Next Issue
Volume 12, May
Previous Issue
Volume 12, March
 
 

Atoms, Volume 12, Issue 4 (April 2024) – 8 articles

Cover Story (view full-size image): CollisionDB is an open, free, robust and long-term repository of data on plasma collisional processes. The database contains peer-reviewed data on cross sections and rate coefficients for collisions of electrons, photons and heavy particles with atomic and molecular species. Each dataset is associated with verified metadata in a standardized, machine-readable format. CollisionDB offers both a browser-based search interface and an application programming interface (API) that allows users to filter, process and compare collisional datasets. We present an overview of the technical developments, including data schemas, standards and the user interface, underlying the CollisionDB application, with particular emphasis on the API developed to support the integration of data into modeling and other codes. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
55 pages, 2293 KiB  
Review
Atomic Models of Dense Plasmas, Applications, and Current Challenges
by Robin Piron
Atoms 2024, 12(4), 26; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040026 - 17 Apr 2024
Viewed by 302
Abstract
Modeling plasmas in terms of atoms or ions is theoretically appealing for several reasons. When it is relevant, the notion of atom or ion in a plasma provides us with an interpretation scheme of the plasma’s internal functioning. From the standpoint of quantitative [...] Read more.
Modeling plasmas in terms of atoms or ions is theoretically appealing for several reasons. When it is relevant, the notion of atom or ion in a plasma provides us with an interpretation scheme of the plasma’s internal functioning. From the standpoint of quantitative estimation of plasma properties, atomic models of plasma allow one to extend many theoretical tools of atomic physics to plasmas. This notably includes the statistical approaches to the detailed accounting for excited states, or the collisional-radiative modeling of non-equilibrium plasmas, which is based on the notion of atomic processes. This paper is focused on the theoretical challenges raised by the atomic modeling of dense, non-ideal plasmas. It is intended to give a synthetic and pedagogical view on the evolution of ideas in the field, with an accent on the theoretical consistency issues, rather than an exhaustive review of models and experimental benchmarks. First we make a brief, non-exhaustive review of atomic models of plasmas, from ideal plasmas to strongly-coupled and pressure-ionized plasmas. We discuss the limitations of these models and pinpoint some open problems in the field of atomic modeling of plasmas. We then address the peculiarities of atomic processes in dense plasmas and point out some specific issues relative to the calculation of their cross-sections. In particular, we discuss the modeling of fluctuations, the accounting for channel mixing and collective phenomena in the photoabsorption, or the impact of pressure ionization on collisional processes. Full article
(This article belongs to the Special Issue Atomic Physics in Dense Plasmas)
Show Figures

Figure 1

8 pages, 819 KiB  
Article
Bond Rearrangement Produces Oxygen from Carbon Dioxide
by Kamal Kumar, Jibak Mukherjee, Harpreet Singh and Deepankar Misra
Atoms 2024, 12(4), 25; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040025 - 17 Apr 2024
Viewed by 255
Abstract
We present a direct observation where fragmentation of the CO22+ dication, upon highly charged ion impact, leads to the formation of molecular oxygen. We assert that molecular bending and bond stretching modes of the dication represent the underlying mechanisms driving [...] Read more.
We present a direct observation where fragmentation of the CO22+ dication, upon highly charged ion impact, leads to the formation of molecular oxygen. We assert that molecular bending and bond stretching modes of the dication represent the underlying mechanisms driving the generation of O2+. We conducted ab initio quantum chemistry calculations for the electronic state of the dication and found that the 5A1 state is responsible for the bond-rearrangement reaction. The branching ratios of this channel for multiple projectile beams of varying charge and velocity have been reported and are found to be independent of the projectile’s charge and velocity. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

37 pages, 768 KiB  
Article
Theoretical Spectra of Lanthanides for Kilonovae Events: Ho I-III, Er I-IV, Tm I-V, Yb I-VI, Lu I-VII
by Sultana N. Nahar
Atoms 2024, 12(4), 24; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040024 - 17 Apr 2024
Viewed by 283
Abstract
The broad emission bump in the electromagnetic spectra observed following the detection of gravitational waves created during the kilonova event of the merging of two neutron stars in August 2017, named GW170817, has been linked to the heavy elements of lanthanides (Z = [...] Read more.
The broad emission bump in the electromagnetic spectra observed following the detection of gravitational waves created during the kilonova event of the merging of two neutron stars in August 2017, named GW170817, has been linked to the heavy elements of lanthanides (Z = 57–71) and a new understanding of the creation of heavy elements in the r-process. The initial spectral emission bump has a wavelength range of 3000–7000 Å, thus covering the region of ultraviolet (UV) to optical (O) wavelengths, and is similar to those seen for lanthanides. Most lanthanides have a large number of closely lying energy levels, which introduce extensive sets of radiative transitions that often form broad regions of lines of significant strength. The current study explores these broad features through the photoabsorption spectroscopy of 25 lanthanide ions, Ho I-III, Er I-IV, Tm I-V, Yb I-VI, and Lu I-VII. With excitation only to a few orbitals beyond the ground configurations, we find that most of these ions cover a large number of bound levels with open 4f orbitals and produce tens to hundreds of thousands of lines that may form one or multiple broad features in the X-ray to UV, O, and infrared (IR) regions. The spectra of 25 ions are presented, indicating the presence, shapes, and wavelength regions of these features. The accuracy of the atomic data used to interpret the merger spectra is an ongoing problem. The present study aims at providing improved atomic data for the energies and transition parameters obtained using relativistic Breit–Pauli approximation implemented in the atomic structure code SUPERSTRUCTURE and predicting possible features. The present data have been benchmarked with available experimental data for the energies, transition parameters, and Ho II spectrum. The study finds that a number of ions under the present study are possible contributors to the emission bump of GW170817. All atomic data will be made available online in the NORAD-Atomic-Data database. Full article
(This article belongs to the Special Issue Photoionization of Atoms)
Show Figures

Figure 1

44 pages, 12238 KiB  
Perspective
Laser and Astrophysical Plasmas and Analogy between Similar Instabilities
by Stjepan Lugomer
Atoms 2024, 12(4), 23; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040023 - 16 Apr 2024
Viewed by 286
Abstract
Multipulse laser–matter interactions initiate nonlinear and nonequilibrium plasma fluid flow dynamics and their instability creating microscale vortex filaments, loop-soliton chains, and helically paired structures, similar to those at the astrophysical mega scale. We show that the equation with the Hasimoto structure describes both, [...] Read more.
Multipulse laser–matter interactions initiate nonlinear and nonequilibrium plasma fluid flow dynamics and their instability creating microscale vortex filaments, loop-soliton chains, and helically paired structures, similar to those at the astrophysical mega scale. We show that the equation with the Hasimoto structure describes both, the creation of loop solitons by torsion of vortex filaments and the creation of solitons by helical winding of magnetic field lines in the Crab Nebula. Our experiments demonstrate that the breakup of the loop solitons creates vortex rings with (i) quasistatic toroidal Kelvin waves and (ii) parametric oscillatory modes—i.e., with the hierarchical instability order. For the first time, we show that the same hierarchical instability at the micro- and the megascale establishes the conceptual frame for their unique classification based on the hierarchical order of Bessel functions. Present findings reveal that conditions created in the laser-target regions of a high filament density lead to their collective behavior and formation of helically paired and filament-braided “complexes”. We also show, for the first time, that morphological and topological characteristics of the filament-bundle “complexes” with the loop solitons indicate the analogy between similar laser-induced plasma instabilities and those of the Crab and Double-Helix Nebulas—thus enabling conceptualization of fundamental characteristics. These results reveal that the same rotating metric accommodates the complexity of the instabilities of helical filaments, vortex rings, and filament jets in the plasmatic micro- and megascale astrophysical objects. Full article
Show Figures

Figure 1

17 pages, 746 KiB  
Article
Enhancement of the NORAD-Atomic-Data Database in Plasma
by Sultana N. Nahar and Guillermo Hinojosa-Aguirre
Atoms 2024, 12(4), 22; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040022 - 09 Apr 2024
Viewed by 386
Abstract
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially [...] Read more.
We report recent enhancements to the online atomic database at the Ohio State University, NORAD-Atomic-Data, that provide various parameters for radiative and collisional atomic processes dominant in astrophysical plasma. NORAD stands for Nahar Osu RADiative. The database belongs to the data sources, especially for the latest works, of the international collaborations of the Opacity Project and the Iron Project. The contents of the database are calculated values for energies, oscillator strengths, radiative decay rates, lifetimes, cross-sections for photoionization, electron-ion recombination cross-sections, and recombination rate coefficients. We have recently expanded NORAD-Atomic-Data with several enhancements over those reported earlier. They are as follows: (i) We continue to add energy levels, transition parameters, cross-sections, and recombination rates for atoms and ions with their publications. (ii) Recently added radiative atomic data contain a significant amount of transition data for photo-absorption spectral features corresponding to the X-ray resonance fluorescence effect, showing prominent wavelength regions of bio-signature elements, such as phosphorus ions, and emission bumps of heavy elements, such as of lanthanides, which may be created in a kilonova event. We are including (iii) collisional data for electron-impact-excitation, (iv) experimental data for energies and oscillator strengths for line formation, (v) experimental cross-sections for photoionization that can be applied for benchmarking and other applications, and (vi) the introduction of a web-based interactive feature to calculate spectral line ratios at various plasma temperature and density diagnostics, starting with our recently published data for P II. We presented a summary description of theoretical backgrounds for the computed data in the earlier paper. With the introduction of experimental results in the new version of NORAD, we present a summary description of measurement of high-resolution photoionization cross-sections at an Advanced Light Source of LBNL synchrotron set-up and briefly discuss other set-ups. These additions should make NORAD-Atomic-Data more versatile for various applications. For brevity, we provide information on the extensions and avoid repetition of data description of the original paper. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

27 pages, 11577 KiB  
Review
Laser-Induced Breakdown Spectroscopy in Biological Samples: A Review of Experiments with Soft Tissues
by Javier Manrique, Pedro Garrido and Joaquín Velasco
Atoms 2024, 12(4), 21; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040021 - 01 Apr 2024
Viewed by 496
Abstract
This article reviews the advances made during the past two decades in the application of Laser-Induced Breakdown Spectroscopy (LIBS) to biological samples, specifically soft tissues (both animal and human). The first sections include a historical overview and a summary of the biomedical relevance [...] Read more.
This article reviews the advances made during the past two decades in the application of Laser-Induced Breakdown Spectroscopy (LIBS) to biological samples, specifically soft tissues (both animal and human). The first sections include a historical overview and a summary of the biomedical relevance of analyzing metals in these tissues. Next, statistical methods employed in some works are presented, along with a detailed description of the innovations developed in experimental systems. The remainder of the review reports the approaches used in the experiments, focusing on a description of the advances that have enabled the successful application of LIBS to soft tissues. The results are evaluated, and the major challenges remaining for this type of sample are discussed. The aim of this review is to provide useful information that encourages future research on LIBS for biological samples. Full article
Show Figures

Figure 1

18 pages, 979 KiB  
Article
CollisionDB: A New Database of Atomic and Molecular Collisional Processes with an Interactive API
by Christian Hill, Dipti, Kalle Heinola and Martin Haničinec
Atoms 2024, 12(4), 20; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040020 - 27 Mar 2024
Viewed by 639
Abstract
The Atomic and Molecular Data Unit of the International Atomic Energy Agency has developed a new database, CollisionDB, to provide an open, free, robust and long-term repository of data on plasma collisional processes. The database contains data on cross sections and rate coefficients [...] Read more.
The Atomic and Molecular Data Unit of the International Atomic Energy Agency has developed a new database, CollisionDB, to provide an open, free, robust and long-term repository of data on plasma collisional processes. The database contains data on cross sections and rate coefficients for collisions of electrons, photons and heavy particles with atomic and molecular species. A fundamental requirement for this database is the implementation of standardized metadata, which provide an unambiguous description of the collisional data available in peer-reviewed sources. CollisionDB offers both a browser-based search interface and an application programming interface (API) that allows users to filter, process and compare collisional datasets. For this purpose, a Python package PyCollisionDB has been developed to access the CollisionDB API. Here, we present an overview of the technical developments, including data schemas, standards and user interface underlying the CollisionDB application, with particular emphasis on the API developed to support the integration of data into modeling and other codes. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

13 pages, 5921 KiB  
Article
Line Shape Code Comparison of the Effect of Periodic Fields on Hydrogen Lines
by Ibtissem Hannachi, Spiros Alexiou and Roland Stamm
Atoms 2024, 12(4), 19; https://0-doi-org.brum.beds.ac.uk/10.3390/atoms12040019 - 22 Mar 2024
Viewed by 658
Abstract
Spectral line shapes code in plasmas (SLSPs) code comparison workshops have been organized in the last decade with the aim of comparing the spectra obtained with independently developed analytical and numerical models. Here, we consider the simultaneous effect of a plasma microfield and [...] Read more.
Spectral line shapes code in plasmas (SLSPs) code comparison workshops have been organized in the last decade with the aim of comparing the spectra obtained with independently developed analytical and numerical models. Here, we consider the simultaneous effect of a plasma microfield and a periodic electric field on the hydrogen lines Lyman-α, Lyman-β, Balmer-α, and Balmer-β for plasma conditions where the Stark effect usually dominates line broadening. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop