Next Article in Journal
Filovirus Neutralising Antibodies: Mechanisms of Action and Therapeutic Application
Next Article in Special Issue
Cytauxzoon sp. and Hepatozoon spp. in Domestic Cats: A Preliminary Study in North-Eastern Italy
Previous Article in Journal
Canine Morbillivirus from Colombian Lineage Exhibits In Silico and In Vitro Potential to Infect Human Cells
Previous Article in Special Issue
Potential Role of Hepatozoon canis in a Fatal Systemic Disease in a Puppy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Simultaneous Exposure to Angiostrongylus vasorum and Vector-Borne Pathogens in Dogs from Italy

1
Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
2
Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, 8057 Zurich, Switzerland
3
Department of Animal Medicine, Production and Health, University of Padua, 35020 Lengaro, Italy
4
Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
*
Author to whom correspondence should be addressed.
Submission received: 14 August 2021 / Revised: 5 September 2021 / Accepted: 14 September 2021 / Published: 15 September 2021
(This article belongs to the Special Issue Parasites of the Third Millennium)

Abstract

:
Several drivers have recently fostered the expansion of Angiostrongylus vasorum throughout Europe, where Vector-Borne Pathogens (VBPs) are also spreading. However, the level of simultaneous risk of infection is still unknown in canine populations. This study evaluated the simultaneous exposure to A. vasorum and major canine VBPs in dogs of Italy. Sera of 294 dogs were subjected to two ELISAs, detecting A. vasorum circulating antigens and antibodies against the parasite, and to the following assays: (i) SNAP® 4DX (IDEXX Laboratories Inc.) detecting Dirofilaria immitis antigens, and antibodies vs. Borrelia burgdorferi, Anaplasma spp. and Ehrlichia spp. and (ii) IFAT for the detection of antibodies vs. Leishmania infantum, Babesia canis and Rickettsia conorii. Twenty-two (7.5%, CI: 4.8–11.1%) and six (2%, CI: 0.7–4.4%) dogs scored positive for circulating A. vasorum antibodies and antigens, respectively. Seventeen dogs (5.8%, CI: 3.4–9.1%) were positive for A. vasorum antibodies + at least one VBP, three (1%, CI: 0.2–3%) for A. vasorum antigen + at least one VBP, while one dog (0.3%, CI: 0.01–1.88%) was positive for A. vasorum antigen + A. vasorum antibodies + B. canis antibodies. These results show that dogs living in different regions of Italy are at risk of simultaneous infections with both A. vasorum and VBPs. Despite the same scenario being likely in other countries of Europe, the current knowledge is scant. Therefore, further studies are warranted to amplify current epizootiological information and to understand whether control programs should be improved.

1. Introduction

Over the last decade, nematodes of the genus Angiostrongylus have changed their distribution in Europe, with the spread of Angiostrongylus vasorum in canids [1,2], and new or unexpected findings of other species like Angiostrongylus cantonensis, Angiostrongylus chabaudi and Angiostrongylus daskalovi in different animal hosts [3,4,5]. Among them, A. vasorum is now regarded as a primary parasite of dogs throughout European regions, e.g., Iberian Peninsula, Mediterranean Basin, and northern, central, and eastern Countries [6,7,8,9].
Vector-Borne Diseases (VBDs) are also expanding in many territories, where they are a threat to animal and human health [10,11,12,13,14]. Dogs are frequently at risk of VBDs caused by non-parasitic (e.g., bacteria, viruses) and parasitic (e.g., protozoa) Vector-Borne pathogens (VBPs) transmitted by ticks and flying insects [10,12,15,16]. In Europe, the most important and distributed tick-borne bacteria are Ehrlichia canis, Anaplasma platys, Anaplasma phagocitophylum, Rickettsia conorii and Borrelia spp. [17,18,19,20]. The nematode Dirofilaria immitis transmitted by mosquitoes, and the protozoans Leishmania infantum and Babesia spp. transmitted by sandflies and ticks, respectively, are the preeminent canine vector-borne parasites [21,22,23]. Many of these pathogens may also infect other animals, e.g., cats, and zoonotic VBPs shared by dogs and cats increase chances of interspecific transmission and of human infections [16,24,25,26,27,28,29].
Extrinsic and intrinsic drivers, e.g., global warming, travelling of pets with their owners, relocation and growth of human and animal population, and anthropization of wildlife habitats, may increase the distribution of pathogens transmitted by invertebrates and/or with an indirect biological cycle in both enzootic and free areas [15,29,30,31,32]. For instance, climate change has an impact on the spatial–temporal distribution of gastropod-borne nematodes and VBPs via its influence on the life cycle, survival, and reproduction rates of invertebrates and transmitted pathogens [33,34,35]. Increasing temperatures, changes in precipitations, greater climate variability, extreme weather events may favor the emergence of VBPs and of gastropod-borne nematodes in different ways. For instance, temperate areas becoming warmer are more suitable for vectors. This favors the introduction and establishment of new pathogens and vectors in previously free areas [33].
Wild animals serve as a source of infection for invertebrates and populations of domestic animals, especially if conurbation favors bridging infections [2,35,36].
In this scenario, many European regions present a suitable environment for the circulation and spread of diseases transmitted by invertebrates and overlapping factors spur the emergence of canine angiostrongylosis and VBDs [32,34,37,38,39]. Accordingly, Italy is a major epizootiological hub for angiostrongylosis and VBPs, which are now enzootic throughout the Country in both domestic and wild animals, and dogs may suffer from one or more of these diseases at the same time [25,39,40,41,42,43].
Angiostrongylus vasorum has been found in Italian territories where it was considered unexpected (e.g., Northern regions) and it may occur simultaneously with D. immitis even where the monthly use of macrocyclic lactones would be able to prevent both diseases [42,43,44,45,46]. A recent study has proven that canine populations living in different regions of Italy are exposed to the most important VBPs despite the use of preventative treatments [39]. These findings indicate that continuous surveillance on local epizootiological scenarios is necessary for a constant refinement of control programs. Accordingly, the present survey investigated the simultaneous exposure of privately owned dogs living in different regions of Italy to A. vasorum and major VBPs.

2. Results

2.1. Angiostrongylus vasorum

Of the 294 dogs examined, 27 dogs (9.2%, 95% Confidence Interval, CI: 6.1–13.1%) were exposed to A. vasorum, i.e., Ab or Ag of A. vasorum were detected in 22 (7.5%, CI: 4.8–11.1%) and 6 (2%, CI: 0.7–4.4%) dogs, respectively, while 1 dog was positive for both Ab and Ag. Four (1.4%, CI: 0.3–3.4%) and 2 (0.7%, CI: 0.08–2.4%) dogs were positive for A. vasorum Ab or Ag only, respectively, while the other 21 were simultaneously positive also for other VBPs (Table 1—see Section 2.2.). Seventeen (5.8%; CI: 3.4–9.1%) positive dogs were female, while 10 (3.4%, CI: 1.6–6.1%) were male. Four dogs (1.4%, CI: 0.3–3.4%) positive to A. vasorum Ab lived mostly indoors, while all the other 23 dogs (7.8%. CI: 5–11.5%) lived permanently outdoors. The median age of dogs that seroreacted for A. vasorum was 36 months.

2.2. Vector-Borne Pathogens

Regardless of the positivity to A. vasorum, 162 (55.1%, CI: 49.2–60.8%) dogs were seropositive for at least one VBP, while 40 (13.6%, CI: 9.9–18.1%) scored positive to two or more VBPs (Table 1). Ab vs. Rickettsia conorii were found in 136 dogs (46.3%, CI: 40.5–52.1%), while 25 (8.5%, CI: 5.6-12.3%) and 18 (6.1%, CI: 3.7–9.5%) dogs seroreacted for Babesia canis and L. infantum, respectively. Twenty-two (7.5%, CI: 4.8–11.1%) dogs were seropositive for Anaplasma spp., while 4 (1.4%, CI: 0.3–3.4%) and 1 (0.3%, CI: 0.01–1.88%) dogs had antibodies against B. burgdorferi and Ehrlichia spp. D. immitis antigens were detected in 5 (1.7%, CI: 0.6–3.9%) dogs. Positivity rates for VBPs for each macro-area are detailed in Table 1. Of the dogs positive to at least one VBP, 86 (29.3%, CI: 24.1–34.8%) dogs were female, while 81 (27.6%, CI: 22.5–33.0%) were male: 117 (39.8%, CI: 34.2–45.6%) lived outdoors, while 50 (17.0%, CI: 12.9–21.8%) lived indoors. The median age of dogs that tested positive for one or more VBPs was 54 months.

2.3. Simultaneous Exposure

Twenty-one (7.1%, CI: 4.5–10.7%) dogs tested simultaneously positive to both A. vasorum (Ag or Ab) and at least one VBP. Of them, 17 (5.8%, CI: 3.4–9.1%) were positive for A. vasorum Ab + at least one VBP, 3 (1%, CI: 0.2–3%) were positive for A. vasorum Ag + at least one VBP, while 1 dog (0.3%, CI: 0.01–1.88%) was positive for both A. vasorum Ag and Ab, and for B. canis Ab.
Detailed information on the different combinations of seropositivity to the tested pathogens are reported in Table 1 and Table 2, respectively.

3. Discussion

The present results show that dogs living in Italy can be simultaneously exposed to A. vasorum and several VBPs, with different positivity rates according to the investigated geographic areas.
Exposure to A. vasorum was herein found in all the studied macro-areas. Thus far, this metastrongyloid has been rarely recorded outside Central and Southern Italy, in particular seldom in Northern-Western territories [41]. Nevertheless, a relatively high proportion of dogs of the present study tested seropositive in Site A. This and other recent findings [42] indicate that A. vasorum has currently expanded its distribution range and confirm that also dogs living in North-Eastern regions of Italy are at risk of canine angiostrongylosis. A past study investigated the occurrence of A. vasorum in dogs from a small region (Liguria) of North-Western Italy, showing ~1 and ~3% positivity to Ag and AB, respectively [47]. The present data indicate that A. vasorum can occur in Northern Italy more frequently than previously recorded, although the nematode remains more distributed in Central Italy rather than in the North of the country [41]. This difference is likely due to the chemoprevention for D. immitis using macrocyclic lactones (i.e., milbemycin oxime and moxidectin) that are active also against A. vasorum, routinely performed in Northern Italy [44]. No positive dogs were detected in Giglio Island of Site B, most probably attributable to the absence of foxes, the natural reservoirs of A. vasorum, that are not present in minor Italian islands [48]. However, a future introduction of the parasite in such spots, e.g., via dogs travelling with their owners in touristic areas, is not unlikely, as metastrongyloids can perpetuate their lifecycle in absence of their natural wild reservoirs [49].
As in previous studies, the number of dogs with detectable A. vasorum Ab was here higher if compared to the number of dogs showing circulating Ag [8,47,50]. Many reasons can account for this discrepancy, e.g., the inclusion of dogs (i) sampled during prepatency when Ag is not detectable yet, (ii) after a natural clearance of the infection (iii) after antiparasitic treatment, based on longer persistence of Ab [51,52]. Moreover, individual variations in the production of Ab against A. vasorum (i.e., the production of antibodies may vary individually and some dogs can even remain antibody negative) may further reduce the number of detected positive dogs [53,54].
Dirofilaria immitis was here found in all study sites and most of the positive dogs lived in central regions, which are now regarded as stably enzootic. Seropositivity to L. infantum was detected in dogs living on the island of Giglio and in Umbria/Abruzzo/Marche, but not in Friuli Venezia Giulia region (i.e., Site B, the easternmost study site). The lack of positive dogs may not reflect a true absence in this latter region, as competent vectors are already established in this area [55]. The presented results and recent analysis [56] ultimately prove that, to date, all Italian regions should be considered potentially enzootic for D. immitis and L. infantum and corroborate the changing epizootiological scenario of dog dirofilariosis in Italy, following an expansion from Northern areas southwards [56,57]. Hence, worthy of note is the establishment of hyperendemic foci of dirofilariosis in the extreme South of Italy, and vice versa for leishmaniosis [58,59,60,61].
The seropositivity of the here studied dog populations to tick borne pathogens fits with past and most recent surveys carried out in Italy and confirm that dogs are exposed to a multitude of pathogens throughout the country [17,39,62,63] (Table 3). The level of exposure to given pathogens in each geographic area is in accordance with the biology of their vectors. For instance, R. conorii and Anaplasma spp. are transmitted by ticks (e.g., Rhipicephalus sanguineus and Ixodes ricinus) which are widespread and active throughout the year [64,65,66]. Conversely, the main vector of B. canis (Dermacentor spp.) is little distributed in northern territories and limited to a short season [65,67]. On the other hand, the positivity values in central and southern areas could be due to possible cross-reactions with other Babesia species, e.g., Babesia vogeli or others, transmitted by widely spread ticks like R. sanguineus [63,68,69]. Analogously, the occurrence of B. burgdorferi in northern Italy is explained by the wide distribution of its major vector I. ricinus in northern areas, with forested environments and suitable climate [65].
Worthy of note is the positivity to R. conorii, as dogs are reliable epidemiological sentinels for monitoring potential risk of human exposure to spotted fever group rickettsioses. Regardless of the potential of cross-reactions with other Rickettsia species, R. conorii is the most frequent affecting dogs in the Mediterranean basin, and the present data indicate a high exposure to infected tick arthropods, which act as vectors of these pathogens [63].
Knowledge on the simultaneous risk for angiostrongylosis and VBDs in dog populations of Europe is very poor, as studies have thus far been conducted only in a few countries, e.g., Portugal [37] and Bulgaria [70,71]. In the latter studies, cases of co-exposure /co-infection by A. vasorum and VBPs have not been found [37]. In Italy, a similar study was carried out a few years ago in kenneled dogs of central Italy, though limited to L. infantum, A. vasorum and Dirofilaria spp. (and other endoparasites) [106]. Unfortunately, a comparison with the number of dogs co-infected by VBPs and A. vasorum is not possible, as this information is not shown in ref. [106]. Further differences in the diagnostic methods and/or protocols, e.g., the use of Baermann test for A. vasorum vs. antigen detection by ELISA or rapid assay [52], of higher screening dilution for L. infantum and of a different commercial kit for D. immitis antigen detection, impair any comparison with the present results.
This study has confirmed once again the applicability of serological methods in large-numbers epizootiological studies and investigations on pet metastrongyloid angiostrongylids [47,50,51,132,133,134,135]. The usefulness of serology should be considered in planning future studies relying on standardized methods towards comparable results from different regions and settings.
Many European countries are enzootic for A. vasorum and VBPs (Table 3). Hence, the simultaneous exposure to these pathogens is a realistic threat even where this has not been verified by purposed studies, especially if one considers that these pathogens are spreading in both enzootic and previously free regions [35,36,136,137].
As the scenario of the distribution of canine parasites and VBDs is in continuous evolution, further large-scale studies are warranted for more comprehensive knowledge on the epizootiological risks in European territories, and to understand if and how the routine use of broad-spectrum endo-ectoparasiticides needs a refinement based on local settings. The use of ectoparasiticides and/or repellents is the most effective strategy to minimize the risk of diseases transmitted by arthropod vectors, while dog angiostrongylosis and dirofilariosis can be prevented by the monthly administration of macrocyclic lactones like milbemycin oxime and moxidectin [138,139,140,141]. Although cases of LOE/ML-resistant strain of heartworm are known to occur in North America, this is not the case in Europe [142,143]. Several broad-spectrum formulations are available on the market to protect dogs and those containing an isoxazoline and either or milbemycin oxime or moxidectin may be used for the prevention of ticks, D. immitis and A. vasorum infections. Although isoxazolines do not have a repellent activity, their fast onset of action has the potential to reduce the risk of disease transmission of tick-borne pathogens that are not immediately transmitted to the host, such as Babesia or Borrelia [144]. Repellents (e.g., synthetic pyrethroids) have a fast onset of action on many insects and ticks, and they are also irritant or repulsive for many ectoparasites [144,145]. Their use is thus particularly important for the prevention of L. infantum [146,147] and of pathogens that are passed within a few hours or immediately after the tick’s bite [148]. In fact, in recent years, the use of systemic isoxazolines to reduce the transmission of leishmaniosis or human VBDs has been evaluated [149,150,151]. Further studies in this field are still necessary and, to date, the combination of repellency and parasiticidal activity is still the best approach to prevent pathogen transmission by arthropods. Therefore, an adequate preventative measure should be put in place on a case-by-case basis considering the lifestyle of the dog, the geographical distribution of vectors and of the related transmitted diseases.
In conclusion, canine populations of Italy and in parts of other European countries are at factual risk of angiostrongylosis and VBDs at the same time. A standardization of the diagnostic techniques used in future epizootiological surveys is here advocated, along with the establishment of international monitoring tools with real-time mapping of positive animals in determined areas, e.g., as available in the USA via the CAPC (capcvet.org).

4. Materials and Methods

Overall, 294 privately owned dogs from North-Eastern (Friuli Venezia-Giulia and Veneto = site A), Central-Western (Giglio Island of Tuscany, Latium = Site B) and Central-Eastern (Umbria, Abruzzo, Marche = Site C) Italy were enrolled in the study, i.e., 67, 82 and 145 in each site, respectively. All the dogs were apparently healthy at the clinical examination. Overall, 150 dogs were female, 144 were male and the median age was 48 months. Of the 294 dogs included, 187 lived permanently outdoors, while 107 lived mostly indoors.
Dogs were enrolled during routine medical checks by local veterinarians and all dog owners signed a written consent form before sampling. All sera samples were subjected to two ELISAs detecting A. vasorum circulating antigen (Ag) (Sensitivity 95.7%, Specificity 94.0%) and specific antibodies (Ab) (Sensitivity 81.0%, Specificity 98.8%) against the parasite [54,152]. The optical density (OD) threshold was determined for both Ag (A405 nm = 0.153) and Ab test (A405 nm = 0.266) using the mean OD value plus three standard deviations of 291 (Ag) and 244 (Ab) samples. All dogs were tested also for VBPs using (i) SNAP® 4DX (IDEXX Laboratories, Inc., Westbrook, ME, USA) detecting D. immitis Ag (Sensitivity 99%, Specificity 99.3%) and Ab vs. B. burgdorferi (Sensitivity 94.1%, Specificity 96.2%), Anaplasma spp. (Sensitivity 90.3%, Specificity 94.3%) and Ehrlichia spp. (Sensitivity 97.1%, Specificity 95.3%) and (ii) IFAT for Ab vs. L. infantum (MegaFLUO Leish-Megacor Diagnostik GmbH) (Sensitivity 96.9%, Specificity 98.7%), B. canis (MegaFLUO BABESIA canis-Megacor Diagnostik GmbH) and R. conorii (MegaFLUO RICKETTSIA conorii-Megacor Diagnostik GmbH) using screening dilutions of 1:100, 1:160 and 1:64, respectively.

Author Contributions

S.M. primarily participated in the field activities and, with D.T., coordinated laboratory procedures. F.G. participated in all laboratory activities and was primarily involved in the data analysis. M.C., G.S. (Giulia Sarrocco), C.N., A.D.C., A.F.d.R., G.S. (Giulia Simonato) and F.V., were involved in sample collection, data interpretation and article revision. I.R. participated in the local sampling in various study areas. M.S. and A.D.C., coordinated and supervised the whole study. S.M., D.T. and M.C. drafted the article and finalized the submitted manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Ethical review and approval were waived for this study, as dogs were sampled in the framework of their routine medical checks coordinated by local veterinarians. In addition, according to local laws and regulations, a consent form signed by each single dog owner or those legally responsible.

Informed Consent Statement

Informed consent was obtained from all dog owners involved in the study.

Data Availability Statement

All study data are presented in the article.

Acknowledgments

The authors are grateful to Giulia Morganti, Marika Grillini, Laura Grassi, Elena Vidorin, Raffaella Iorio, Matilde Gallo, Domitilla De Cristofaro, for their support in the field and laboratory activities.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Elsheikha, H.M.; Holmes, S.A.; Wright, I.; Morgan, E.R.; Lacher, D.W. Recent advances in the epidemiology, clinical and diagnostic features, and control of canine cardio-pulmonary angiostrongylosis. Vet. Res. 2014, 45, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Gillis-Germitsch, N.; Tritten, L.; Hegglin, D.; Deplazes, P.; Schnyder, M. Conquering Switzerland: The emergence of Angiostrongylus vasorum in foxes over three decades and its rapid regional increase in prevalence contrast with the stable occurrence of lungworms. Parasitology 2020, 147, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
  3. Gherman, C.M.; Deak, G.; Matei, I.A.; Ionică, A.M.; D’Amico, G.; Taulescu, M.; Barbu-Tudoran, L.; Sarmaşi, A.; Mihalca, A.D.; Cozma, V. A rare cardiopulmonary parasite of the European badger, Meles meles: First description of the larvae, ultrastructure, pathological changes and molecular identification of Angiostrongylus daskalovi Janchev & Genov 1988. Parasites Vectors 2016, 9, 423. [Google Scholar]
  4. Paredes-Esquivel, C.; Sola, J.; Delgado-Serra, S.; Puig Riera, M.; Negre, N.; Miranda, M.Á.; Jurado-Rivera, J.A. Angiostrongylus cantonensis in North African hedgehogs as vertebrate hosts, Mallorca, Spain, October 2018. EuroSurveillance 2019, 24, 1900489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Di Cesare, A.; Morelli, S.; Colombo, M.; Simonato, G.; Veronesi, F.; Marcer, F.; Diakou, A.; D’Angelosante, R.; Pantchev, N.; Psaralexi, E.; et al. Is Angiostrongylosis a Realistic Threat for Domestic Cats? Front. Vet. Sci. 2020, 7, 195. [Google Scholar] [CrossRef]
  6. Alho, A.M.; Schnyder, M.; Schaper, R.; Meireles, J.; Belo, S.; Deplazes, P.; de Carvalho, L.M. Seroprevalence of circulating Angiostrongylus vasorum antigen and parasite-specific antibodies in dogs from Portugal. Parasitol. Res. 2016, 115, 2567–2572. [Google Scholar] [CrossRef] [Green Version]
  7. Grandi, G.; Lind, E.O.; Schaper, R.; Ågren, E.; Schnyder, M. Canine angiostrongylosis in Sweden: A nationwide seroepidemiological survey by enzyme-linked immunosorbent assays and a summary of five-year diagnostic activity (2011–2015). Acta Vet. Scand. 2017, 59, 85. [Google Scholar] [CrossRef] [Green Version]
  8. Deak, G.; Gillis-Germitsch, N.; Ionică, A.M.; Mara, A.; Păstrav, I.R.; Cazan, C.D.; Ioniță, M.; Mitrea, I.L.; Răileanu, C.; Bărburaș, D.; et al. The first seroepidemiological survey for Angiostrongylus vasorum in domestic dogs from Romania. Parasites Vectors 2019, 12, 224. [Google Scholar] [CrossRef]
  9. Tachmazidou, A.; Papaioannou, N.; Diakou, A.; Savvas, I.; Patsikas, M.; Stylianaki, I.; Morelli, S.; Di Cesare, A.; Mylonakis, M.E. First report of fatal autochthonous angiostrongylosis in a dog in Greece. Vet. Parasitol. Reg. Stud. Rep. 2021, 23, 100519. [Google Scholar]
  10. Simón, F.; Siles-Lucas, M.; Morchón, R.; González-Miguel, J.; Mellado, I.; Carretón, E.; Montoya-Alonso, J.A. Human and animal dirofilariasis: The emergence of a zoonotic mosaic. Clin. Microbiol. Rev. 2012, 25, 507–544. [Google Scholar] [CrossRef] [Green Version]
  11. Gharbi, M.; Mhadhbi, M.; Rejeb, A.; Jaouadi, K.; Rouatbi, M.; Darghouth, M.A. Leishmaniosis (Leishmania infantum infection) in dogs. Rev. Sci. Tech. Off. Int. Epiz. 2015, 342, 613–626. [Google Scholar] [CrossRef]
  12. Solano-Gallego, L.; Sainz, Á.; Roura, X.; Estrada-Peña, A.; Miró, G. A review of canine babesiosis: The European perspective. Parasites Vectors 2016, 9, 336. [Google Scholar] [CrossRef] [Green Version]
  13. Barash, N.R.; Thomas, B.; Birkenheuer, A.J.; Breitschwerdt, E.B.; Lemler, E.; Qurollo, B.A. Prevalence of Babesia spp. and clinical characteristics of Babesia vulpes infections in North American dogs. J. Vet. Intern. Med. 2019, 33, 2075–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Guo, W.P.; Xie, G.C.; Li, D.; Su, M.; Jian, R.; Du, L.Y. Molecular detection and genetic characteristics of Babesia gibsoni in dogs in Shaanxi Province, China. Parasites Vectors 2020, 13, 366. [Google Scholar] [CrossRef] [PubMed]
  15. Beugnet, F.; Marié, J.L. Emerging arthropod-borne diseases of companion animals in Europe. Vet. Parasitol. 2009, 163, 298–305. [Google Scholar] [CrossRef] [PubMed]
  16. Otranto, D.; Dantas-Torres, F.; Breitschwerdt, E.B. Managing canine vector-borne diseases of zoonotic concern: Part one. Trends Parasitol. 2009, 25, 157–163. [Google Scholar] [CrossRef] [PubMed]
  17. Sainz, Á.; Roura, X.; Miró, G.; Estrada-Peña, A.; Kohn, B.; Harrus, S.; Solano-Gallego, L. Guideline for veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe. Parasites Vectors 2015, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Diakou, A.; Di Cesare, A.; Morelli, S.; Colombo, M.; Halos, L.; Simonato, G.; Tamvakis, A.; Beugnet, F.; Paoletti, B.; Traversa, D. Endoparasites and vector-borne pathogens in dogs from Greek islands: Pathogen distribution and zoonotic implications. PLoS Negl. Trop. Dis. 2019, 13, e0007003. [Google Scholar] [CrossRef] [Green Version]
  19. Springer, A.; Glass, A.; Topp, A.K.; Strube, C. Zoonotic Tick-Borne Pathogens in Temperate and Cold Regions of Europe—A Review on the Prevalence in Domestic Animals. Front. Vet. Sci. 2020, 7, 604910. [Google Scholar] [CrossRef] [PubMed]
  20. Mrljak, V.; Kuleš, J.; Mihaljević, Ž.; Torti, M.; Gotić, J.; Crnogaj, M.; Živičnjak, T.; Mayer, I.; Šmit, I.; Bhide, M.; et al. Prevalence and Geographic Distribution of Vector-Borne Pathogens in Apparently Healthy Dogs in Croatia. Vector-Borne Zoonotic Dis. 2017, 17, 398–408. [Google Scholar] [CrossRef] [PubMed]
  21. McCall, J.W.; Genchi, C.; Kramer, L.H.; Guerrero, J.; Venco, L. Heartworm disease in animals and humans. Adv. Parasitol. 2008, 66, 193–285. [Google Scholar] [PubMed]
  22. Paltrinieri, S.; Solano-Gallego, L.; Fondati, A.; Lubas, G.; Gradoni, L.; Castagnaro, M.; Crotti, A.; Maroli, M.; Oliva, G.; Roura, X.; et al. Guidelines for diagnosis and clinical classification of leishmaniasis in dogs. J. Am. Vet. Med. Assoc. 2010, 236, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
  23. Strobl, A.; Künzel, F.; Tichy, A.; Leschnik, M. Complications and risk factors regarding the outcomes of canine babesiosis in Central Europe—A retrospective analysis of 240 cases. Acta Vet. Hung. 2020, 68, 160–168. [Google Scholar] [CrossRef] [PubMed]
  24. Diakou, A.; Di Cesare, A.; Accettura, P.M.; Barros, L.; Iorio, R.; Paoletti, B.; Frangipane di Regalbono, A.; Halos, L.; Beugnet, F.; Traversa, D. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece. PLoS Negl. Trop. Dis. 2017, 11, e0005335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Morelli, S.; Crisi, P.E.; Di Cesare, A.; De Santis, F.; Barlaam, A.; Santoprete, G.; Parrinello, C.; Palermo, S.; Mancini, P.; Traversa, D. Exposure of client-owned cats to zoonotic vector-borne pathogens: Clinic-pathological alterations and infection risk analysis. Comp. Immunol. Microbiol. Infect. Dis. 2019, 66, 101344. [Google Scholar] [CrossRef]
  26. Morelli, S.; Colombo, M.; Dimzas, D.; Barlaam, A.; Traversa, D.; Di Cesare, A.; Russi, I.; Spoletini, R.; Paoletti, B.; Diakou, A. Leishmania infantum seroprevalence in cats from touristic areas of Italy and Greece. Front. Vet. Sci. 2020, 7, 616566. [Google Scholar] [CrossRef]
  27. Neves, M.; Lopes, A.P.; Martins, C.; Fino, R.; Paixão, C.; Damil, L.; Lima, C.; Alho, A.M.; Schallig, H.D.F.H.; Dubey, J.P.; et al. Survey of Dirofilaria immitis antigen and antibodies to Leishmania infantum and Toxoplasma gondii in cats from Madeira Island, Portugal. Parasites Vectors 2020, 13, 117. [Google Scholar] [CrossRef] [Green Version]
  28. Lappin, M.R.; Tasker, S.; Roura, X. Role of vector-borne pathogens in the development of fever in cats: 2. Tick- and sandfly-associated diseases. J. Feline Med. Surg. 2020, 22, 41–48. [Google Scholar] [CrossRef]
  29. Cardoso, L.; Schallig, H.; Persichetti, M.F.; Pennisi, M.G. New epidemiological aspects of animal leishmaniosis in Europe: The role of vertebrate hosts other than dogs. Pathogens 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
  30. Otranto, D.; Deplazes, P. Zoonotic nematodes of wild carnivores. Int. J. Parasitol. Parasites Wildl. 2019, 9, 370–383. [Google Scholar] [CrossRef] [PubMed]
  31. Wright, I.; Jongejan, F.; Marcondes, M.; Peregrine, A.; Baneth, G.; Bourdeau, P.; Bowman, D.D.; Breitschwerdt, E.B.; Capelli, G.; Cardoso, L.; et al. Parasites and vector-borne diseases disseminated by rehomed dogs. Parasites Vectors 2020, 13, 546. [Google Scholar] [CrossRef]
  32. Beugnet, F.; Chalvet-Monfray, K. Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 559–566. [Google Scholar] [CrossRef] [Green Version]
  33. Ogden, N.H.; Lindsay, L.R. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks are different. Trends Parasitol. 2016, 32, 646–656. [Google Scholar] [CrossRef] [PubMed]
  34. Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Otranto, D.; Cantacessi, C.; Pfeffer, M.; Dantas-Torres, F.; Brianti, E.; Deplazes, P.; Genchi, C.; Guberti, V.; Capelli, G. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part I: Protozoa and tick-borne agents. Vet. Parasitol. 2015, 213, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Otranto, D.; Cantacessi, C.; Dantas-Torres, F.; Brianti, E.; Pfeffer, M.; Genchi, C.; Guberti, V.; Capelli, G.; Deplazes, P. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part II: Helminths and arthropods. Vet. Parasitol. 2015, 213, 24–37. [Google Scholar] [CrossRef] [Green Version]
  37. Maia, C.; Coimbra, M.; Ramos, C.; Cristovão, J.M.; Cardoso, L.; Campino, L. Serological investigation of Leishmania infantum, Dirofilaria immitis and Angiostrongylus vasorum in dogs from southern Portugal. Parasites Vectors 2015, 8, 152. [Google Scholar] [CrossRef] [Green Version]
  38. Alho, A.M.; Pita, J.; Amaro, A.; Amaro, F.; Schnyder, M.; Grimm, F.; Custódio, A.C.; Cardoso, L.; Deplazes, P.; de Carvalho, L.M. Seroprevalence of vector-borne pathogens and molecular detection of Borrelia afzelii in military dogs from Portugal. Parasites Vectors 2016, 9, 225. [Google Scholar] [CrossRef] [Green Version]
  39. Colombo, M.; Morelli, S.; Simonato, G.; Di Cesare, A.; Veronesi, F.; Frangipane di Regalbono, A.; Grassi, L.; Russi, I.; Tiscar, P.G. Exposure to major vector-borne diseases in dogs subjected to different preventative regimens in endemic areas of Italy. Pathogens 2021, 10, 507. [Google Scholar] [CrossRef]
  40. Gizzarelli, M.; Foglia Manzillo, V.; Ciuca, L.; Moroglione, M.E.; El Houda Ben Fayala, N.; Cringoli, G.; Oliva, G.; Rinaldi, L.; Maurelli, M.P. Simultaneous detection of parasitic vector borne diseases: A robust cross-sectional survey in hunting, stray and sheep dogs in a Mediterranean area. Front. Vet. Sci. 2019, 6, 288. [Google Scholar] [CrossRef] [Green Version]
  41. Traversa, D.; Morelli, S.; Cassini, R.; Crisi, P.E.; Russi, I.; Grillotti, E.; Manzocchi, S.; Simonato, G.; Beraldo, P.; Viglietti, A.; et al. Occurrence of canine and feline extra-intestinal nematodes in key endemic regions of Italy. Acta Trop. 2019, 193, 227–235. [Google Scholar] [CrossRef]
  42. De Zan, G.; Citterio, C.V.; Danesi, P.; Gaspardis, G.; Gabassi, E.; Panciera, L.; Zanardello, C.; Binato, G.; Cocchi, M. Angiostrongylosis in northeastern Italy: First report of two autochthonous fatal cases in dogs and first detection in a wild red fox. Vet. Parasitol. Reg. Stud. Rep. 2021, 23, 100505. [Google Scholar]
  43. Magi, M.; Guardone, L.; Dell’omodarme, M.; Prati, M.; Mignone, W.; Torracca, B.; Monni, G.; Macchioni, F. Angiostrongylus vasorum in red foxes (Vulpes vulpes) and badgers (Meles meles) from Central and Northern Italy. Hystrix Ital. J. Mammal. 2010, 21. [Google Scholar] [CrossRef]
  44. Di Cesare, A.; Traversa, D. Canine angiostrongylosis: Recent advances in diagnosis, prevention, and treatment. Vet. Med. 2014, 5, 181–192. [Google Scholar]
  45. Del Prete, L.; Maurelli, M.P.; Pennacchio, S.; Bosco, A.; Musella, V.; Ciuca, L.; Cringoli, G.; Rinaldi, L. Dirofilaria immitis and Angiostrongylus vasorum: The contemporaneous detection in kennels. BMC Vet. Res. 2015, 11, 305. [Google Scholar] [CrossRef] [Green Version]
  46. Olivieri, E.; Zanzani, S.A.; Gazzonis, A.L.; Giudice, C.; Brambilla, P.; Alberti, I.; Romussi, S.; Lombardo, R.; Mortellaro, C.M.; Banco, B.; et al. Angiostrongylus vasorum infection in dogs from a cardiopulmonary dirofilariosis endemic area of Northwestern Italy: A case study and a retrospective data analysis. BMC Vet. Res. 2017, 13, 165. [Google Scholar] [CrossRef] [Green Version]
  47. Guardone, L.; Schnyder, M.; Macchioni, F.; Deplazes, P.; Magi, M. Serological detection of circulating Angiostrongylus vasorum antigen and specific antibodies in dogs from central and northern Italy. Vet. Parasitol. 2013, 192, 192–198. [Google Scholar] [CrossRef]
  48. Boitani, L.; Lovari, S.; Vigna Taglianti, A. Fauna d’Italia, Mammalia III: Carnivora—Artiodactyla; Calderini: Bologna, Italy, 2003. [Google Scholar]
  49. Traversa, D.; Morelli, S.; Di Cesare, A.; Diakou, A. Felid cardiopulmonary nematodes: Dilemmas solved and new questions posed. Pathogens 2021, 10, 30. [Google Scholar] [CrossRef]
  50. Miterpáková, M.; Schnyder, M.; Schaper, R.; Hurníková, Z.; Cabanova, V. Serological survey for canine angiostrongylosis in Slovakia. Helminthologia 2015, 52, 205–210. [Google Scholar] [CrossRef]
  51. Schnyder, M.; Stebler, K.; Naucke, T.J.; Lorentz, S.; Deplazes, P. Evaluation of a rapid device for serological in-clinic diagnosis of canine angiostrongylosis. Parasites Vectors 2014, 7, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Schnyder, M.; Jefferies, R.; Schucan, A.; Morgan, E.R.; Deplazes, P. Comparison of coprological, immunological and molecular methods for the detection of dogs infected with Angiostrongylus vasorum before and after anthelmintic treatment. Parasitology 2015, 142, 1270–1277. [Google Scholar] [CrossRef]
  53. Cury, M.C.; Lima, W.S.; Vitor, R.W.A. Enzyme-Linked Immunosorbent Assay (ELISA) for the diagnosis of Angiostrongylus vasorum (Baillet, 1866) infection in dogs. Rev. Méd. Vét. 1996, 147, 525–530. [Google Scholar]
  54. Schucan, A.; Schnyder, M.; Tanner, I.; Barutzki, D.; Traversa, D.; Deplazes, P. Detection of specific antibodies in dogs infected with Angiostrongylus vasorum. Vet. Parasitol. 2012, 185, 216–224. [Google Scholar] [CrossRef] [Green Version]
  55. Signorini, M.; Cassini, R.; Drigo, M.; Frangipane di Regalbono, A.; Pietrobelli, M.; Montarsi, F.; Stensgaard, A.S. Ecological niche model of Phlebotomus perniciosus, the main vector of canine leishmaniasis in north-eastern Italy. Geospat. Health 2014, 9, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Mendoza-Roldan, J.; Benelli, G.; Panarese, R.; Iatta, R.; Furlanello, T.; Beugnet, F.; Zatelli, A.; Otranto, D. Leishmania infantum and Dirofilaria immitis infections in Italy, 2009–2019: Changing distribution patterns. Parasites Vectors 2020, 13, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  57. De Massis, F.; Ippoliti, C.; Simona, I.; Tittarelli, M.; Pelini, S.; Giansante, D.; Ciarrocchi, A. Canine leishmaniasis: Serological results in private and kennel dogs tested over a six-year period (2009–2014) in Abruzzo and Molise regions, Italy. Microorganisms 2020, 8, 1915. [Google Scholar] [CrossRef] [PubMed]
  58. Biglino, A.; Bolla, C.; Concialdi, E.; Trisciuoglio, A.; Romano, A.; Ferroglio, E. Asymptomatic Leishmania infantum infection in an area of northwestern Italy (Piedmont region) where such infections are traditionally nonendemic. J. Clin. Microbiol. 2010, 48, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  59. Cassini, R.; Signorini, M.; Frangipane di Regalbono, A.; Natale, A.; Montarsi, F.; Zanaica, M.; Brichese, M.; Simonato, G.; Borgato, S.; Babiker, A.; et al. Preliminary study of the effects of preventive measures on the prevalence of canine leishmaniosis in a recently established focus in northern Italy. Vet. Ital. 2013, 49, 157–161. [Google Scholar]
  60. Brianti, E.; Panarese, R.; Napoli, E.; De Benedetto, G.; Gaglio, G.; Bezerra-Santos, M.A.; Mendoza-Roldan, J.A.; Otranto, D. Dirofilaria immitis infection in the Pelagie archipelago: The southernmost hyperendemic focus in Europe. Transbound Emerg. Dis. 2021. [Google Scholar] [CrossRef]
  61. Gradoni, L.; Ferroglio, E.; Zanet, S.; Mignone, W.; Venco, L.; Bongiorno, G.; Fiorentino, E.; Cassini, R.; Grillini, M.; Simonato, G.; et al. Monitoring and detection of new endemic foci of canine leishmaniosis in northern continental Italy: An update from a study involving five regions (2018–2019). In Proceedings of the XXXIII Conference of the Italian Society of Parasitology/2021 ESDA EVENT, Teramo, Italy, 16–19 June 2021. [Google Scholar]
  62. Olivieri, E.; Zanzani, S.A.; Latrofa, M.S.; Lia, R.P.; Dantas-Torres, F.; Otranto, D.; Manfredi, M.T. The southernmost foci of Dermacentor reticulatus in Italy and associated Babesia canis infection in dogs. Parasites Vectors 2016, 9, 213. [Google Scholar] [CrossRef] [Green Version]
  63. Traversa, D.; Di Cesare, A.; Simonato, G.; Cassini, R.; Merola, C.; Diakou, A.; Halos, L.; Beugnet, F.; Frangipane di Regalbono, A. Zoonotic intestinal parasites and vector-borne pathogens in Italian shelter and kennel dogs. Comp. Immunol. Microbiol. Infect. Dis. 2017, 51, 69–75. [Google Scholar] [CrossRef]
  64. Socolovschi, C.; Gaudart, J.; Bitam, I.; Huynh, T.P.; Raoult, D.; Parola, P. Why are there so few Rickettsia conorii-infected Rhipicephalus sanguineus ticks in the wild? PLoS Negl. Trop. Dis. 2012, 6, e1697. [Google Scholar] [CrossRef]
  65. Maurelli, M.P.; Pepe, P.; Colombo, L.; Armstrong, R.; Battisti, E.; Morgoglione, M.E.; Counturis, D.; Rinaldi, L.; Cringoli, G.; Ferroglio, E.; et al. A national survey of Ixodidae ticks on privately owned dogs in Italy. Parasites Vectors 2018, 11, 420. [Google Scholar] [CrossRef] [Green Version]
  66. Snellgrove, A.N.; Krapiunaya, I.; Ford, S.L.; Stanley, H.M.; Wickson, A.G.; Hartzer, K.L.; Levin, M.L. Vector competence of Rhipicephalus sanguineus sensu stricto for Anaplasma platys. Ticks Tick-Borne Dis. 2020, 11, 101517. [Google Scholar] [CrossRef]
  67. Rubel, F.; Brugger, K.; Pfeffer, M.; Chitimia-Dobler, L.; Didyk, Y.M.; Leverenz, S.; Dautel, H.; Kahl, O. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick-Borne Dis. 2016, 7, 224–233. [Google Scholar] [CrossRef] [Green Version]
  68. Yamane, I.; Thomford, J.W.; Gardner, I.A.; Dubey, J.P.; Levy, M.; Conrad, P.A. Evaluation of the indirect fluorescent antibody test for diagnosis of Babesia gibsoni infections in dogs. Am. J. Vet. Res. 1993, 54, 1579–1584. [Google Scholar]
  69. Solano-Gallego, L.; Trotta, M.; Carli, E.; Carcy, B.; Caldin, M.; Furlanello, T. Babesia canis canis and Babesia canis vogeli clinicopathological findings and DNA detection by means of PCR-RFLP in blood from Italian dogs suspected of tick-borne disease. Vet. Parasitol. 2008, 157, 211–221. [Google Scholar] [CrossRef] [PubMed]
  70. Pantchev, N.; Schnyder, M.; Vrhovec, M.G.; Schaper, R.; Tsachev, I. Current surveys of the seroprevalence of Borrelia burgdorferi, Ehrlichia canis, Anaplasma phagocytophilum, Leishmania infantum, Babesia canis, Angiostrongylus vasorum and Dirofilaria immitis in Dogs in Bulgaria. Parasitol. Res. 2015, 1, S117–S130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  71. Iliev, P.T.; Kirkova, Z.T.; Tonev, A.S. Preliminary study on the prevalence of endoparasite infections and vector-borne diseases in outdoor dogs in Bulgaria. Helminthologia 2020, 57, 171–178. [Google Scholar] [CrossRef] [PubMed]
  72. Manev, I. Serological survey of vector-borne pathogens in stray dogs from Sofia area, Bulgaria. Vet. Parasitol. Reg. Stud. Rep. 2020, 21, 100441. [Google Scholar]
  73. Pejchalová, K.; Zákovská, A.; Fucík, K.; Schánilec, P. Serological confirmation of Borrelia burgdorferi infection in dogs in the Czech Republic. Vet. Res. Commun. 2006, 30, 231–238. [Google Scholar] [CrossRef]
  74. Kybicová, K.; Schánilec, P.; Hulínská, D.; Uherková, L.; Kurzová, Z.; Spejchalová, S. Detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs in the Czech Republic. Vector Borne Zoonotic Dis. 2009, 9, 655–661. [Google Scholar] [CrossRef] [Green Version]
  75. Hajnalová, M.; Svobodová, V.; Schnyder, M.; Schaper, R.; Svoboda, M. Faecal detection of the lungworms Crenosoma vulpis and Angiostrongylus vasorum and serological detection of A. vasorum in dogs from the Czech Republic. Acta Vet. Brno 2017, 86, 393–398. [Google Scholar] [CrossRef] [Green Version]
  76. Al-Sabi, M.N.S.; Deplazes, P.; Webster, P.; Willesen, J.L.; Davidson, R.K.; Kapel, C.M.O. PCR detection of Angiostrongylus vasorum in faecal samples of dogs and foxes. Parasitol. Res. 2010, 107, 135–140. [Google Scholar] [CrossRef] [Green Version]
  77. Pérez Vera, C.; Kapiainen, S.; Junnikkala, S.; Aaltonen, K.; Spillmann, T.; Vapalahti, O. Survey of selected tick-borne diseases in dogs in Finland. Parasites Vectors 2014, 7, 285. [Google Scholar] [CrossRef] [Green Version]
  78. Tiškina, V.; Lindqvist, E.L.; Blomqvist, A.C.; Orav, M.; Stensvold, C.R.; Jokelainen, P. Autochthonous Angiostrongylus vasorum in Finland. Vet. Rec. Open 2019, 6, e000314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  79. Pantchev, N.; Schaper, R.; Limousin, S.; Norden, N.; Weise, M.; Lorentzen, L. Occurrence of Dirofilaria immitis and tick-borne infections caused by Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and Ehrlichia canis in domestic dogs in France: Results of a countrywide serologic survey. Parasitol. Res. 2009, 1, S101–S114. [Google Scholar] [CrossRef] [PubMed]
  80. Schnyder, M.; Bilbrough, G.; Hafner, C.; Schaper, R. Angiostrongylus vasorum, “The French Heartworm”: A serological survey in dogs from France introduced by a brief historical review. Parasitol. Res. 2017, 116, 31–40. [Google Scholar] [CrossRef] [Green Version]
  81. Pantchev, N.; Norden, N.; Lorentzen, L.; Rossi, M.; Rossi, U.; Brand, B.; Dyachenko, V. Current surveys on the prevalence and distribution of Dirofilaria spp. in dogs in Germany. Parasitol. Res. 2009, 1, S63–S74. [Google Scholar] [CrossRef]
  82. Barutzki, D.; Schaper, R. Natural infections of Angiostrongylus vasorum and Crenosoma vulpis in dogs in Germany (2007–2009). Parasitol. Res. 2009, 1, S39–S48. [Google Scholar] [CrossRef] [PubMed]
  83. Barutzki, D.; Schaper, R. Results of parasitological examinations of faecal samples from cats and dogs in Germany between 2003 and 2010. Parasitol. Res. 2011, 1, S45–S60. [Google Scholar] [CrossRef] [Green Version]
  84. Schulz, B.S.; Seybold, N.; Sauter-Louis, C.; Hartmann, K. Prevalence of Angiostrongylus vasorum and Crenosoma vulpis in dogs in Bavaria. Berl. Münch. Tierärztl. Wochenschr. 2013, 126, 62–68. [Google Scholar]
  85. Liesner, J.M.; Krücken, J.; Schaper, R.; Pachnicke, S.; Kohn, B.; Müller, E.; Schulze, C.; von Samson-Himmelstjerna, G. Vector-borne pathogens in dogs and red foxes from the federal state of Brandenburg, Germany. Vet. Parasitol. 2016, 224, 44–51. [Google Scholar] [CrossRef]
  86. Vrhovec, M.G.; Pantchev, N.; Failing, K.; Bauer, C.; Travers-Martin, N.; Zahner, H. Retrospective analysis of canine vector-borne diseases (CVBD) in germany with emphasis on the endemicity and risk factors of Leishmaniosis. Parasitol. Res. 2017, 116, 131–144. [Google Scholar] [CrossRef] [Green Version]
  87. Schäfer, I.; Volkmann, M.; Beelitz, P.; Merle, R.; Müller, E.; Kohn, B. Retrospective analysis of vector-borne infections in dogs after travelling to endemic areas (2007–2018). Vet. Parasitol. X 2019, 2, 100015. [Google Scholar] [CrossRef] [PubMed]
  88. Papazahariadou, M.; Founta, A.; Papadopoulos, E.; Chliounakis, S.; Antoniadou-Sotiriadou, K.; Theodorides, Y. Gastrointestinal parasites of shepherd and hunting dogs in the Serres Prefecture, Northern Greece. Vet. Parasitol. 2007, 148, 170–173. [Google Scholar] [CrossRef] [PubMed]
  89. Angelou, A.; Gelasakis, A.I.; Verde, N.; Pantchev, N.; Schaper, R.; Chandrashekar, R.; Papadopoulos, E. Prevalence and risk factors for selected canine vector-borne diseases in Greece. Parasites Vectors 2019, 12, 283. [Google Scholar] [CrossRef] [PubMed]
  90. Angelou, A.; Gelasakis, A.I.; Schnyder, M.; Schaper, R.; Papadopoulos, E. The “French heartworm” in Greece: A countrywide serological survey of Angiostrongylus vasorum infection by combined detection of circulating antigens and specific antibodies. Vet. Parasitol. Reg. Stud. Rep. 2020, 19, 100376. [Google Scholar] [CrossRef] [PubMed]
  91. Hofmann, M.; Hodžić, A.; Pouliou, N.; Joachim, A. Vector-borne pathogens affecting shelter dogs in eastern Crete, Greece. Parasitol. Res. 2019, 118, 1661–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Kostopoulou, D.; Gizzarelli, M.; Ligda, P.; Foglia Manzillo, V.; Saratsi, K.; Montagnaro, S.; Shunack, B.; Boegel, A.; Pollmeier, A.; Oliva, G.; et al. Mapping the canine vector-borne disease risk in a Mediterranean area. Parasites Vectors 2020, 13, 282. [Google Scholar] [CrossRef] [PubMed]
  93. Hamel, D.; Silaghi, C.; Lescai, D.; Pfister, K. Epidemiological aspects on vector-borne infections in stray and pet dogs from Romania and Hungary with focus on Babesia spp. Parasitol. Res. 2012, 110, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
  94. Farkas, R.; Gyurkovszky, M.; Lukács, Z.; Aladics, B.; Solymosi, N. Seroprevalence of some vector-borne infections of dogs in Hungary. Vector Borne Zoonotic Dis. 2014, 14, 256–260. [Google Scholar] [CrossRef] [PubMed]
  95. Schnyder, M.; Schaper, R.; Lukács, Z.; Hornok, S.; Farkas, R. Combined serological detection of circulating Angiostrongylus vasorum antigen and parasite-specific antibodies in dogs from Hungary. Parasitol. Res. 2015, 114, S145–S154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Garcia-Campos, A.; Power, C.; O’Shaughnessy, J.; Browne, C.; Lawlor, A.; McCarthy, G.; O’Neill, E.J.; de Waal, T. One-year parasitological screening of stray dogs and cats in County Dublin, Ireland. Parasitology 2019, 146, 746–752. [Google Scholar] [CrossRef] [PubMed]
  97. Di Cesare, A.; Castagna, G.; Meloni, S.; Milillo, P.; Latrofa, S.; Otranto, D.; Traversa, D. Canine and feline infections by cardiopulmonary nematodes in central and southern Italy. Parasitol. Res. 2011, 1, S87–S96. [Google Scholar] [CrossRef] [PubMed]
  98. Pennisi, M.G.; Caprì, A.; Solano-Gallego, L.; Lombardo, G.; Torina, A.; Masucci, M. Prevalence of antibodies against Rickettsia conorii, Babesia canis, Ehrlichia canis, and Anaplasma phagocytophilum antigens in dogs from the Stretto di Messina area (Italy). Ticks Tick-Borne Dis. 2012, 3, 315–318. [Google Scholar] [CrossRef]
  99. Riggio, F.; Mannella, R.; Ariti, G.; Perrucci, S. Intestinal and lung parasites in owned dogs and cats from central Italy. Vet. Parasitol. 2013, 193, 78–84. [Google Scholar] [CrossRef]
  100. Pipia, A.P.; Varcasia, A.; Tosciri, G.; Seu, S.; Manunta, M.L.; Mura, M.C.; Sanna, G.; Tamponi, C.; Brianti, E.; Scala, A. New insights onto cardiopulmonary nematodes of dogs in Sardinia, Italy. Parasitol. Res. 2014, 113, 1505–1509. [Google Scholar] [CrossRef]
  101. Rinaldi, L.; Cortese, L.; Meomartino, L.; Pagano, T.B.; Pepe, P.; Cringoli, G.; Papparella, S. Angiostrongylus vasorum: Epidemiological, clinical and histopathological insights. BMC Vet. Res. 2014, 10, 236. [Google Scholar] [CrossRef] [Green Version]
  102. Otranto, D.; Dantas-Torres, F.; Mihalca, A.; Traub, R.; Lappin, M.; Baneth, G. Zoonotic parasites of sheltered and stray dogs in the era of the global economic and political crisis. Trends Parasitol. 2017, 33, 813–825. [Google Scholar] [CrossRef]
  103. Piantedosi, D.; Neola, B.; D’Alessio, N.; Di Prisco, F.; Santoro, M.; Pacifico, L.; Sgroi, G.; Auletta, L.; Buch, J.; Chandrashekar, R.; et al. Seroprevalence and risk factors associated with Ehrlichia canis, Anaplasma spp.; Borrelia burgdorferi sensu lato, and D. immitis in hunting dogs from southern Italy. Parasitol. Res. 2017, 116, 2651–2660. [Google Scholar] [CrossRef]
  104. Foglia Manzillo, V.; Gizzarelli, M.; Vitale, F.; Montagnaro, S.; Torina, A.; Sotera, S.; Oliva, G. Serological and entomological survey of canine leishmaniasis in Lampedusa island, Italy. BMC Vet. Res. 2018, 14, 286. [Google Scholar] [CrossRef]
  105. De Liberato, C.; Berrilli, F.; Odorizi, L.; Scarcella, R.; Barni, M.; Amoruso, C.; Scarito, A.; Filippo, M.M.D.; Carvelli, A.; Iacoponi, F.; et al. Parasites in stray dogs from Italy: Prevalence, risk factors and management concerns. Acta Parasitol. 2018, 63, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Sauda, F.; Malandrucco, L.; Macrì, G.; Scarpulla, M.; De Liberato, C.; Terracciano, G.; Fichi, G.; Berrilli, F.; Perrucci, S. Leishmania infantum, Dirofilaria spp. and other endoparasite infections in kennel dogs in central Italy. Parasite 2018, 25, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Schnyder, M.; Schaper, R.; Pantchev, N.; Kowalska, D.; Szwedko, A.; Deplazes, P. Serological detection of circulating Angiostrongylus vasorum antigen- and parasite-specific antibodies in dogs from Poland. Parasitol. Res. 2013, 112, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  108. Krämer, F.; Schaper, R.; Schunack, B.; Połozowski, A.; Piekarska, J.; Szwedko, A.; Jodies, R.; Kowalska, D.; Schüpbach, D.; Pantchev, N. Serological detection of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and Ehrlichia canis antibodies and Dirofilaria immitis antigen in a countrywide survey in dogs in Poland. Parasitol. Res. 2014, 113, 3229–3239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Dzięgiel, B.; Adaszek, Ł.; Carbonero, A.; Łyp, P.; Winiarczyk, M.; Dębiak, P.; Winiarczyk, S.L. Detection of canine vector-borne diseases in eastern Poland by ELISA and PCR. Parasitol. Res. 2016, 115, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
  110. Alexandre, N.; Santos, A.S.; Bacellar, F.; Boinas, F.J.; Núncio, M.S.; de Sousa, R. Detection of Rickettsia conorii strains in Portuguese dogs (Canis familiaris). Ticks Tick-Borne Dis. 2011, 2, 119–122. [Google Scholar] [CrossRef]
  111. Nabais, J.; Alho, A.M.; Gomes, L.; Ferreira da Silva, J.; Nunes, T.; Vicente, G.; Madeira de Carvalho, L. Aelurostrongylus abstrusus in cats and Angiostrongylus vasorum in dogs from Lisbon, Portugal. Acta Parasitol. Port. 2014, 20, 35–40. [Google Scholar]
  112. Maia, C.; Altet, L.; Serrano, L.; Cristóvão, J.M.; Tabar, M.D.; Francino, O.; Cardoso, L.; Campino, L.; Roura, X. Molecular detection of Leishmania infantum, filariae and Wolbachia spp. in dogs from southern Portugal. Parasites Vectors 2016, 9, 170. [Google Scholar] [CrossRef] [Green Version]
  113. Serrão, I.; São Braz, B.; Dargent Figueiredo, M.; Coimbra, M.; Brancal, H.; Fernandes, M.C.; Lopes, A.P.; Pimenta, P.; Martins, A.; Pereira, A.; et al. Preliminary report on the prevalence of Angiostrongylus vasorum infection in dogs from Portugal adopting a commercially available test kit for serological analysis. Vet. Parasitol. Reg. Stud. Rep. 2016, 3–4, 57–59. [Google Scholar] [CrossRef] [PubMed]
  114. Maia, C.; Cristóvão, J.M.; Pereira, A.; Parreira, R.; Campino, L. Detection of Rickettsia conorii israelensis DNA in the blood of a cat and a dog from Southern Portugal. Top. Companion Anim. Med. 2019, 36, 12–15. [Google Scholar] [CrossRef] [PubMed]
  115. Simin, S.; Spasojević Kosić, L.; Kuruca, L.; Pavlović, I.; Savović, M.; Lalošević, V. Moving the boundaries to the South-East: First record of autochthonous Angiostrongylus vasorum infection in a dog in Vojvodina province, northern Serbia. Parasites Vectors 2014, 7, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  116. Savic, S.; Vidic, B.; Grgic, Z.; Petrovic, T.; Potkonjak, A.; Cupina, A.; Vaselek, S.; Petric, D. Dirofilariosis and leishmaniasis in the northern region of Serbia. In An Overview of Tropical Diseases; Samie, A., Ed.; IntechOpen: London, UK, 2015; Available online: https://www.intechopen.com/chapters/49481 (accessed on 24 June 2021). [CrossRef] [Green Version]
  117. Kovačević Filipović, M.M.; Beletić, A.D.; Ilić Božović, A.V.; Milanović, Z.; Tyrrell, P.; Buch, J.; Chandrashekar, R. Molecular and Serological Prevalence of Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeenses, E. ewingii, Borrelia burgdorferi, Babesia canis, B. gibsoni and B. vogeli among clinically healthy outdoor dogs in Serbia. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 117–122. [Google Scholar] [CrossRef]
  118. Hurníková, Z.; Miterpáková, M.; Mandelík, R. First autochthonous case of canine Angiostrongylus vasorum in Slovakia. Parasitol. Res. 2013, 112, 3505–3508. [Google Scholar] [CrossRef]
  119. Miterpáková, M.; Hurníková, Z.; Zalewski, A.P. The first clinically manifested case of angiostrongylosis in a dog in Slovakia. Acta Parasitol. 2014, 59, 661–665. [Google Scholar] [CrossRef] [Green Version]
  120. Čabanová, V.; Pantchev, N.; Hurníková, Z.; Miterpáková, M. Recent study on canine vector-borne zoonoses in southern Slovakia—Serologic survey. Acta Parasitol. 2015, 60, 749–758. [Google Scholar] [CrossRef]
  121. Solano-Gallego, L.; Llull, J.; Osso, M.; Hegarty, B.; Breitschwerdt, E. A serological study of exposure to arthropod-borne pathogens in dogs from northeastern Spain. Vet. Res. 2006, 37, 231–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Amusategui, I.; Tesouro, M.A.; Kakoma, I.; Sainz, A. Serological reactivity to Ehrlichia canis, Anaplasma phagocytophilum, Neorickettsia risticii, Borrelia burgdorferi and Rickettsia conorii in dogs from northwestern Spain. Vector Borne Zoonotic Dis. 2008, 8, 797–803. [Google Scholar] [CrossRef]
  123. Couto, C.G.; Lorentzen, L.; Beall, M.J.; Shields, J.; Bertolone, N.; Couto, J.I.; Couto, K.M.; Nash, S.; Slack, J.; Kvitko, H.; et al. Serological study of selected vector-borne diseases in shelter dogs in central Spain using point-of-care assays. Vector Borne Zoonotic Dis. 2010, 10, 885–888. [Google Scholar] [CrossRef]
  124. Miró, G.; Montoya, A.; Roura, X.; Gálvez, R.; Sainz, A. Seropositivity rates for agents of canine vector-borne diseases in Spain: A multicentre study. Parasites Vectors 2013, 6, 117. [Google Scholar] [CrossRef] [Green Version]
  125. Montoya-Alonso, J.A.; Carretón, E.; Simón, L.; González-Miguel, J.; García-Guasch, L.; Morchón, R.; Simón, F. Prevalence of Dirofilaria immitis in dogs from Barcelona: Validation of a geospatial prediction model. Vet. Parasitol. 2015, 212, 456–459. [Google Scholar] [CrossRef]
  126. Espejo, E.; Andrés, M.; Pérez, J.; Prat, J.; Guerrero, C.; Muñoz, M.T.; Alegre, M.D.; Lite, J.; Bella, F. Prevalence of antibodies to Rickettsia conorii in human beings and dogs from Catalonia: A 20-year perspective. Epidemiol. Infect. 2016, 144, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
  127. Montoya-Alonso, J.A.; Morchón, R.; Falcón-Cordón, Y.; Falcón-Cordón, S.; Simón, F.; Carretón, E. Prevalence of heartworm in dogs and cats of Madrid, Spain. Parasites Vectors 2017, 10, 354. [Google Scholar] [CrossRef] [Green Version]
  128. Velez, R.; Ballart, C.; Domenech, E.; Abras, A.; Fernández-Arévalo, A.; Gómez, S.A.; Tebar, S.; Muñoz, C.; Cairó, J.; Gállego, M. Seroprevalence of canine Leishmania infantum infection in the Mediterranean region and identification of risk factors: The example of North-Eastern and Pyrenean areas of Spain. Prev. Vet. Med. 2019, 162, 67–75. [Google Scholar] [CrossRef] [PubMed]
  129. Díaz-Regañón, D.; Roura, X.; Suárez, M.L.; León, M.; Sainz, Á. Serological evaluation of selected vector-borne pathogens in owned dogs from northern Spain based on a multicenter study using a commercial test. Parasites Vectors 2020, 13, 301. [Google Scholar] [CrossRef] [PubMed]
  130. Montoya-Alonso, J.A.; Morchón, R.; Costa-Rodríguez, N.; Matos, J.I.; Falcón-Cordón, Y.; Carretón, E. Current distribution of seleced Vector-Borne Diseases in dogs in Spain. Front. Vet. Sci. 2020, 7, 564429. [Google Scholar] [CrossRef]
  131. Morchón, R.; Montoya-Alonso, J.A.; Sánchez-Agudo, J.Á.; de Vicente-Bengochea, J.; Murcia-Martínez, X.; Carretón, E. Angiostrongylus vasorum in domestic dogs in castilla y León, Iberian Peninsula, Spain. Animals 2021, 11, 1513. [Google Scholar] [CrossRef]
  132. Cavalera, M.A.; Schnyder, M.; Gueldner, E.K.; Furlanello, T.; Iatta, R.; Brianti, E.; Strube, C.; Colella, V.; Otranto, D. Serological survey and risk factors of Aelurostrongylus abstrusus infection among owned cats in italy. Parasitol. Res. 2019, 118, 2377–2382. [Google Scholar] [CrossRef] [PubMed]
  133. Gueldner, E.K.; Gilli, U.; Strube, C.; Schnyder, M. Seroprevalence, biogeographic distribution and risk factors for Aelurostrongylus abstrusus infections in Swiss cats. Vet. Parasitol. 2019, 266, 27–33. [Google Scholar] [CrossRef]
  134. Di Cesare, A.; Gueldner, E.K.; Traversa, D.; Veronesi, F.; Morelli, S.; Crisi, P.E.; Pampurini, F.; Strube, C.; Schnyder, M. Seroprevalence of antibodies against the cat lungworm Aelurostrongylus abstrusus in cats from endemic areas of Italy. Vet. Parasitol. 2019, 272, 13–16. [Google Scholar] [CrossRef] [PubMed]
  135. Morelli, S.; Diakou, A.; Di Cesare, A.; Schnyder, M.; Colombo, M.; Strube, C.; Dimzas, D.; Latino, R.; Traversa, D. Feline lungworms in Greece: Copromicroscopic, molecular and serological study. Parasitol. Res. 2020, 119, 2877–2883. [Google Scholar] [CrossRef] [PubMed]
  136. Genchi, C.; Kramer, L.H. The prevalence of Dirofilaria immitis and D. repens in the Old World. Vet. Parasitol. 2020, 280, 108995. [Google Scholar] [CrossRef]
  137. Gianchecchi, E.; Montomoli, E. The enemy at home: Leishmaniasis in the Mediterranean basin, Italy on the focus. Expert Rev. Anti-Infect. Ther. 2020, 18, 563–577. [Google Scholar] [CrossRef] [PubMed]
  138. Lebon, W.; Tielemans, E.; Rehbein, S.; Dumont, P.; Yoon, S.; Beugnet, F.; Jeannin, P.; Larsen, D.; Halos, L. Monthly administrations of milbemycin oxime plus afoxolaner chewable tablets to prevent Angiostrongylus vasorum infection in dogs. Parasites Vectors 2016, 9, 485. [Google Scholar] [CrossRef] [Green Version]
  139. Böhm, C.; Petry, G.; Schmidt, H.; Raue, K.; Barthel, F.; Schaper, R. Evaluation of the persistent preventive efficacy of 2.5 % moxidectin/10% imidacloprid spot-on (Advocate®, Advantage® Multi) in dogs experimentally infected with Angiostrongylus vasorum. Parasitol. Res. 2017, 116, S1–S10. [Google Scholar] [CrossRef] [Green Version]
  140. Becskei, C.; Willesen, J.L.; Schnyder, M.; Wozniakiewicz, M.; Miroshnikova, N.; Mahabir, S.P. Field safety and efficacy of an orally administered combination of sarolaner, moxidectin and pyrantel (Simparica Trio®) for the prevention of angiostrongylosis in dogs presented as veterinary patients. Parasites Vectors 2020, 13, 385. [Google Scholar] [CrossRef] [PubMed]
  141. Noack, S.; Harrington, J.; Carithers, D.S.; Kaminsky, R.; Selzer, P.M. Heartworm disease—Overview, intervention, and industry perspective. Int. J. Parasitol. Drugs Drug Resist. 2021, 16, 65–89. [Google Scholar] [CrossRef]
  142. Bowman, D.D. Heartworms, macrocyclic lactones, and the specter of resistance to prevention in the United States. Parasites Vectors 2012, 5, 138. [Google Scholar] [CrossRef] [Green Version]
  143. Diakou, A. Concern for Dirofilaria immitis and LOE/Resistance: Current situation in the USA and Europe, and future scenarios. In Proceedings of the XXXIII Conference of the Italian Society of Parasitology/2021 ESDA EVENT, Teramo, Italy, 16–19 June 2021. [Google Scholar]
  144. Schorderet-Weber, S.; Noack, S.; Selzer, P.M.; Kaminsky, R. Blocking transmission of vector-borne diseases. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 90–109. [Google Scholar] [CrossRef] [PubMed]
  145. Mencke, N. Acaricidal and repellent properties of permethrin, its role in reducing transmission of vector-borne pathogens. Parassitologia 2006, 48, 139–140. [Google Scholar]
  146. Ferroglio, E.; Poggi, M.; Trisciuoglio, A. Evaluation of 65% permethrin spot-on and deltamethrin-impregnated collars for canine Leishmania infantum infection prevention. Zoonoses Public Health 2008, 55, 145–148. [Google Scholar] [CrossRef] [PubMed]
  147. Brianti, E.; Gaglio, G.; Napoli, E.; Falsone, L.; Prudente, C.; Basano, F.S.; Latrofa, M.S.; Tarallo, V.D.; Dantas-Torres, F.; Capelli, G.; et al. Efficacy of a slow-release imidacloprid (10%)/flumethrin (4.5%) collar for the prevention of canine leishmaniosis. Parasites Vectors 2014, 7, 327. [Google Scholar] [CrossRef] [Green Version]
  148. Jongejan, F.; Crafford, D.; Erasmus, H.; Fourie, J.J.; Schunack, B. Comparative efficacy of oral administrated afoxolaner (NexGard™) and fluralaner (Bravecto™) with topically applied permethrin/imidacloprid (Advantix(®)) against transmission of Ehrlichia canis by infected Rhipicephalus sanguineus ticks to dogs. Parasites Vectors 2016, 9, 348. [Google Scholar] [CrossRef] [Green Version]
