Next Issue
Volume 11, January
Previous Issue
Volume 10, November
 
 

Atmosphere, Volume 10, Issue 12 (December 2019) – 92 articles

Cover Story (view full-size image): Late-spring severe blizzards are crucially important due to agricultural damages and economic loss, with long-term consequences. The predictability of their occurrence, intensity, and location are challenging issues. Recent analysis emphasizes a development mechanism based on the coupled contribution of tropospheric ageostrophic circulations associated to jet streaks. These circulations: (1) interact under local and regional forcing (sea surface temperature, topography, and latent heat) and (2) feedback on enhancing an upper-level jet’s secondary streak, leading to a persistent, severe event. The enhanced secondary jet streak appears for severe events, as shown by 40 years of knowledge of late-spring severe blizzards over the area. Understanding the preconditioning indicated by this analysis could be useful in operational forecast analysis. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 7823 KiB  
Article
Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation
by So-Young Kim, Song-You Hong, Young Cheol Kwon, Yong Hee Lee and Da-Eun Kim
Atmosphere 2019, 10(12), 818; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120818 - 16 Dec 2019
Cited by 4 | Viewed by 2753
Abstract
The effects of modified sea-surface roughness length over shallow waters are examined in a regional climate simulation over East Asia centered on the Korean Peninsula, using the Advanced Research Weather Research and Forecasting model (WRF-ARW). The control experiment calculates the sea-surface roughness length [...] Read more.
The effects of modified sea-surface roughness length over shallow waters are examined in a regional climate simulation over East Asia centered on the Korean Peninsula, using the Advanced Research Weather Research and Forecasting model (WRF-ARW). The control experiment calculates the sea-surface roughness length as a function of friction velocity based on the Charnock relationship. The experiment considering water depth in the sea-surface roughness length over shallow waters is compared with the control experiment. In the experiment considering water depth, the excessive near-surface wind speed over shallow waters is reduced compared to that of the control experiment. Wind speed is reduced also in the lower troposphere. The effects of modified surface roughness over shallow waters are not localized to the lower troposphere but extended into the upper troposphere. Through the vertical interaction between the lower and upper levels, upper tropospheric wind—which is underestimated in the control experiment—is enhanced in the experiment with modified sea-surface roughness length, not only over the shallow waters, but also over the entire domain. As a result, the vertical shear of zonal wind increases, leading to the enhancement of the negative meridional temperature gradient in the mid troposphere. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 5037 KiB  
Article
Observed Exposure of Population and Gross Domestic Product to Extreme Precipitation Events in the Poyang Lake Basin, China
by Mingjin Zhan, Jianqing Zhai, Hemin Sun, Xiucang Li and Lingjun Xia
Atmosphere 2019, 10(12), 817; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120817 - 16 Dec 2019
Cited by 11 | Viewed by 2204
Abstract
Based on the observation data from the Poyang Lake Basin (China), an extreme precipitation event (EPE) is defined as that for which daily precipitation exceeded a threshold of 50 mm over a continuous area for a given time scale. By considering the spatiotemporal [...] Read more.
Based on the observation data from the Poyang Lake Basin (China), an extreme precipitation event (EPE) is defined as that for which daily precipitation exceeded a threshold of 50 mm over a continuous area for a given time scale. By considering the spatiotemporal continuity of EPEs, the intensity–area–duration method is applied to study both the characteristics of EPEs and the population and gross domestic product (GDP) exposures. The main results are as follows. (1) During 1961–2014, the frequencies and the intensities of the EPEs are found to be increasing. (2) The annual area impacted by EPEs is determined as 7.4 × 104 km2 with a general upward trend of 400 km2/year. (3) The annually exposed population is estimated as 19% of the entire population of the Basin, increasing by 1.37 × 105/year. The annual exposure of GDP is 8.5% of the entire GDP of the Basin, increasing by 3.8 billion Yuan/year. The Poyang Lake Basin experiences serious extreme precipitation with increasing trends in frequency, intensity, and exposure (for both GDP and population). It is imperative that effective disaster prevention and reduction measures be adopted in this area to mitigate the effects of extreme precipitation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 816 KiB  
Article
Application of DPPH Assay for Assessment of Particulate Matter Reducing Properties
by Maria Agostina Frezzini, Federica Castellani, Nayma De Francesco, Martina Ristorini and Silvia Canepari
Atmosphere 2019, 10(12), 816; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120816 - 16 Dec 2019
Cited by 19 | Viewed by 4876
Abstract
Different acellular assays were developed to measure particulate matter’s (PM) oxidative potential (OP), a metric used to predict the ability of PM in generating oxidative stress in living organisms. However, there are still fundamental open issues regarding the complex redox equilibria among the [...] Read more.
Different acellular assays were developed to measure particulate matter’s (PM) oxidative potential (OP), a metric used to predict the ability of PM in generating oxidative stress in living organisms. However, there are still fundamental open issues regarding the complex redox equilibria among the involved species which could include reducing compounds. The aim of this study was the pilot application of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to PM in order to evaluate the presence of reducing species. The assay, commonly applied to biological matrices, was adapted to PM and showed good analytical performances. It allowed the analysis of conventional 24 h airborne PM samples with suitable sensitivity and good repeatability of the measurements. The assay was applied to seven samples representing possible PM contributes (certified urban dust NIST1648a; brake dust; Saharan dust; coke dust; calcitic soil dust; incinerator dust; and diesel particulate matter certified material NIST1650b) and to PM2.5 field filters. The same samples were also analyzed for elements. Preliminary results indicated that the assay gave a linear response and that detectable amounts of reducing species were present in PM samples. The combined application of DPPH and conventional OP assays could then permit, in the future, to gain more knowledge about the reaction and/or competition between oxidative and reducing processes. Full article
(This article belongs to the Special Issue Oxidative Potential of Atmospheric Aerosols)
Show Figures

Graphical abstract

19 pages, 13151 KiB  
Article
Observed Changes in Temperature and Precipitation Extremes Over the Yarlung Tsangpo River Basin during 1970–2017
by Chunyu Liu, Yungang Li, Xuan Ji, Xian Luo and Mengtao Zhu
Atmosphere 2019, 10(12), 815; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120815 - 15 Dec 2019
Cited by 11 | Viewed by 3086
Abstract
Twenty-five climate indices based on daily maximum and minimum temperature and precipitation at 15 meteorological stations were examined to investigate changes in temperature and precipitation extremes over the Yarlung Tsangpo River Basin (1970–2017). The trend-free prewhitening (TFPW) Mann–Kendall test and Pettitt’s test were [...] Read more.
Twenty-five climate indices based on daily maximum and minimum temperature and precipitation at 15 meteorological stations were examined to investigate changes in temperature and precipitation extremes over the Yarlung Tsangpo River Basin (1970–2017). The trend-free prewhitening (TFPW) Mann–Kendall test and Pettitt’s test were used to identify trends and abrupt changes in the time series, respectively. The results showed widespread significant changes in extreme temperature indices associated with warming, most of which experienced abrupt changes in the 1990s. Increases in daily minimum and maximum temperature were detected, and the magnitude of daily minimum temperature change was greater than that of the daily maximum temperature, revealing an obvious decrease in the diurnal temperature range. Warm days and nights became more frequent, whereas fewer cold days and nights occurred. The frequency of frost and icing days decreased, while summer days and growing season length increased. Moreover, cold spell length shortened, whereas warm spell length increased. Additionally, changes in the precipitation extreme indices exhibited much less spatial coherence than the temperature indices. Spatially, mixed patterns of stations with positive and negative trends were found, and few trends in the precipitation extreme indices at individual stations were statistically significant. Generally, precipitation extreme indices showed a tendency toward wetter conditions, and the contribution of extreme precipitation to total precipitation has increased. However, no significant regional trends and abrupt changes were detected in total precipitation or in the frequency and duration of precipitation extremes. Full article
(This article belongs to the Special Issue Climates of the Himalayas: Present, Past and Future)
Show Figures

Figure 1

2 pages, 156 KiB  
Editorial
Remote Sensing of Clouds
by Filomena Romano
Atmosphere 2019, 10(12), 814; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120814 - 15 Dec 2019
Viewed by 1831
Abstract
This special issue collects four original and review articles dealing with different cloud aspects, from microphysical properties to macrophysical features [...] Full article
(This article belongs to the Special Issue Remote Sensing of Clouds)
20 pages, 7084 KiB  
Article
The Relationship between the Wintertime Cold Extremes over East Asia with Large-Scale Atmospheric and Oceanic Teleconnections
by Ye Yang, Naru Xie and Meng Gao
Atmosphere 2019, 10(12), 813; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120813 - 14 Dec 2019
Cited by 6 | Viewed by 2625
Abstract
The influence of large-scale teleconnection patterns, Western Pacific (WP), Arctic Oscillation (AO) and El Niño-Southern Oscillation (ENSO), on the minimum surface air temperature (Tmin) anomalies and extremes over East Asia during the boreal winter from 1979 to 2017 were investigated by the composite [...] Read more.
The influence of large-scale teleconnection patterns, Western Pacific (WP), Arctic Oscillation (AO) and El Niño-Southern Oscillation (ENSO), on the minimum surface air temperature (Tmin) anomalies and extremes over East Asia during the boreal winter from 1979 to 2017 were investigated by the composite analysis in terms of atmospheric and oceanic processes. The relationship between the Tmin and the geopotential height at 500 hPa (Z500) as well as sea surface temperature (SST) were first examined. Then we explored and estimated the contribution of the teleconnection patterns to the occurrence of extremely cold days and months quantitatively, and discussed other key factors in relation to the cold extremes. The WP and AO patterns play an important part in the prevalence of significant Tmin variability, whereas the effect of ENSO is relatively weak. Most of the cold extremes tend to appear in the negative phase of teleconnections, while there some extremes that occur in the opposite phase. In addition, the extreme months are more related to the preferred phase of the dominant pattern when compared to days. We conclude that the daily extremes are primarily triggered by the local-synoptic atmospheric circulations embedded in the large-scale teleconnection patterns, while the monthly extremes have a closer relationship with these low-frequency patterns. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 12095 KiB  
Article
Discontinuities in the Ozone Concentration Time Series from MERRA 2 Reanalysis
by Peter Krizan, Michal Kozubek and Jan Lastovicka
Atmosphere 2019, 10(12), 812; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120812 - 14 Dec 2019
Cited by 6 | Viewed by 4276
Abstract
Artificial discontinuities in time series are a great problem for trend analysis because they influence the values of the trend and its significance. The aim of this paper is to investigate their occurrence in the Modern-Era Retrospective analysis for Research and Applications, version [...] Read more.
Artificial discontinuities in time series are a great problem for trend analysis because they influence the values of the trend and its significance. The aim of this paper is to investigate their occurrence in the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA 2) ozone concentration data. It is the first step toward the utilization of the MERRA 2 ozone data for trend analysis. We use the Pettitt homogeneity test to search for discontinuities in the ozone time series. We showed the data above 4 hPa are not suitable for trend analyses due to the unrealistic patterns in an average ozone concentration and due to the frequent occurrence of significant discontinuities. Below this layer in the stratosphere, their number is much smaller, and mostly, they are insignificant, and the patterns of the average ozone concentration are explainable. In the troposphere, the number of discontinuities increases, but they are insignificant. The transition from Solar Backscatter Ultraviolet Radiometer (SBUV) to Earth Observing System (EOS) Aura data in 2004 is visible only above 1 hPa, where the data are not suitable for trend analyses due to other reasons. We can conclude the MERRA 2 ozone concentration data can be used in trend analysis with caution only below 4 hPa. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future)
Show Figures

Figure 1

16 pages, 2688 KiB  
Article
Sodar Observation of the ABL Structure and Waves over the Black Sea Offshore Site
by Vasily Lyulyukin, Margarita Kallistratova, Daria Zaitseva, Dmitry Kuznetsov, Arseniy Artamonov, Irina Repina, Igor Petenko, Rostislav Kouznetsov and Artem Pashkin
Atmosphere 2019, 10(12), 811; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120811 - 14 Dec 2019
Cited by 9 | Viewed by 3520
Abstract
Sodar investigations of the breeze circulation and vertical structure of the atmospheric boundary layer (ABL) were carried out in the coastal zone of the Black Sea for ten days in June 2015. The measurements were preformed at a stationary oceanographic platform located 450 [...] Read more.
Sodar investigations of the breeze circulation and vertical structure of the atmospheric boundary layer (ABL) were carried out in the coastal zone of the Black Sea for ten days in June 2015. The measurements were preformed at a stationary oceanographic platform located 450 m from the southern coast of the Crimean Peninsula. Complex measurements of the ABL vertical structure were performed using the three-axis Doppler minisodar Latan-3m. Auxiliary measurements were provided by a temperature profiler and two automatic weather stations. During the campaign, the weather was mostly fair with a pronounced daily cycle. Characteristic features of breeze circulation in the studied area, primarily determined by the adjacent mountains, were revealed. Wave structures with amplitudes of up to 100 m were regularly observed by sodar over the sea surface. Various forms of Kelvin–Helmholtz billows, observed at the interface between the sea breeze and the return flow aloft, are described. Full article
(This article belongs to the Special Issue Vertical Structure of the Atmospheric Boundary Layer in Coastal Zone)
Show Figures

Figure 1

15 pages, 5970 KiB  
Article
Convective Shower Characteristics Simulated with the Convection-Permitting Climate Model COSMO-CLM
by Christopher Purr, Erwan Brisson and Bodo Ahrens
Atmosphere 2019, 10(12), 810; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120810 - 13 Dec 2019
Cited by 18 | Viewed by 7715
Abstract
This paper evaluates convective precipitation as simulated by the convection-permitting climate model (CPM) Consortium for Small-Scale Modeling in climate mode (COSMO-CLM) (with 2.8 km grid-spacing) over Germany in the period 2001–2015. Characteristics of simulated convective precipitation objects like lifetime, area, mean intensity, and [...] Read more.
This paper evaluates convective precipitation as simulated by the convection-permitting climate model (CPM) Consortium for Small-Scale Modeling in climate mode (COSMO-CLM) (with 2.8 km grid-spacing) over Germany in the period 2001–2015. Characteristics of simulated convective precipitation objects like lifetime, area, mean intensity, and total precipitation are compared to characteristics observed by weather radar. For this purpose, a tracking algorithm was applied to simulated and observed precipitation with 5-min temporal resolution. The total amount of convective precipitation is well simulated, with a small overestimation of 2%. However, the simulation underestimates convective activity, represented by the number of convective objects, by 33%. This underestimation is especially pronounced in the lowlands of Northern Germany, whereas the simulation matches observations well in the mountainous areas of Southern Germany. The underestimation of activity is compensated by an overestimation of the simulated lifetime of convective objects. The observed mean intensity, maximum intensity, and area of precipitation objects increase with their lifetime showing the spectrum of convective storms ranging from short-living single-cell storms to long-living organized convection like supercells or squall lines. The CPM is capable of reproducing the lifetime dependence of these characteristics but shows a weaker increase in mean intensity with lifetime resulting in an especially pronounced underestimation (up to 25%) of mean precipitation intensity of long-living, extreme events. This limitation of the CPM is not identifiable by classical evaluation techniques using rain gauges. The simulation can reproduce the general increase of the highest percentiles of cell area, total precipitation, and mean intensity with temperature but fails to reproduce the increase of lifetime. The scaling rates of mean intensity and total precipitation resemble observed rates only in parts of the temperature range. The results suggest that the evaluation of coarse-grained (e.g., hourly) precipitation fields is insufficient for revealing challenges in convection-permitting simulations. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 7268 KiB  
Article
Rainfall and Flooding in Coastal Tourist Areas of the Canary Islands (Spain)
by Abel López Díez, Pablo Máyer Suárez, Jaime Díaz Pacheco and Pedro Dorta Antequera
Atmosphere 2019, 10(12), 809; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120809 - 13 Dec 2019
Cited by 12 | Viewed by 5513
Abstract
Coastal spaces exploited for tourism tend to be developed rapidly and with a desire to maximise profit, leading to diverse environmental problems, including flooding. As the origin of flood events is usually associated with intense precipitation episodes, this study considers the general rainfall [...] Read more.
Coastal spaces exploited for tourism tend to be developed rapidly and with a desire to maximise profit, leading to diverse environmental problems, including flooding. As the origin of flood events is usually associated with intense precipitation episodes, this study considers the general rainfall characteristics of tourist resorts in two islands of the Canary Archipelago (Spain). Days of intense rainfall were determined using the 99th percentile (99p) of 8 daily precipitation data series. In addition, the weather types that generated these episodes were identified, the best-fitting distribution functions were determined to allow calculation of probable maximum daily precipitation for different return periods, and the territorial and economic consequences of flood events were analysed. The results show highly irregular rainfall, with 99p values ranging 50–80 mm. The weather types associated with 49 days of flooding events were predominantly cyclonic and hybrid cyclonic. The Log Pearson III distribution function best fitted the data series, with a strong likelihood in a 100-year return period of rainfall exceeding 100 mm in a 24 h period. However, values below 30 mm have already resulted in significant flood damage, while intense rainfall events in the period 1998–2016 saw over 11.5 million euros paid out in damages for insured goods. Such flood-induced damages were found to be caused more by inadequate urban planning than by rainfall intensity. Full article
(This article belongs to the Special Issue Tourism Climatology: Past, Present and Future)
Show Figures

Figure 1

17 pages, 47895 KiB  
Article
Cloud Occurrence Frequency at Puy de Dôme (France) Deduced from an Automatic Camera Image Analysis: Method, Validation, and Comparisons with Larger Scale Parameters
by Jean-Luc Baray, Asmaou Bah, Philippe Cacault, Karine Sellegri, Jean-Marc Pichon, Laurent Deguillaume, Nadège Montoux, Vincent Noel, Geneviève Seze, Franck Gabarrot, Guillaume Payen and Valentin Duflot
Atmosphere 2019, 10(12), 808; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120808 - 13 Dec 2019
Cited by 8 | Viewed by 3244
Abstract
We present a simple algorithm that calculates the cloud occurrence frequency at an altitude site using automatic camera image analysis. This algorithm was applied at the puy de Dôme station (PUY, 1465 m. a.s.l., France) over 2013–2018. Cloud detection thresholds were determined by [...] Read more.
We present a simple algorithm that calculates the cloud occurrence frequency at an altitude site using automatic camera image analysis. This algorithm was applied at the puy de Dôme station (PUY, 1465 m. a.s.l., France) over 2013–2018. Cloud detection thresholds were determined by direct comparison with simultaneous in situ cloud probe measurements (particulate volume monitor (PVM) Gerber). The cloud occurrence frequency has a seasonal cycle, with higher values in winter (60%) compared to summer (24%). A cloud diurnal cycle is observed only in summer. Comparisons with the larger scale products from satellites and global model reanalysis are also presented. The NASA cloud-aerosol transport system (CATS) cloud fraction shows the same seasonal and diurnal variations and is, on average, 11% higher. Monthly variations of the ECMWF ERA-5 fraction of cloud cover are also highly correlated with the camera cloud occurrence frequency, but the values are 19% lower and up to 40% for some winter months. The METEOSAT-SEVIRI cloud occurrence frequency also follows the same seasonal cycle but with a much smaller decrease in summer. The all-sky imager cloud fraction (CF) presents larger variability than the camera cloud occurrence but also follows similar seasonal variations (67% in winter and 44% in summer). This automatic low-cost detection of cloud occurrence is of interest in characterizing altitude observation sites, especially those that are not yet equipped with microphysical instruments and can be deployed to other high-altitude sites equipped with cameras. Full article
(This article belongs to the Special Issue Atmospheric Composition and Cloud Cover Observations)
Show Figures

Graphical abstract

12 pages, 3165 KiB  
Article
On the Constellation Design of Multi-GNSS Reflectometry Mission Using the Particle Swarm Optimization Algorithm
by Yi Han, Jia Luo and Xiaohua Xu
Atmosphere 2019, 10(12), 807; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120807 - 13 Dec 2019
Cited by 8 | Viewed by 2824
Abstract
Due to the great success of the CYclone Global Navigation Satellite System (CYGNSS) mission, the follow-on GNSS Reflectometry (GNSS-R) missions are being planned. In the perceivable future, signal sources for GNSS-R missions can originate from multiple global navigation satellite systems (GNSSs) including Global [...] Read more.
Due to the great success of the CYclone Global Navigation Satellite System (CYGNSS) mission, the follow-on GNSS Reflectometry (GNSS-R) missions are being planned. In the perceivable future, signal sources for GNSS-R missions can originate from multiple global navigation satellite systems (GNSSs) including Global Positioning System (GPS), Galileo, GLONASS, and BeiDou. On the other hand, to facilitate the operational capability for sensing ocean, land, and ice features globally, multi-satellite low Earth orbit (LEO) constellations with global coverage and high spatio-temporal resolutions should be considered in the design of the follow-on GNSS-R constellation. In the present study, the particle swarm optimization (PSO) algorithm was applied to seek the optimal configuration parameters of 2D-lattice flower constellations (2D-LFCs) composed of 8, 24, 60, and 120 satellites, respectively, for global GNSS-R observations, and the fitness function was defined as the length of the time for the percentage coverage of the reflection observations reaches 90% of the globe. The configuration parameters for the optimal constellations are presented, and the performances of the optimal constellations for GNSS-R observations including the visited and the revisited coverages, and the spatial and temporal distributions of the reflections were further compared. Although the results showed that all four optimized constellations could observe GNSS reflections with proper temporal and spatial distributions, we recommend the optimal 24- and 60-satellite 2D-LFCs for future GNSS-R missions, taking into account both the performance and efficiency for the deployment of the GNSS-R missions. Full article
(This article belongs to the Special Issue GNSS Meteorology and Climatology)
Show Figures

Figure 1

14 pages, 4841 KiB  
Article
Relating Moisture Transport to Stable Water Vapor Isotopic Variations of Ambient Wintertime along the Western Coast of Korea
by Songyi Kim, Yeongcheol Han, Soon Do Hur, Kei Yoshimura and Jeonghoon Lee
Atmosphere 2019, 10(12), 806; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120806 - 12 Dec 2019
Cited by 6 | Viewed by 3342
Abstract
Atmospheric water vapor transfers energy, causes meteorological phenomena and can be modified by climate change in the western coast region of Korea. In Korea, previous studies have utilized precipitation isotopic compositions in the water cycle for correlations with climate variables, but there are [...] Read more.
Atmospheric water vapor transfers energy, causes meteorological phenomena and can be modified by climate change in the western coast region of Korea. In Korea, previous studies have utilized precipitation isotopic compositions in the water cycle for correlations with climate variables, but there are few studies using water vapor isotopes. In this study, water vapor was directly collected by a cryogenic method, analyzed for its isotopic compositions, and used to trace the origin and history of water vapor in the western coastal region of Korea during the winter of 2015/2016. Our analysis of paired mixing ratios with water vapor isotopes can explain the mechanism of water vapor isotopic fractionation and the extent of the mixing of two different air masses. We confirm the correlation between water vapor isotopes and meteorological parameters such as temperature, relative humidity, and specific humidity. The main water vapor in winter was derived from the continental polar region of northern Asia and showed an enrichment of 10 per mil (δ18O) through the evaporation of the Yellow Sea. Our results demonstrate the utility of using ground-based isotope observations as a complementary resource for constraining isotope-enabled Global Circulation Model in future investigations of atmospheric water cycles. These measurements are expected to support climate studies (speleothem) in the west coast region of Korea. Full article
(This article belongs to the Special Issue Stable Isotopes in Atmospheric Research)
Show Figures

Figure 1

20 pages, 8042 KiB  
Article
Impact of Effective Roughness Length on Mesoscale Meteorological Simulations over Heterogeneous Land Surfaces in Taiwan
by Fang-Yi Cheng, Chin-Fang Lin, Yu-Tzu Wang, Jeng-Lin Tsai, Ben-Jei Tsuang and Ching-Ho Lin
Atmosphere 2019, 10(12), 805; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120805 - 12 Dec 2019
Cited by 5 | Viewed by 3901
Abstract
The Weather Research and Forecasting (WRF) modeling system obtains the aerodynamic roughness length (z0) from a land use (LU) lookup table. The effective aerodynamic roughness length (z0eff) was estimated for the island of Taiwan by considering the [...] Read more.
The Weather Research and Forecasting (WRF) modeling system obtains the aerodynamic roughness length (z0) from a land use (LU) lookup table. The effective aerodynamic roughness length (z0eff) was estimated for the island of Taiwan by considering the individual roughness lengths (z0i) of the underlying LU types within a modeling grid box. Two z0eff datasets were prepared: one using the z0i from the default LU lookup table and the other using the observed z0i for three LU types (urban, dry cropland and pasture, and irrigated cropland and pasture). The spatial variability of the z0eff distribution was higher than that of the LU table-based z0 distribution. Three WRF sensitivity experiments were performed: (1) dominant LU table-based z0 (namely, S1), (2) z0eff estimated from the default z0i (namely, S2), and (3) z0eff estimated from the observed z0i (namely, S3). Comparisons of the thermal field, temperature, and surface sensible and latent heat fluxes revealed no significant differences among the three simulations. The wind field overestimation and surface momentum flux underestimation in S1 were reduced in S2 and S3, and these improvements were more prominent over areas with highly heterogeneous land surface conditions. Full article
(This article belongs to the Special Issue Meteorological Phenomena Driving Extreme Air Pollution)
Show Figures

Figure 1

17 pages, 2925 KiB  
Article
Evaluation of Near-Surface Wind Speed Changes during 1979 to 2011 over China Based on Five Reanalysis Datasets
by Jiang Yu, Tianjun Zhou, Zhihong Jiang and Liwei Zou
Atmosphere 2019, 10(12), 804; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120804 - 12 Dec 2019
Cited by 29 | Viewed by 3480
Abstract
Wind speed data derived from reanalysis datasets has been used in the plan and design of wind farms in China, but the quality of these kinds of data over China remains unknown. In this study, the performances of five sets of reanalysis data, [...] Read more.
Wind speed data derived from reanalysis datasets has been used in the plan and design of wind farms in China, but the quality of these kinds of data over China remains unknown. In this study, the performances of five sets of reanalysis data, including National Centers for Environmental Predictions (NCEP)-U.S. Department of Energy (DOE) Reanalysis 2 (NCEP-2), Modern-ERA Retrospective Analysis for Research and Applications (MERRA), Japanese 55-year Reanalysis Project (JRA-55), Interim ECMWF Re-Analysis product (ERA-Interim), and 20th Century Reanalysis (20CR) in reproducing the climatology, interannual variation, and long-term trend of near-surface (10 m above ground) wind speed, for the period of 1979–2011 over continental China are comprehensively evaluated. Compared to the gridded data compiled from meteorological stations, all five reanalysis datasets reasonably reproduce the spatial distribution of the climatology of near-surface wind speed, but underestimate the intensity of the near-surface wind speed in most regions except for Tibetan Plateau where the wind speed is overestimated. All five reanalysis datasets show large weaknesses in reproducing the annual cycle of near-surface wind speed averaged over the continental China. The near-surface wind speed derived from the observations exhibit significant decreasing trends over most parts of continental China during 1979 to 2011. Although the spatial patterns of the linear trends reproduced by reanalysis datasets are close to the observation, the magnitudes are weaker in annual, spring, summer and autumn season. The qualities of all reanalysis datasets are limited in winter. For the interannual variability, except for winter, all five reanalysis datasets reasonably reproduce the interannual standard deviation but with larger amplitude. Quantitative comparison indicates that among the five reanalysis datasets, the MERRA (JRA-55) shows the relatively highest (lowest) skill in terms of the climatology and linear trend. These results call for emergent needs for developing high quality reanalysis data that can be used in wind resource assessment and planning. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 9179 KiB  
Review
Hierarchical Modeling of Solar System Planets with Isca
by Stephen I. Thomson and Geoffrey K. Vallis
Atmosphere 2019, 10(12), 803; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120803 - 12 Dec 2019
Cited by 15 | Viewed by 5888
Abstract
We describe the use of Isca for the hierarchical modeling of Solar System planets, with particular attention paid to Earth, Mars, and Jupiter. Isca is a modeling framework for the construction and use of models of planetary atmospheres at varying degrees of complexity, [...] Read more.
We describe the use of Isca for the hierarchical modeling of Solar System planets, with particular attention paid to Earth, Mars, and Jupiter. Isca is a modeling framework for the construction and use of models of planetary atmospheres at varying degrees of complexity, from featureless model planets with an atmosphere forced by a thermal relaxation back to a specified temperature, through aquaplanets with no continents (or no ocean) with a simple radiation scheme, to near-comprehensive models with a multi-band radiation scheme, a convection scheme, and configurable continents and topography. By a judicious choice of parameters and parameterization schemes, the model may be configured for fairly arbitrary planets, with stellar radiation input determined by astronomical parameters, taking into account the planet’s obliquity and eccentricity. In this paper, we describe the construction and use of models at varying levels of complexity for Earth, Mars and Jupiter using the primitive equations and/or the shallow water equations. Full article
(This article belongs to the Special Issue Modeling and Simulation of Planetary Atmospheres)
Show Figures

Figure 1

25 pages, 17732 KiB  
Article
Evaluation of the Rossby Centre Regional Climate Model Rainfall Simulations over West Africa Using Large-Scale Spatial and Temporal Statistical Metrics
by Gnim Tchalim Gnitou, Tinghuai Ma, Guirong Tan, Brian Ayugi, Isaac Kwesi Nooni, Alia Alabdulkarim and Yuan Tian
Atmosphere 2019, 10(12), 802; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120802 - 12 Dec 2019
Cited by 12 | Viewed by 3419
Abstract
Climate models are usually evaluated to understand how well the modeled data reproduce specific application-related features. In Africa, where multisource data quality is an issue, there is a need to assess climate data from a general perspective to motivate such specific types of [...] Read more.
Climate models are usually evaluated to understand how well the modeled data reproduce specific application-related features. In Africa, where multisource data quality is an issue, there is a need to assess climate data from a general perspective to motivate such specific types of assessment, but mostly to serve as a basis for data quality enhancement activities. In this study, we assessed the Rossby Centre Regional Climate Model (RCA4) over West Africa without targeting any application-specific feature, while jointly evaluating its boundary conditions and accounting for observational uncertainties. Results from this study revealed that the RCA4 signal highly modifies the boundary conditions (global climate models (GCMs) and reanalysis data), resulting in a significant reduction of their biases in the dynamically downscaled outputs. The results, with respect to the observational ensemble members, are in line with the differences between the observation datasets. Among the RCA4 simulations, the ensemble mean outperformed all individual simulations regardless of the statistical metric and the reference data used. This indicates that the RCA4 adds value to GCMs over West Africa, with no influence of observational uncertainty, and its ensemble mean reduces model-related uncertainties. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 628 KiB  
Article
An Assessment of the Suitability of Active Green Walls for NO2 Reduction in Green Buildings Using a Closed-Loop Flow Reactor
by Thomas Pettit, Peter J. Irga, Nicholas C. Surawski and Fraser R. Torpy
Atmosphere 2019, 10(12), 801; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120801 - 11 Dec 2019
Cited by 21 | Viewed by 4746
Abstract
Nitrogen dioxide (NO2) is a common urban air pollutant that is associated with several adverse human health effects from both short and long term exposure. Additionally, NO2 is highly reactive and can influence the mixing ratios of nitrogen oxide (NO) [...] Read more.
Nitrogen dioxide (NO2) is a common urban air pollutant that is associated with several adverse human health effects from both short and long term exposure. Additionally, NO2 is highly reactive and can influence the mixing ratios of nitrogen oxide (NO) and ozone (O3). Active green walls can filter numerous air pollutants whilst using little energy, and are thus a candidate for inclusion in green buildings, however, the remediation of NO2 by active green walls remains untested. This work assessed the capacity of replicate active green walls to filter NO2 at both ambient and elevated concentrations within a closed-loop flow reactor, while the concentrations of NO and O3 were simultaneously monitored. Comparisons of each pollutant’s decay rate were made for green walls containing two plant species (Spathiphyllum wallisii and Syngonium podophyllum) and two lighting conditions (indoor and ultraviolet). Biofilter treatments for both plant species exhibited exponential decay for the biofiltration of all three pollutants at ambient concentrations. Furthermore, both treatments removed elevated concentrations of NO and NO2, (average NO2 clean air delivery rate of 661.32 and 550.8 m3∙h−1∙m−3 of biofilter substrate for the respective plant species), although plant species and lighting conditions influenced the degree of NOx removal. Elevated concentrations of NOx compromised the removal efficiency of O3. Whilst the current work provided evidence that effective filtration of NOx is possible with green wall technology, long-term experiments under in situ conditions are needed to establish practical removal rates and plant health effects from prolonged exposure to air pollution. Full article
(This article belongs to the Special Issue Green Buildings and Indoor Air Quality)
Show Figures

Figure 1

13 pages, 1726 KiB  
Article
June Temperature Trends in the Southwest Deserts of the USA (1950–2018) and Implications for Our Urban Areas
by Anthony Brazel
Atmosphere 2019, 10(12), 800; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120800 - 11 Dec 2019
Cited by 4 | Viewed by 2688
Abstract
Within the United States, the Southwest USA deserts show the largest temperature changes (1901–2010) besides Alaska, according to the most recent USA National Climate Assessment report. The report does not discuss urban effects vs. regional effects that might be evident in trends. Twenty-five [...] Read more.
Within the United States, the Southwest USA deserts show the largest temperature changes (1901–2010) besides Alaska, according to the most recent USA National Climate Assessment report. The report does not discuss urban effects vs. regional effects that might be evident in trends. Twenty-five temperature stations with ca. 68-year records (1950 to 2018) have been accessed from US Global Historical Climate Network archives. Land cover data are accessed from a National Land Cover Database. June results considering both urban and rural sites show an astounding rate per year change among sites ranging from −0.01 to 0.05 °C for maximum temperatures and 0.01 to 0.11 °C for minimum temperatures (−0.8 to 3.2 °C, and 0.8 to 8.0 °C for the entire period). For maximum temperatures, almost half of the sites showed no significant trends at a stringent 0.01 level of statistical significance, but 20 of 25 were significant at the 0.05 level. For minimum temperatures, over 75% of sites were significant at the 0.01 level (92% at 0.05 level of significance). The urban-dominated stations in Las Vegas, Phoenix, Tucson, and Yuma show large minimum temperature trends, indicating emerging heat island effects. Rural sites, by comparison, show much smaller trends. Addressing heat in our urban areas by local actions, through collaborations with stakeholders and political resolve, will aid in meeting future urban challenges in this era of projected global climate change and continued warming. Full article
(This article belongs to the Special Issue Infrastructure Planning for Urban Climate Moderation)
Show Figures

Figure 1

25 pages, 11890 KiB  
Article
On the Use of Original and Bias-Corrected Climate Simulations in Regional-Scale Hydrological Scenarios in the Mediterranean Basin
by Lorenzo Sangelantoni, Barbara Tomassetti, Valentina Colaiuda, Annalina Lombardi, Marco Verdecchia, Rossella Ferretti and Gianluca Redaelli
Atmosphere 2019, 10(12), 799; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120799 - 10 Dec 2019
Cited by 9 | Viewed by 2776
Abstract
The response of Mediterranean small catchments hydrology to climate change is still relatively unexplored. Regional Climate Models (RCMs) are an established tool for evaluating the expected climate change impact on hydrology. Due to the relatively low resolution and systematic errors, RCM outputs are [...] Read more.
The response of Mediterranean small catchments hydrology to climate change is still relatively unexplored. Regional Climate Models (RCMs) are an established tool for evaluating the expected climate change impact on hydrology. Due to the relatively low resolution and systematic errors, RCM outputs are routinely and statistically post-processed before being used in impact studies. Nevertheless, these techniques can impact the original simulated trends and then impact model results. In this work, we characterize future changes of a small Apennines (Central Italy) catchment hydrology, according to two radiative forcing scenarios (Representative Concentration Pathways, RCPs, 4.5 and 8.5). We also investigate the impact of a widely used bias correction technique, the empirical Quantile Mapping (QM) on the original Climate Change Signal (CCS), and the subsequent alteration of the original Hydrological Change Signal (HCS). Original and bias-corrected simulations of five RCMs from Euro-CORDEX are used to drive the CETEMPS hydrological model CHyM. HCS is assessed by using monthly mean discharge and a hydrological-stress index. HCS shows a large spatial and seasonal variability where the summer results are affected by the largest decrease of mean discharge (down to −50%). QM produces a small alteration of the original CCS, which generates a generally wetter HCS, especially during the spring season. Full article
(This article belongs to the Special Issue Forecasting Heavy Weather in Mediterranean Region)
Show Figures

Figure 1

45 pages, 10464 KiB  
Article
Coupled Stratospheric Chemistry–Meteorology Data Assimilation. Part II: Weak and Strong Coupling
by Richard Ménard, Pierre Gauthier, Yves Rochon, Alain Robichaud, Jean de Grandpré, Yan Yang, Cécilien Charrette and Simon Chabrillat
Atmosphere 2019, 10(12), 798; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120798 - 09 Dec 2019
Cited by 9 | Viewed by 3192
Abstract
We examine data assimilation coupling between meteorology and chemistry in the stratosphere from both weak and strong coupling strategies. The study was performed with the Canadian operational weather prediction Global Environmental Multiscale (GEM) model coupled online with the photochemical stratospheric chemistry model developed [...] Read more.
We examine data assimilation coupling between meteorology and chemistry in the stratosphere from both weak and strong coupling strategies. The study was performed with the Canadian operational weather prediction Global Environmental Multiscale (GEM) model coupled online with the photochemical stratospheric chemistry model developed at the Belgian Institute for Space Aeronomy, described in Part I. Here, the Canadian Meteorological Centre’s operational variational assimilation system was extended to include errors of chemical variables and cross-covariances between meteorological and chemical variables in a 3D-Var configuration, and we added the adjoint of tracer advection in the 4D-Var configuration. Our results show that the assimilation of limb sounding observations from the MIPAS instrument on board Envisat can be used to anchor the AMSU-A radiance bias correction scheme. Additionally, the added value of limb sounding temperature observations on meteorology and transport is shown to be significant. Weak coupling data assimilation with ozone–radiation interaction is shown to give comparable results on meteorology whether a simplified linearized or comprehensive ozone chemistry scheme is used. Strong coupling data assimilation, using static error cross-covariances between ozone and temperature in a 3D-Var context, produced inconclusive results with the approximations we used. We have also conducted the assimilation of long-lived species observations using 4D-Var to infer winds. Our results showed the added value of assimilating several long-lived species, and an improvement in the zonal wind in the Tropics within the troposphere and lower stratosphere. 4D-Var assimilation also induced a correction of zonal wind in the surf zone and a temperature bias in the lower tropical stratosphere. Full article
(This article belongs to the Special Issue Air Quality Prediction)
Show Figures

Figure 1

29 pages, 4528 KiB  
Article
Intercomparison of Multiple UV-LIF Spectrometers Using the Aerosol Challenge Simulator
by Elizabeth Forde, Martin Gallagher, Maurice Walker, Virginia Foot, Alexis Attwood, Gary Granger, Roland Sarda-Estève, Warren Stanley, Paul Kaye and David Topping
Atmosphere 2019, 10(12), 797; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120797 - 09 Dec 2019
Cited by 11 | Viewed by 4502
Abstract
Measurements of primary biological aerosol particles (PBAPs) have been conducted worldwide using ultraviolet light-induced fluorescence (UV-LIF) spectrometers. However, how these instruments detect and respond to known biological and non-biological particles, and how they compare, remains uncertain due to limited laboratory intercomparisons. Using the [...] Read more.
Measurements of primary biological aerosol particles (PBAPs) have been conducted worldwide using ultraviolet light-induced fluorescence (UV-LIF) spectrometers. However, how these instruments detect and respond to known biological and non-biological particles, and how they compare, remains uncertain due to limited laboratory intercomparisons. Using the Defence Science and Technology Laboratory, Aerosol Challenge Simulator (ACS), controlled concentrations of biological and non-biological aerosol particles, singly or as mixtures, were produced for testing and intercomparison of multiple versions of the Wideband Integrated Bioaerosol Spectrometer (WIBS) and Multiparameter Bioaerosol Spectrometer (MBS). Although the results suggest some challenges in discriminating biological particle types across different versions of the same UV-LIF instrument, a difference in fluorescence intensity between the non-biological and biological samples could be identified for most instruments. While lower concentrations of fluorescent particles were detected by the MBS, the MBS demonstrates the potential to discriminate between pollen and other biological particles. This study presents the first published technical summary and use of the ACS for instrument intercomparisons. Within this work a clear overview of the data pre-processing is also presented, and documentation of instrument version/model numbers is suggested to assess potential instrument variations between different versions of the same instrument. Further laboratory studies sampling different particle types are suggested before use in quantifying impact on ambient classification. Full article
(This article belongs to the Special Issue Detection and Monitoring of Bioaerosols)
Show Figures

Figure 1

36 pages, 7822 KiB  
Article
An Evaluation of Relationships between Radar-Inferred Kinematic and Microphysical Parameters and Lightning Flash Rates in Alabama Storms
by Lawrence D. Carey, Elise V. Schultz, Christopher J. Schultz, Wiebke Deierling, Walter A. Petersen, Anthony Lamont Bain and Kenneth E. Pickering
Atmosphere 2019, 10(12), 796; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120796 - 09 Dec 2019
Cited by 31 | Viewed by 4436
Abstract
Lightning flash rate parameterizations based on polarimetric and multi-Doppler radar inferred microphysical (e.g., graupel volume, graupel mass, 35 dBZ volume) and kinematic (e.g., updraft volume, maximum updraft velocity) parameters have important applications in atmospheric science. Although past studies have established relations between flash [...] Read more.
Lightning flash rate parameterizations based on polarimetric and multi-Doppler radar inferred microphysical (e.g., graupel volume, graupel mass, 35 dBZ volume) and kinematic (e.g., updraft volume, maximum updraft velocity) parameters have important applications in atmospheric science. Although past studies have established relations between flash rate and storm parameters, their expected performance in a variety of storm and flash rate conditions is uncertain due to sample limitations. Radar network and lightning mapping array observations over Alabama of a large and diverse sample of 33 storms are input to hydrometeor identification, vertical velocity retrieval and flash rate algorithms to develop and test flash rate relations. When applied to this sample, prior flash rate linear relations result in larger errors overall, including often much larger bias (both over- and under-estimation) and root mean square errors compared to the new linear relations. At low flash rates, the new flash rate relations based on kinematic parameters have larger errors compared to those based on microphysical ones. Sensitivity of error to the functional form (e.g., zero or non-zero intercept) is also tested. When considering all factors (e.g., low errors including at low flash rate, consistency with past linear relations, and insensitivity to functional form), the flash rate parameterization based on graupel volume has the best overall performance. Full article
(This article belongs to the Special Issue 10th Anniversary of Atmosphere: Climatology and Meteorology)
Show Figures

Figure 1

14 pages, 2449 KiB  
Article
Aqueous Reactions of Sulfate Radical-Anions with Nitrophenols in Atmospheric Context
by Krzysztof J. Rudziński and Rafał Szmigielski
Atmosphere 2019, 10(12), 795; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120795 - 09 Dec 2019
Cited by 9 | Viewed by 3769
Abstract
Nitrophenols, hazardous environmental pollutants, react promptly with atmospheric oxidants such as hydroxyl or nitrate radicals. This work aimed to estimate how fast nitrophenols are removed from the atmosphere by the aqueous-phase reactions with sulfate radical-anions. The reversed-rates method was applied to determine the [...] Read more.
Nitrophenols, hazardous environmental pollutants, react promptly with atmospheric oxidants such as hydroxyl or nitrate radicals. This work aimed to estimate how fast nitrophenols are removed from the atmosphere by the aqueous-phase reactions with sulfate radical-anions. The reversed-rates method was applied to determine the relative rate constants for reactions of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol with sulfate radical-anions generated by the autoxidation of sodium sulfite catalyzed by iron(III) cations at ~298 K. The constants determined were: 9.08 × 108, 1.72 × 109, 6.60 × 108, 2.86 × 108, and 7.10 × 107 M−1 s−1, respectively. These values correlated linearly with the sums of Brown substituent coefficients and with the relative strength of the O–H bond of the respective nitrophenols. Rough estimation showed that the gas-phase reactions of 2-nitrophenol with hydroxyl or nitrate radicals dominated over the aqueous-phase reaction with sulfate radical-anions in deliquescent aerosol and haze water. In clouds, rains, and haze water, the aqueous-phase reaction of 2-nitrophenol with sulfate radical-anions dominated, provided the concentration of the radical-anions was not smaller than that of the hydroxyl or nitrate radicals. The results presented may be also interesting for designers of advanced oxidation processes for the removal of nitrophenol. Full article
(This article belongs to the Special Issue Atmospheric Aqueous-Phase Chemistry)
Show Figures

Graphical abstract

18 pages, 2193 KiB  
Article
Implicit Definition of Flow Patterns in Street Canyons—Recirculation Zone—Using Exploratory Quantitative and Qualitative Methods
by Arsenios E. Chatzimichailidis, Christos D. Argyropoulos, Marc J. Assael and Konstantinos E. Kakosimos
Atmosphere 2019, 10(12), 794; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120794 - 08 Dec 2019
Cited by 6 | Viewed by 2708
Abstract
Air pollution is a major health hazard for the population that increasingly lives in cities. Street-scale Air Quality Models (AQMs) are a cheap and efficient way to study air pollution and possibly provide solutions. Having to include all the complex phenomena of wind [...] Read more.
Air pollution is a major health hazard for the population that increasingly lives in cities. Street-scale Air Quality Models (AQMs) are a cheap and efficient way to study air pollution and possibly provide solutions. Having to include all the complex phenomena of wind flow between buildings, AQMs employ several parameterisations, one of which is the recirculation zone. Goal of this study is to derive an implicit or explicit definition for the recirculation zone from the flow in street canyons using computational fluid dynamics (CFD). Therefore, a CFD-Large Eddy Simulation model was employed to investigate street canyons with height to width ratio from 1 to 0.20 under perpendicular wind direction. The developed dataset was analyzed with traditional methods (vortex visualization criteria and pollutant dispersion fields), as well as clustering methods (machine learning). Combining the above analyses, it was possible to extract qualitative features that agree well with literature but most importantly to develop quantitative expressions that describe their topology. The extracted features’ topology depends strongly on the street canyon dimensions and not surprisingly is independent of the wind velocity. The developed expressions describe areas with common flow characteristics inside the canyon and thus they can be characterised as an implicit definition for the recirculation zone. Furthermore, the presented methodology can be further applied to cover more parameters such us oblique wind direction and heated-facades and more methods for data analysis. Full article
Show Figures

Graphical abstract

15 pages, 1733 KiB  
Article
North American Winter Dipole: Observed and Simulated Changes in Circulations
by Yu-Tang Chien, S.-Y. Simon Wang, Yoshimitsu Chikamoto, Steve L. Voelker, Jonathan D. D. Meyer and Jin-Ho Yoon
Atmosphere 2019, 10(12), 793; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120793 - 07 Dec 2019
Cited by 7 | Viewed by 4571
Abstract
In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. [...] Read more.
In recent years, a pair of large-scale circulation patterns consisting of an anomalous ridge over northwestern North America and trough over northeastern North America was found to accompany extreme winter weather events such as the 2013–2015 California drought and eastern U.S. cold outbreaks. Referred to as the North American winter dipole (NAWD), previous studies have found both a marked natural variability and a warming-induced amplification trend in the NAWD. In this study, we utilized multiple global reanalysis datasets and existing climate model simulations to examine the variability of the winter planetary wave patterns over North America and to better understand how it is likely to change in the future. We compared between pre- and post-1980 periods to identify changes to the circulation variations based on empirical analysis. It was found that the leading pattern of the winter planetary waves has changed, from the Pacific–North America (PNA) mode to a spatially shifted mode such as NAWD. Further, the potential influence of global warming on NAWD was examined using multiple climate model simulations. Full article
(This article belongs to the Special Issue The Impacts of Climate Change on Atmospheric Circulations)
Show Figures

Figure 1

17 pages, 1853 KiB  
Review
The Impact of Green Roofs on the Parameters of the Environment in Urban Areas—Review
by Dariusz Suszanowicz and Alicja Kolasa Więcek
Atmosphere 2019, 10(12), 792; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120792 - 07 Dec 2019
Cited by 29 | Viewed by 7356
Abstract
This study presents the results of a review of publications conducted by researchers in a variety of climates on the implementation of ‘green roofs’ and their impact on the urban environment. Features of green roofs in urban areas have been characterized by a [...] Read more.
This study presents the results of a review of publications conducted by researchers in a variety of climates on the implementation of ‘green roofs’ and their impact on the urban environment. Features of green roofs in urban areas have been characterized by a particular emphasis on: Filtration of air pollutants and oxygen production, reduction of rainwater volume discharged from roof surfaces, reduction of so-called ‘urban heat islands’, as well as improvements to roof surface insulation (including noise reduction properties). The review of the publications confirmed the necessity to conduct research to determine the coefficients of the impact of green roofs on the environment in the city centers of Central and Eastern Europe. The results presented by different authors (most often based on a single case study) differ significantly from each other, which does not allow us to choose universal coefficients for all the parameters of the green roof’s impact on the environment. The work also includes analysis of structural recommendations for the future model green roof study, which will enable pilot research into the influence of green roofs on the environment in urban agglomerations and proposes different kinds of plants for different kinds of roofs, respectively. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 2502 KiB  
Article
Effect of Bulk Composition on the Heterogeneous Oxidation of Semi-Solid Atmospheric Aerosols
by Hanyu Fan and Fabien Goulay
Atmosphere 2019, 10(12), 791; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120791 - 07 Dec 2019
Cited by 3 | Viewed by 3128
Abstract
The OH-initiated heterogeneous oxidation of semi-solid saccharide particles with varying bulk compositions was investigated in an atmospheric pressure flow tube at 30% relative humidity. Reactive uptake coefficients were determined from the rate loss of the saccharide reactants measured by mass spectrometry at different [...] Read more.
The OH-initiated heterogeneous oxidation of semi-solid saccharide particles with varying bulk compositions was investigated in an atmospheric pressure flow tube at 30% relative humidity. Reactive uptake coefficients were determined from the rate loss of the saccharide reactants measured by mass spectrometry at different monosaccharide (methyl-β-d-glucopyranoside, C7H14O6) and disaccharide (lactose, C12H22O11) molar ratios. The reactive uptake for the monosaccharide was found to decrease from 0.53 ± 0.10 to 0.05 ± 0.06 as the mono-to-disaccharide molar ratio changed from 8:1 to 1:1. A reaction–diffusion model was developed in order to determine the effect of chemical composition on the reactive uptake. The observed decays can be reproduced using a Vignes relationship to predict the composition dependence of the reactant diffusion coefficients. The experimental data and model results suggest that the addition of the disaccharide significantly increases the particle viscosity leading to slower mass transport phenomena from the bulk to the particle surface and to a decreased reactivity. These findings illustrate the impact of bulk composition on reactant bulk diffusivity which determines the rate-limiting step during the chemical transformation of semi-solid particles in the atmosphere. Full article
(This article belongs to the Special Issue Nanoparticles in the Atmosphere)
Show Figures

Graphical abstract

11 pages, 3954 KiB  
Article
Influence of the Anthropogenic Fugitive, Combustion, and Industrial Dust on Winter Air Quality in East Asia
by Jaein I. Jeong and Rokjin J. Park
Atmosphere 2019, 10(12), 790; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120790 - 07 Dec 2019
Cited by 5 | Viewed by 2670
Abstract
We estimate the effects of the anthropogenic fugitive, combustion, and industrial dust (AFCID) on winter air quality in China and South Korea for November 2015–March 2016 using the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment (KU-CREATE) monthly anthropogenic emission inventory in conjunction [...] Read more.
We estimate the effects of the anthropogenic fugitive, combustion, and industrial dust (AFCID) on winter air quality in China and South Korea for November 2015–March 2016 using the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment (KU-CREATE) monthly anthropogenic emission inventory in conjunction with a nested version of GEOS-Chem. Including AFCID emissions in models results in a better agreement with observations and a reduced normalized mean bias of −28% compared to −40% without AFCID. Furthermore, we find that AFCID amounts to winter PM10 concentrations of 17.9 μg m−3 (17%) in eastern China (30−40° N, 112−120° E) with the largest contribution of AFCID to winter PM10 concentrations of up to 45 μg m−3 occurring in eastern China causing a significant impact on air quality to downwind regions. Including AFCID in the model results in an increase of simulated winter PM10 concentrations in South Korea by 3.1 μg m−3 (9%), of which transboundary transport from China accounts for more than 70% of this increased PM10 concentration. Our results indicate that AFCID is an essential factor for winter PM10 concentrations over East Asia and its sources and physical characteristics need to be better quantified to improve PM air quality forecasts. Full article
(This article belongs to the Special Issue Recent Advances of Air Pollution Studies in South Korea)
Show Figures

Figure 1

19 pages, 6851 KiB  
Article
Aerosol from Biomass Combustion in Northern Europe: Influence of Meteorological Conditions and Air Mass History
by Jun Noda, Robert Bergström, Xiangrui Kong, Torbjörn L. Gustafsson, Borka Kovacevik, Maria Svane and Jan B. C. Pettersson
Atmosphere 2019, 10(12), 789; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10120789 - 06 Dec 2019
Cited by 4 | Viewed by 3496
Abstract
Alkali-containing submicron particles were measured continuously during three months, including late winter and spring seasons in Gothenburg, Sweden. The overall aims were to characterize the ambient concentrations of combustion-related aerosol particles and to address the importance of local emissions and long-range transport for [...] Read more.
Alkali-containing submicron particles were measured continuously during three months, including late winter and spring seasons in Gothenburg, Sweden. The overall aims were to characterize the ambient concentrations of combustion-related aerosol particles and to address the importance of local emissions and long-range transport for atmospheric concentrations in the urban background environment. K and Na concentrations in the particulate matter PM1 size range were measured by an Alkali aerosol mass spectrometer (Alkali-AMS) and a cluster analysis was conducted. Local meteorological conditions and trace gas and PM concentrations were also obtained for a nearby location. In addition, back trajectory analyses and chemical transport model (CTM) simulations were included for the evaluation. The Alkali-AMS cluster analysis indicated three major clusters: (1) biomass burning origin, (2) mixture of other combustion sources, and (3) marine origin. Low temperatures and low wind speed conditions correlated with high concentrations of K-containing particles, mainly owing to local and regional emissions from residential biomass combustion; transport of air masses from continental Europe also contribute to Cluster 1. The CTM results indicate that open biomass burning in the eastern parts of Europe may have contributed substantially to high PM2.5 concentrations (and to Cluster 1) during an episode in late March. According to the CTM results, the mixed cluster (2) is likely to include particles emitted from different source types and no single geographical source region seems to dominate for this cluster. The back trajectory analysis and meteorological conditions indicated that the marine origin cluster was correlated with westerly winds and high wind speed; this cluster had high concentrations of Na-containing particles, as expected for sea salt particles. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop