M-rootstocks showed a change at physiological levels in severe water-stressed conditions (20% soil water content, SWC), reducing the stomatal conductance and stem water potential, but maintaining high photosynthetic activity. Water use efficiency was high in water-limiting conditions. The transcriptional changes were observed at 50% SWC, with an increment of transcripts of VvNCED1 and VvNCED2 genes. M-rootstocks showed similar behavior to 1103P and 110R rootstocks, two highly tolerant commercial genotypes. These rootstocks adopted a tolerant strategy to face water-stressed conditions. Full article
Show Figures

Figure 1

Back to TopTop