  149. Miglianico, M.; Eldering, M.; Slater, H.; Ferguson, N.; Ambrose, P.; Lees, R.S.; Koolen, K.M.J.; Pruzinova, K.; Jancarova, M.; Volf, P.; et al. Repurposing isoxazoline veterinary drugs for control of vector-borne human diseases. Proc. Natl. Acad. Sci. USA 2018, 115, E6920–E6926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  150. Queiroga, T.B.D.; Ferreira, H.R.P.; Dos Santos, W.V.; de Assis, A.B.L.; de Araújo Neto, V.T.; da Câmara, A.C.J.; Fagundes Nedo, J.C.; dos Reis, R.K.; Nascimento, M.S.L.; Gama, R.A.; et al. Fluralaner (Bravecto®) induces long-term mortality of Lutzomyia longipalpis after a blood meal in treated dogs. Parasites Vectors 2020, 13, 609. [Google Scholar] [CrossRef]
  151. Panarese, R.; Iatta, R.; Mendoza-Roldan, J.A.; Zatelli, A.; Beugnet, F.; Otranto, D. Insecticidal efficacy of afoxolaner (NexGard®) in the prevention of Leishmania infantum and Dirofilaria immitis transmission to sheltered dogs in a high endemic area. In Proceedings of the XXXIII Conference of the Italian Society of Parasitology/2021 ESDA EVENT, Teramo, Italy, 16–19 June 2021. [Google Scholar]
  152. Schnyder, M.; Tanner, I.; Webster, P.; Barutzki, D.; Deplazes, P. An ELISA for sensitive and specific detection of circulating antigen of Angiostrongylus vasorum in serum samples of naturally and experimentally infected dogs. Vet. Parasitol. 2011, 179, 152–158. [Google Scholar] [CrossRef] [Green Version]
Table 1. Results of serological examinations (SNAP 4DX rapid test; Immunofluorescence Antibody Test, IFAT; ELISA): number/total (n/tot) and percentage (%) of dogs positive for different pathogens in Italy §.
Table 1. Results of serological examinations (SNAP 4DX rapid test; Immunofluorescence Antibody Test, IFAT; ELISA): number/total (n/tot) and percentage (%) of dogs positive for different pathogens in Italy §.
SNAP 4DX IFAT ELISA Av
SiteAn
n/tot
(%)
Eh
n/tot
(%)
Bb
n/tot
(%)
Di
n/tot
(%)
Li
n/tot
(%)
Rc
n/tot
(%)
Bc
n/tot
(%)
Mixed VBP a
n/tot
(%)
Total VBP b
n/tot
(%)
Ag
n/tot
(%)
Ab
n/tot
(%)
Total Av d
n/tot
(%)
Mixed VBP + Av c
n/tot
(%)
A8/67
(11.9)
-
-
4/67
(6)
2/6
(3)
1/6
(1.6)
41/67
(61.2)
-
-
10/67
(14.9)
45/67
(67.2)
-
-
5/67
(7.5)
5/67
(7.5)
4/67
(6)
B9/82
(11)
-
-
-
-
1/82
(1.2)
3/82
(3.7)
39/82
(47.6)
18/82
(22)
18/82
(22)
48/82
(58.5)
-
-
8/82
(9.8)
8/82
(9.8)
8/82
(9.8)
C5/145
(3.4)
-
-
-
-
2/145
(1.4)
14/145
(9.7)
54/145
(37.2)
7/145
(4.8)
12/145
(8.3)
69/145
(47.6)
6/145
(4.1)
9/145
(6.2)
14/145
(9.7)
9/145
(6.2)
Total22/294
(7.5)
1/294
(0.3)
4/294
(1.4)
5/294
(1.7)
18/294
(6.1)
136/294
(46.3)
25/294
(8.5)
40/294
(13.6)
162/294
(55.1)
6/294
(2)
22/294
(7.5)
27/294
(9.2)
21/294
(7.1)
An: Anaplasma spp.; Eh: Ehrlichia spp.; Bb: Borrelia burgdorferi; Di: Dirofilaria immitis; Li: Leishmania infantum; Rc: Rickettsia conorii; Bc: Babesia canis; Av: Angiostrongylus vasorum; Ag: Antigen; Ab: Antibodies; a Dogs that tested positive for two or more pathogens investigated in this study; b Dogs positive for at least one VBP; c Dogs positive to at least one VBP and to Angiostrongylus vasorum (Ag or Ab) simultaneously; d Dogs positive for Angiostrongylus vasorum antigens or antibodies; § Sites of North-Eastern (i.e., Site A: Veneto and Friuli-Venezia Giulia), Central-Western (i.e., Site B: Giglio Island, Tuscany and Latium) and Central-Eastern (i.e., Site C: Umbria, Abruzzo, Marche) macroareas of Italy.
Table 2. Number (n) and percentage (%) of dogs seropositive for Angiostrongylus vasorum antigens (Ag) and/or antibodies (Ab) and combined exposure to VBPs in the present study.
Table 2. Number (n) and percentage (%) of dogs seropositive for Angiostrongylus vasorum antigens (Ag) and/or antibodies (Ab) and combined exposure to VBPs in the present study.
Simultaneous Exposuren (%)
Angiostrongylus vasorum Ab + Rickettsia conorii9 (3.0)
Angiostrongylus vasorum Ab + Leishmania infantum1 (0.3)
Angiostrongylus vasorum Ab + Anaplasma spp. + Rickettsia conorii3 (1.0)
Angiostrongylus vasorum Ab + Rickettsia conorii + Babesia canis2 (0.7)
Angiostrongylus vasorum Ab + Anaplasma spp. + Borrelia burgdorferi1 (0.3)
Angiostrongylus vasorum Ab + Leishmania infantum + Rickettsia conorii + Babesia canis1 (0.3)
Angiostrongylus vasorum Ag + Babesia canis2 (0.7)
Angiostrongylus vasorum Ag + Rickettsia conorii1 (0.3)
Angiostrongylus vasorum Ab + Ag + Babesia canis1 (0.3)
Table 3. Positivity (%) of Angiostrongylus vasorum and Vector-Borne Pathogens in dogs of different European countries between 2006 and 2021, detected using different diagnostic techniques. Av: Angiostrongylus vasorum (Baermann test, serological detection of antigens (Ag) or antibodies (Ab)). Li: Leishmania infantum (serological detection of antibodies, PCR); Di: Dirofilaria immitis (serological detection of antigens, Knott’s test, PCR); Eh: Ehrlichia spp. (serological detection of antibodies, PCR); Anaplasma spp. (serological detection of antibodies, PCR); Bo: Borrelia spp. (serological detection of antibodies, PCR); Rc: Rickettsia conorii (serological detection of antibodies, PCR); Ba: Babesia canis (serological detection of antibodies, PCR). Only countries for which information on both A. vasorum and VBPs is available are shown in the table.
Table 3. Positivity (%) of Angiostrongylus vasorum and Vector-Borne Pathogens in dogs of different European countries between 2006 and 2021, detected using different diagnostic techniques. Av: Angiostrongylus vasorum (Baermann test, serological detection of antigens (Ag) or antibodies (Ab)). Li: Leishmania infantum (serological detection of antibodies, PCR); Di: Dirofilaria immitis (serological detection of antigens, Knott’s test, PCR); Eh: Ehrlichia spp. (serological detection of antibodies, PCR); Anaplasma spp. (serological detection of antibodies, PCR); Bo: Borrelia spp. (serological detection of antibodies, PCR); Rc: Rickettsia conorii (serological detection of antibodies, PCR); Ba: Babesia canis (serological detection of antibodies, PCR). Only countries for which information on both A. vasorum and VBPs is available are shown in the table.
CountryAngiostrongylus vasorumLeishmania infantumDirofilaria immitisEhrlichia spp.Anaplasma spp.Borrelia burgdorferiRickettsia conoriiBabesia canisReferences
BaermannAgAb
Bulgaria 0–0.60010.5–16.21.34–2113.4–46.10.7–2.4 16.2[70,71,72]
Czech Republic 0.44.83.6 3.4 *6.5–10.3 [73,74,75]
Denmark1.1–3.5 [76]
Finland CR 0.35.32.9 [77,78]
France 1.83.5 0.20.32.71.1 [79,80]
Germany0.4–7.40.52.25–23.51–1.40.1–15.11.5–43.24.50.80.1–11.5[51,81,82,83,84,85,86,87]
Greece1.11.6–2.01.4–3.06.5–25.2 1.5–12.51–6.20–0.111 *–46.50.5[18,88,89,90,91,92]
Hungary 3.14.090–2.6 *1.3 *–2.60.21.3 *–15.40.4 11.5–50 *[93,94,95]
Ireland0.5 [96]
Italy0.4–12.60.8–0.92.3–3.82.5–54.18.90.4–460.5 *–380.3–1.740.5–7210.3–70[39,40,41,47,63,97,98,99,100,101,102,103,104,105,106]
Poland 1.31.79 0 *–1.58–12.33.8–11 [107,108,109]
Portugal2.00–2.61.9–518.2–60.4 *9.4 0.5 *–38.5 [6,37,38,110,111,112,113,114]
SerbiaCR 10.6 0–0.90–28.80 *–1.8 2.7 *–52.3[115,116,117]
SlovakiaCR3.14.4 11.72.8 [50,118,119,120]
Spain 0.8 5.3–300–6.250.9–16.71.3–190–6.342–56.4 [121,122,123,124,125,126,127,128,129,130,131]
* PCR; CR: Case Report.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Morelli, S.; Gori, F.; Colombo, M.; Traversa, D.; Sarrocco, G.; Simonato, G.; Nespeca, C.; Di Cesare, A.; Frangipane di Regalbono, A.; Veronesi, F.; et al. Simultaneous Exposure to Angiostrongylus vasorum and Vector-Borne Pathogens in Dogs from Italy. Pathogens 2021, 10, 1200. https://0-doi-org.brum.beds.ac.uk/10.3390/pathogens10091200

AMA Style

Morelli S, Gori F, Colombo M, Traversa D, Sarrocco G, Simonato G, Nespeca C, Di Cesare A, Frangipane di Regalbono A, Veronesi F, et al. Simultaneous Exposure to Angiostrongylus vasorum and Vector-Borne Pathogens in Dogs from Italy. Pathogens. 2021; 10(9):1200. https://0-doi-org.brum.beds.ac.uk/10.3390/pathogens10091200

Chicago/Turabian Style

Morelli, Simone, Francesca Gori, Mariasole Colombo, Donato Traversa, Giulia Sarrocco, Giulia Simonato, Chiara Nespeca, Angela Di Cesare, Antonio Frangipane di Regalbono, Fabrizia Veronesi, and et al. 2021. "Simultaneous Exposure to Angiostrongylus vasorum and Vector-Borne Pathogens in Dogs from Italy" Pathogens 10, no. 9: 1200. https://0-doi-org.brum.beds.ac.uk/10.3390/pathogens10091200

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop