-
The Beauty of Bacteriophage T4 Research: Lindsay W. Black and the T4 Head Assembly
-
HIV RGB: Automated Single-Cell Analysis of HIV-1 Rev-Dependent RNA Nuclear Export and Translation Using Image Processing in KNIME
-
Clonal Selection and Evolution of HTLV-1-Infected Cells Driven by Genetic and Epigenetic Alteration
-
Evolution of Anti-RBD IgG Avidity following SARS-CoV-2 Infection
Journal Description
Viruses
Viruses
is a peer-reviewed, open access journal of virology, published monthly online by MDPI. The American Society for Virology (ASV), Spanish Society for Virology (SEV), Canadian Society for Virology (CSV), Italian Society for Virology (SIV-ISV), Australasian Virology Society (AVS) and others are affiliated with Viruses and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, PubAg, AGRIS, and many other databases.
- Journal Rank: JCR - Q2 (Virology) / CiteScore - Q2 (Infectious Diseases)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 18 days after submission; acceptance to publication is undertaken in 3.6 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journals for Viruses include: COVID and Zoonotic Diseases.
Impact Factor:
5.048 (2020)
;
5-Year Impact Factor:
5.127 (2020)
Latest Articles
Characterization of Immune Response Diversity in Rodents Vaccinated with a Vesicular Stomatitis Virus Vectored COVID-19 Vaccine
Viruses 2022, 14(6), 1127; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061127 (registering DOI) - 24 May 2022
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the prime challenge facing public health safety since 2019. Correspondingly, coronavirus disease 2019 (COVID-19) vaccines have been developed and administered worldwide, varying in design strategies, delivery routes, immunogenicity and protective efficacy. Here, a
[...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the prime challenge facing public health safety since 2019. Correspondingly, coronavirus disease 2019 (COVID-19) vaccines have been developed and administered worldwide, varying in design strategies, delivery routes, immunogenicity and protective efficacy. Here, a replication-competent vesicular stomatitis virus (VSV) vectored recombinant COVID-19 vaccine was constructed and evaluated in BALB/c mice and Syrian golden hamsters. In BALB/c mice, intramuscular (i.m.) inoculation of recombinant vaccine induced significantly higher humoral immune response than that of the intranasal (i.n.) inoculation group. Analyses of cellular immunity revealed that a Th1-biased cellular immune response was induced in i.n. inoculation group while both Th1 and Th2 T cells were activated in i.m. inoculation group. In golden hamsters, i.n. inoculation of the recombinant vaccine triggered robust humoral immune response and conferred prominent protective efficacy post-SARS-CoV-2 challenge, indicating a better protective immunity in the i.n. inoculation group than that of the i.m. inoculation group. This study provides an effective i.n.-delivered recombinant COVID-19 vaccine candidate and elucidates a route-dependent manner of this vaccine candidate in two most frequently applied small animal models. Moreover, the golden hamster is presented as an economical and convenient small animal model that precisely reflects the immune response and protective efficacy induced by replication-competent COVID-19 vaccine candidates in other SARS-CoV-2 susceptible animals and human beings, especially in the exploration of i.n. immunization.
Full article
(This article belongs to the Special Issue SARS-CoV-2 and Other Vaccines: Immunogenicity Parameters and Protection)
Open AccessArticle
A Single Dose of the Deactivated Rabies-Virus Vectored COVID-19 Vaccine, CORAVAX, Is Highly Efficacious and Alleviates Lung Inflammation in the Hamster Model
by
, , , , , , , and
Viruses 2022, 14(6), 1126; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061126 (registering DOI) - 24 May 2022
Abstract
Without sufficient herd immunity through either vaccination or natural infection, the coronavirus disease 2019 pandemic is unlikely to be controlled. Waning immunity with the currently approved vaccines suggests the need to evaluate vaccines causing the induction of long-term responses. Here, we report the
[...] Read more.
Without sufficient herd immunity through either vaccination or natural infection, the coronavirus disease 2019 pandemic is unlikely to be controlled. Waning immunity with the currently approved vaccines suggests the need to evaluate vaccines causing the induction of long-term responses. Here, we report the immunogenicity and efficacy of our adjuvanted single-dose Rabies-vectored SARS-CoV-2 S1 vaccine, CORAVAX, in hamsters. CORAVAX induces high SARS-CoV-2 S1-specific and virus-neutralizing antibodies (VNAs) that prevent weight loss, viral loads, disease, lung inflammation, and the cytokine storm in hamsters. We also observed high Rabies VNA titers. In summary, CORAVAX is a promising dual-antigen vaccine candidate for clinical evaluation against SARS-CoV-2 and Rabies virus.
Full article
(This article belongs to the Special Issue Vaccines for Emerging Zoonotic Viruses)
►▼
Show Figures

Figure 1
Open AccessArticle
Mongolia Gerbils Are Broadly Susceptible to Hepatitis E Virus
Viruses 2022, 14(6), 1125; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061125 (registering DOI) - 24 May 2022
Abstract
Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and
[...] Read more.
Although cell culture systems for hepatitis E virus (HEV) have been established by using cell lines such as PLC/PRF/5 and A549, small-animal models for this virus are limited. Since Mongolia gerbils are susceptible to genotype 1, 3 and 4 HEV (HEV-1, HEV-3 and HEV4), we intraperitoneally inoculated Mongolia gerbils with HEV-5, HEV-7, HEV-8, rabbit HEV or rat HEV in addition to the above three genotypes to investigate the infectivity and to assess whether Mongolia gerbil is an appropriate animal model for HEV infection. The results indicated that (i) HEV-5 and rat HEV were effectively replicated in the Mongolia gerbils in the same manner as HEV-4: large amounts of the viral RNA were detected in the feces and livers, and high titers of the serum anti-HEV IgG antibodies were induced in all animals. The feces were shown to contain HEV that is infectious to naïve gerbils. Furthermore, HEV-4, HEV-5 and rat HEV were successfully transmitted to the gerbils by oral inoculation. (ii) Although the viral RNA and serum anti-HEV IgG antibodies were detected in all animals inoculated with HEV-1 and HEV-8, both titers were low. The viral RNA was detected in the feces collected from two of three HEV-3-inoculated, and one of three HEV-7-inoculated gerbils, but the titers were low. The serum antibody titers were also low. The viruses excreted into the feces of HEV-1-, HEV-3-, HEV-7- and HEV-8-inoculated gerbils failed to infect naïve Mongolia gerbils. (iii) No infection sign was observed in the rabbit HEV-inoculated gerbils. These results demonstrated that Mongolia gerbils are broadly susceptible to HEV, and their degree of sensitivity was dependent on the genotype. Mongolia gerbils were observed to be susceptible to not only HEVs belonging to HEV-A but also to rat HEV belonging to HEV-C1, and thus Mongolia gerbil could be useful as a small-animal model for cross-protection experiments between HEV-A and HEV-C1. Mongolia gerbils may also be useful for the evaluation of the efficacy of vaccines against HEV.
Full article
(This article belongs to the Topic Infectious Diseases)
►▼
Show Figures

Figure 1
Open AccessObituary
Meeting in Mind and a Smile on the Face: A Tribute to Dr. Randall J Cohrs
Viruses 2022, 14(6), 1124; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061124 (registering DOI) - 24 May 2022
Abstract
It is my privilege to have a mentor cum friend like Prof [...]
Full article
(This article belongs to the Special Issue A Meeting of Minds: In Recognition of the Contributions of Randall J. Cohrs)
►▼
Show Figures

Figure 1
Open AccessArticle
A Novel Sphingosine Kinase Inhibitor Suppresses Chikungunya Virus Infection
by
, , , , , and
Viruses 2022, 14(6), 1123; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061123 (registering DOI) - 24 May 2022
Abstract
Chikungunya virus (CHIKV) is a re-emerging arbovirus in the alphavirus genus. Upon infection, it can cause severe joint pain that can last years in some patients, significantly affecting their quality of life. Currently, there are no vaccines or anti-viral therapies available against CHIKV.
[...] Read more.
Chikungunya virus (CHIKV) is a re-emerging arbovirus in the alphavirus genus. Upon infection, it can cause severe joint pain that can last years in some patients, significantly affecting their quality of life. Currently, there are no vaccines or anti-viral therapies available against CHIKV. Its spread to the Americas from the eastern continents has substantially increased the count of the infected by millions. Thus, there is an urgent need to identify therapeutic targets for CHIKV treatment. A potential point of intervention is the sphingosine-1-phosphate (S1P) pathway. Conversion of sphingosine to S1P is catalyzed by Sphingosine kinases (SKs), which we previously showed to be crucial pro-viral host factor during CHIKV infection. In this study, we screened inhibitors of SKs and identified a novel potent inhibitor of CHIKV infection—SLL3071511. We showed that the pre-treatment of cells with SLL3071511 in vitro effectively inhibited CHIKV infection with an EC50 value of 2.91 µM under both prophylactic and therapeutic modes, significantly decreasing the viral gene expression and release of viral particles. Our studies suggest that targeting SKs is a viable approach for controlling CHIKV replication.
Full article
(This article belongs to the Section Animal Viruses)
►▼
Show Figures

Figure 1
Open AccessReview
Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean
by
, , , , , , , , , , , and
Viruses 2022, 14(6), 1122; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061122 (registering DOI) - 24 May 2022
Abstract
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed
[...] Read more.
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed quality reduction in soybean based on the SMV strain and the host genotype. Understanding the molecular underpinnings of SMV–soybean interactions and the genes conferring resistance to SMV has been a focus of intense research interest for decades. Soybean reactions are classified into three main responses: resistant, necrotic, or susceptible. Significant progress has been achieved that has greatly increased the understanding of soybean germplasm diversity, differential reactions to SMV strains, genotype–strain interactions, genes/alleles conferring specific reactions, and interactions among resistance genes and alleles. Many studies that aimed to uncover the physical position of resistance genes have been published in recent decades, collectively proposing different candidate genes. The studies on SMV resistance loci revealed that the resistance genes are mainly distributed on three chromosomes. Resistance has been pyramided in various combinations for durable resistance to SMV strains. The causative genes are still elusive despite early successes in identifying resistance alleles in soybean; however, a gene at the Rsv4 locus has been well validated.
Full article
(This article belongs to the Special Issue Plant Viruses: Current and Emerging Threats to Agricultural Crop Production)
►▼
Show Figures

Figure 1
Open AccessArticle
Protective Immune Responses Induced by an mRNA-LNP Vaccine Encoding prM-E Proteins against Japanese Encephalitis Virus Infection
Viruses 2022, 14(6), 1121; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061121 (registering DOI) - 24 May 2022
Abstract
Japanese encephalitis virus (JEV) is an important zoonotic pathogen, which causes central nervous system symptoms in humans and reproductive disorders in swine. It has led to severe impacts on human health and the swine industry; however, there is no medicine available for treating
[...] Read more.
Japanese encephalitis virus (JEV) is an important zoonotic pathogen, which causes central nervous system symptoms in humans and reproductive disorders in swine. It has led to severe impacts on human health and the swine industry; however, there is no medicine available for treating yet. Therefore, vaccination is the best preventive measure for this disease. In the study, a modified mRNA vaccine expressing the prM and E proteins of the JEV P3 strain was manufactured, and a mouse model was used to assess its efficacy. The mRNA encoding prM and E proteins showed a high level of protein expression in vitro and were encapsulated into a lipid nanoparticle (LNP). Effective neutralizing antibodies and CD8+ T-lymphocytes-mediated immune responses were observed in vaccinated mice. Furthermore, the modified mRNA can protect mice from a lethal challenge with JEV and reduce neuroinflammation caused by JEV. This study provides a new option for the JE vaccine and lays a foundation for the subsequent development of a more efficient and safer JEV mRNA vaccine.
Full article
(This article belongs to the Special Issue Flaviviruses and Flavivirus Vaccines)
►▼
Show Figures

Figure 1
Open AccessCommunication
Diverse Novel Viruses Coinfecting the Tropical Ornamental Plant Polyscias balfouriana in China
Viruses 2022, 14(6), 1120; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061120 (registering DOI) - 24 May 2022
Abstract
The viromic profile of Polyscias balfouriana cv. Marginata, a perennial woody and ornamental plant, was determined using ribosomal RNA-depleted total RNA (rRNA-depleted totRNA) sequencing. Five viruses (i.e., polyscias mosaic virus, PoMV; one potential novel rhabdovirus; and three novel viruses of Betaflexiviridae and Closteroviridae
[...] Read more.
The viromic profile of Polyscias balfouriana cv. Marginata, a perennial woody and ornamental plant, was determined using ribosomal RNA-depleted total RNA (rRNA-depleted totRNA) sequencing. Five viruses (i.e., polyscias mosaic virus, PoMV; one potential novel rhabdovirus; and three novel viruses of Betaflexiviridae and Closteroviridae) were detected and prevalence-surveyed in Hainan province, China. The genomes of polyscias capillovirus 1 (PCaV-1) and polyscias citrivirus 1 (PCiV-1) of family Betaflexiviridae were completed, and the genomes of polyscias crinivirus 1 (PCrV-1) of Closteroviridae were nearly completed lacking the 5′ and 3′ termini. PCaV-1 shares 68% genome nucleotide (nt) identity and 66% replicase (Rep) amino acid (aa) identity with homologues in apple stem grooving virus (ASGV). PCiV-1 shares 65% genome nt identity and 64% Rep aa identity with homologs in citrus leaf blotch virus (CLBV). Meeting the species demarcation criteria, PCaV-1 and PCiV-1 were considered to be new species in genera Capillovirus and Citrivirus, respectively. PCrV-1 shares high genome nt identity (62%), heat shock protein 70-like protein (HSP70h) and RNA-dependent RNA polymerase (RdRp) aa identity (78–80%) with homologues in tomato chlorosis virus (ToCV). We tentatively consider PCrV-1 to be an unclassified member of the Crinivirus genus. PoMV, PCaV-1, PCiV-1, and PCrV-1 are the prevalent viruses with >73% occurrence in the Xinglong Tropical Botanical Garden, Hainan, China.
Full article
(This article belongs to the Special Issue Next-Generation Sequencing in Plant Virology)
►▼
Show Figures

Figure 1
Open AccessArticle
CRISPR/Cas9-Mediated Disruption of the lef8 and lef9 to Inhibit Nucleopolyhedrovirus Replication in Silkworms
by
, , , , , , , , , , , and
Viruses 2022, 14(6), 1119; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061119 (registering DOI) - 24 May 2022
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes severe disease in silkworms. In a previous study, we demonstrated that by using the CRISPR/Cas9 system to disrupt the BmNPV ie-1 and me53 genes, transgenic silkworms showed resistance to BmNPV infection. Here, we used
[...] Read more.
Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes severe disease in silkworms. In a previous study, we demonstrated that by using the CRISPR/Cas9 system to disrupt the BmNPV ie-1 and me53 genes, transgenic silkworms showed resistance to BmNPV infection. Here, we used the same strategy to simultaneously target lef8 and lef9, which are essential for BmNPV replication. A PCR assay confirmed that double-stranded breaks were induced in viral DNA at targeted sequences in BmNPV-infected transgenic silkworms that expressed small guide RNAs (sgRNAs) and Cas9. Bioassays and qPCR showed that replication of BmNPV and mortality were significantly reduced in the transgenic silkworms in comparison with the control groups. Microscopy showed degradation of midgut cells in the BmNPV-infected wild type silkworms, but not in the transgenic silkworms. These results demonstrated that transgenic silkworms using the CRISPR/Cas9 system to disrupt BmNPV lef8 and lef9 genes could successfully prevent BmNPV infection. Our research not only provides more alternative targets for the CRISPR antiviral system, but also aims to provide new ideas for the application of virus infection research and the control of insect pests.
Full article
(This article belongs to the Special Issue Viruses in Mass-Reared Invertebrates)
►▼
Show Figures

Figure 1
Open AccessReview
Circulating MicroRNAs as a Tool for Diagnosis of Liver Disease Progression in People Living with HIV-1
Viruses 2022, 14(6), 1118; https://0-doi-org.brum.beds.ac.uk/10.3390/v14061118 (registering DOI) - 24 May 2022
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding specific cell mRNA targets, preventing their translation. miRNAs are implicated in the regulation of important physiological and pathological pathways. Liver disease, including injury, fibrosis, metabolism dysregulation, and tumor development disrupts
[...] Read more.
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding specific cell mRNA targets, preventing their translation. miRNAs are implicated in the regulation of important physiological and pathological pathways. Liver disease, including injury, fibrosis, metabolism dysregulation, and tumor development disrupts liver-associated miRNAs. In addition to their effect in the originating tissue, miRNAs can also circulate in body fluids. miRNA release is an important form of intercellular communication that plays a role in the physiological and pathological processes underlying multiple diseases. Circulating plasma levels of miRNAs have been identified as potential disease biomarkers. One of the main challenges clinics face is the lack of available noninvasive biomarkers for diagnosing and predicting the different stages of liver disease (e.g., nonalcoholic fatty liver disease and nonalcoholic steatohepatitis), particularly among individuals infected with human immunodeficiency virus type 1 (HIV-1). Liver disease is a leading cause of death unrelated to acquired immunodeficiency syndrome (AIDS) among people living with HIV-1 (PLWH). Here, we review and discuss the utility of circulating miRNAs as biomarkers for early diagnosis, prognosis, and assessment of liver disease in PLWH. Remarkably, the identification of dysregulated miRNA expression may also identify targets for new therapeutics.
Full article
(This article belongs to the Special Issue HIV-1 and Hepatitis Virus Co-infection)
►▼
Show Figures

Figure 1
Open AccessArticle
Frequent Occurrence of Simultaneous Infection with Multiple Rotaviruses in Swiss Pigs
by
, , , , , and
Viruses 2022, 14(5), 1117; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051117 (registering DOI) - 23 May 2022
Abstract
Rotavirus (RV) infections are the most important viral cause of diarrhea in piglets in Switzerland and are thought to cause substantial economic losses to the pig industry. However, no data are available on the occurrence and dynamics of the main porcine RV species,
[...] Read more.
Rotavirus (RV) infections are the most important viral cause of diarrhea in piglets in Switzerland and are thought to cause substantial economic losses to the pig industry. However, no data are available on the occurrence and dynamics of the main porcine RV species, namely RVA, RVB, and RVC, and the diversity of the circulating strains. We therefore tested fecal samples from a cross-sectional (n = 95) and a longitudinal (n = 48) study for RVA, RVB, and RVC by real-time RT-PCR and compared the results of the cross-sectional study to postmortem findings. In addition, eight samples were fully genotyped by using next-generation sequencing. In the cross-sectional study, triple RV infections significantly correlated with diarrhea and wasting and were most frequent in the weaned age group. In the longitudinal study, the shedding of RV peaked one week after weaning and decreased thereafter. Here, mainly double infections were seen, and only a few animals showed diarrhea. The full-genome sequencing revealed a genotype pattern similar to other European countries and, importantly, co-infection by up to four RVA strains. Our results imply that the weaning of piglets may trigger not only RV shedding but facilitate co-infection of multiple RV species and strains in the same host.
Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 3.0)
►▼
Show Figures

Figure 1
Open AccessBrief Report
HuH-7-Lunet BLR Cells Propagate Rat Hepatitis E Virus (HEV) in a Cell Culture System Optimized for HEV
Viruses 2022, 14(5), 1116; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051116 (registering DOI) - 23 May 2022
Abstract
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if
[...] Read more.
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if de novo isolation of the virus from rat liver is possible. We tested the liver carcinoma cell lines PLC/PRF/5, HuH-7, and HuH-7-Lunet BLR for their susceptibility to HEV-C1 strains. Cells were infected with the cell culture-derived HEV-C1 strain R63 and rat liver-derived strain R68. Cells were maintained in MEMM medium, which was refreshed every 3–4 days. The viral load of HEV-C1 was determined by RT-qPCR in the supernatant and expressed as genome copies per mL (c/mL). Rat HEV replication was most efficient in the newly introduced HuH-7-Lunet BLR cell line. Even if the rat HEV isolate had been pre-adapted to PLC/PRF/5 by multiple passages, replication in HuH-7-Lunet BLR was still at least equally effective. Only HuH-7-Lunet BLR cells were susceptible to the isolation of HEV-C1 from the liver homogenate. These results suggest HuH-7-Lunet BLR as the most permissive cell line for rat HEV. Our HEV-C1 cell culture system may be useful for basic research, the animal-free generation of large amounts of the virus as well as for the testing of antiviral compounds and drugs.
Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Stress Hormones Epinephrine and Corticosterone Selectively Reactivate HSV-1 and HSV-2 in Sympathetic and Sensory Neurons
Viruses 2022, 14(5), 1115; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051115 (registering DOI) - 23 May 2022
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency in sensory and autonomic neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is strongly associated with HSV recurrences in humans and animal models.
[...] Read more.
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency in sensory and autonomic neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is strongly associated with HSV recurrences in humans and animal models. However, the mechanisms through which stress hormones act on the latent virus to cause reactivation are unknown. We show that the stress hormones epinephrine (EPI) and corticosterone (CORT) induce HSV-1 reactivation selectively in sympathetic neurons, but not sensory or parasympathetic neurons. Activation of multiple adrenergic receptors is necessary for EPI-induced HSV-1 reactivation, while CORT requires the glucocorticoid receptor. In contrast, CORT, but not EPI, induces HSV-2 reactivation in both sensory and sympathetic neurons through either glucocorticoid or mineralocorticoid receptors. Reactivation is dependent on different transcription factors for EPI and CORT, and coincides with rapid changes in viral gene expression, although genes differ for HSV-1 and HSV-2, and temporal kinetics differ for EPI and CORT. Thus, stress-induced reactivation mechanisms are neuron-specific, stimulus-specific and virus-specific. These findings have implications for differences in HSV-1 and HSV-2 recurrent disease patterns and frequencies, as well as development of targeted, more effective antivirals that may act on different responses in different types of neurons.
Full article
(This article belongs to the Special Issue Herpesvirus Latency)
►▼
Show Figures

Figure 1
Open AccessArticle
DVGfinder: A Metasearch Tool for Identifying Defective Viral Genomes in RNA-Seq Data
by
, , , , and
Viruses 2022, 14(5), 1114; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051114 (registering DOI) - 23 May 2022
Abstract
The generation of different types of defective viral genomes (DVG) is an unavoidable consequence of the error-prone replication of RNA viruses. In recent years, a particular class of DVGs, those containing long deletions or genome rearrangements, has gain interest due to their potential
[...] Read more.
The generation of different types of defective viral genomes (DVG) is an unavoidable consequence of the error-prone replication of RNA viruses. In recent years, a particular class of DVGs, those containing long deletions or genome rearrangements, has gain interest due to their potential therapeutic and biotechnological applications. Identifying such DVGs in high-throughput sequencing (HTS) data has become an interesting computational problem. Several algorithms have been proposed to accomplish this goal, though all incur false positives, a problem of practical interest if such DVGs have to be synthetized and tested in the laboratory. We present a metasearch tool, DVGfinder, that wraps the two most commonly used DVG search algorithms in a single workflow for the identification of the DVGs in HTS data. DVGfinder processes the results of ViReMa-a and DI-tector and uses a gradient boosting classifier machine learning algorithm to reduce the number of false-positive events. The program also generates output files in user-friendly HTML format, which can help users to explore the DVGs identified in the sample. We evaluated the performance of DVGfinder compared to the two search algorithms used separately and found that it slightly improves sensitivities for low-coverage synthetic HTS data and DI-tector precision for high-coverage samples. The metasearch program also showed higher sensitivity on a real sample for which a set of copy-backs were previously validated.
Full article
(This article belongs to the Special Issue Virus Bioinformatics 2022)
►▼
Show Figures

Figure 1
Open AccessReview
Retroviral RNA Processing
Viruses 2022, 14(5), 1113; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051113 (registering DOI) - 23 May 2022
Abstract
This review is an accompaniment to a Special Issue on “Retroviral RNA Processing”. It discusses post-transcriptional regulation of retroviruses, ranging from the ancient foamy viruses to more modern viruses, such as HIV-1, HTLV-1, Rous sarcoma virus, murine leukemia virus, mouse mammary tumor virus,
[...] Read more.
This review is an accompaniment to a Special Issue on “Retroviral RNA Processing”. It discusses post-transcriptional regulation of retroviruses, ranging from the ancient foamy viruses to more modern viruses, such as HIV-1, HTLV-1, Rous sarcoma virus, murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus. This review is not comprehensive. However, it tries to address some of the major questions in the field with examples of how different retroviruses express their genes. It is amazing that a single primary RNA transcript can have so many possible fates: genomic RNA, unspliced mRNA, and up to 50 different alternatively spliced mRNAs. This review will discuss the sorting of RNAs for packaging or translation, RNA nuclear export mechanisms, splicing, translation, RNA modifications, and avoidance of nonsense-mediated RNA decay.
Full article
(This article belongs to the Special Issue Retroviral RNA Processing)
Open AccessBrief Report
Deletion of African Swine Fever Virus Histone-like Protein, A104R from the Georgia Isolate Drastically Reduces Virus Virulence in Domestic Pigs
by
, , , , , , , , and
Viruses 2022, 14(5), 1112; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051112 - 22 May 2022
Abstract
African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is
[...] Read more.
African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is based on culling infected animals. We report here that deletion of the ASFV gene A104R, a virus histone-like protein, from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) strain induces a clear decrease in virus virulence when experimentally inoculated in domestic swine. A recombinant virus lacking the A104R gene, ASFV-G-∆A104R, was developed to assess the role of the A104R gene in disease production in swine. Domestic pigs were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A104R, and compared with animals that received a similar dose of virulent ASFV-G. While all ASFV-G inoculated animals developed a fatal form of the disease, animals receiving ASFV-G-∆A104R survived the challenge, remaining healthy during the 28-day observational period, with the exception of only one showing a protracted but fatal form of the disease. ASFV-G-∆A104R surviving animals presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G, and all of them developed a strong virus-specific antibody response. This is the first report demonstrating that the A104R gene is involved in ASFV virulence in domestic swine, suggesting that A104R deletion may be used to increase the safety profile of currently experimental vaccines.
Full article
(This article belongs to the Special Issue Endemic and Emerging Swine Viruses 2022)
►▼
Show Figures

Figure 1
Open AccessReview
Time to Revise the WHO Categories for Severe Rabies Virus Exposures–Category IV?
Viruses 2022, 14(5), 1111; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051111 - 22 May 2022
Abstract
►▼
Show Figures
Rabies is a devastating disease and affects millions of people globally, yet it is preventable with appropriate and timely postexposure prophylaxis (PEP). The current WHO exposure categories (Categories I, II, and III) need revision, with a special Category IV for severe exposures. Rare
[...] Read more.
Rabies is a devastating disease and affects millions of people globally, yet it is preventable with appropriate and timely postexposure prophylaxis (PEP). The current WHO exposure categories (Categories I, II, and III) need revision, with a special Category IV for severe exposures. Rare cases of PEP failure have occurred in severe bites to the head and neck. Multiple factors, including route, wound severity, depth, contamination, viral dose, proximity to highly innervated areas and the CNS, and the number of lesions, remain unconsidered. Injuries in areas of high neural density are the most significant considering lyssavirus pathophysiology. Current recommendations do not account for these factors. A Category IV designation would acknowledge the severity and the increased risk of progression. Subsequently, patient management would be optimized with wound care and the appropriate administration of rabies-immune globulin/monoclonal antibodies (RIG/MAbs). All Category IV exposures would be infiltrated with the full dose of intact RIG (i.e., human RIG or MAbs) if the patient was previously unvaccinated. More concentrated RIG/MAb formulations would be preferred. As a world rabies community, we cannot tolerate PEP failures. A fourth WHO categorization will improve the care of these high-risk patients and highlight the global health urgency of this neglected disease.
Full article

Figure 1
Open AccessReview
Porcine Intestinal Organoids: Overview of the State of the Art
Viruses 2022, 14(5), 1110; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051110 - 21 May 2022
Abstract
The intestinal tract is a crucial part of the body for growth and development, and its dysregulation can cause several diseases. The lack of appropriate in vitro models hampers the development of effective preventions and treatments against these intestinal tract diseases. Intestinal organoids
[...] Read more.
The intestinal tract is a crucial part of the body for growth and development, and its dysregulation can cause several diseases. The lack of appropriate in vitro models hampers the development of effective preventions and treatments against these intestinal tract diseases. Intestinal organoids are three-dimensional (3D) polarized structures composed of different types of cells capable of self-organization and self-renewal, resembling their organ of origin in architecture and function. Porcine intestinal organoids (PIOs) have been cultured and are used widely in agricultural, veterinary, and biomedical research. Based on the similarity of the genomic sequence, anatomic morphology, and drug metabolism with humans and the difficulty in obtaining healthy human tissue, PIOs are also considered ideal models relative to rodents. In this review, we summarize the current knowledge on PIOs, emphasizing their culturing, establishment and development, and applications in the study of host–microbe interactions, nutritional development, drug discovery, and gene editing potential.
Full article
(This article belongs to the Special Issue State-of-the-Art Veterinary Virology Research in China)
►▼
Show Figures

Figure 1
Open AccessReview
Advances in Bovine Coronavirus Epidemiology
Viruses 2022, 14(5), 1109; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051109 - 21 May 2022
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and
[...] Read more.
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.
Full article
(This article belongs to the Special Issue State-of-the-Art Veterinary Virology Research in China)
►▼
Show Figures

Figure 1
Open AccessEditorial
An Inspiring Journey of Hope and Persistence: Life Lessons with Françoise Barré-Sinoussi
Viruses 2022, 14(5), 1108; https://0-doi-org.brum.beds.ac.uk/10.3390/v14051108 - 21 May 2022
Abstract
Three early-career female virologists sat down with a distinguished Nobel laureate to discuss two pandemics, 39 years apart [...]
Full article
(This article belongs to the Special Issue Women in Virology)

Journal Menu
► ▼ Journal Menu-
- Viruses Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomedicines, Viruses, JoF, Microorganisms, JCM
Infectious Diseases
Topic Editors: Célia F. Rodrigues, Natália Cruz-MartinsDeadline: 31 May 2022
Topic in
Viruses, JoF, Microorganisms, Life, Microbiology Research
Veterinary Infectious Diseases
Topic Editors: Chao-Nan Lin, Peck Toung OoiDeadline: 30 June 2022
Topic in
IJMS, Pathogens, TropicalMed, Vaccines, Viruses
Strategies for Prevention and Control of Influenza
Topic Editors: Tokiko Watanabe, Shinji WatanabeDeadline: 31 August 2022
Topic in
COVID, IJMS, Pathogens, Toxins, Viruses
Acute Respiratory Viruses Molecular Epidemiology
Topic Editors: Joan Puig-Barberà, María Lourdes Guerrero, Anna Sominina, Svetlana V. Trushakova, F. Xavier López-LabradorDeadline: 31 December 2022

Conferences
Special Issues
Special Issue in
Viruses
Evolution and Epidemiology of Influenza Virus
Guest Editors: Samantha Lycett, Paul DigardDeadline: 31 May 2022
Special Issue in
Viruses
Advances in Antiviral Immunity and Virus Vaccines
Guest Editor: Ester Ballana GuixDeadline: 10 June 2022
Special Issue in
Viruses
Novel Developments and Perspectives in Viral Vector Technology
Guest Editor: Stefan WegerDeadline: 30 June 2022
Special Issue in
Viruses
Molecular Epidemiology of HIV Infection in Eastern Europe and Central Asia
Guest Editor: Marina BobkovaDeadline: 15 July 2022
Topical Collections
Topical Collection in
Viruses
Coronaviruses
Collection Editors: Luis Martinez-Sobrido, Fernando Almazan Toral
Topical Collection in
Viruses
SARS-CoV-2 and COVID-19
Collection Editors: Luis Martinez-Sobrido, Fernando Almazan Toral