Advanced Technologies in Superconducting Actuators

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Actuator Materials".

Deadline for manuscript submissions: closed (31 May 2022) | Viewed by 14233

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
Interests: superconducting actuators; superconducting levitations; magnetic bearing actuators; magnetic levitations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
SIT Research Laboratories, Shibaura Institute of Technology, Tokyo 135-8548, Japan
Interests: high temperature superconductor; bulk material; pulsed field; flux trapping; flux invasion; motors/generators; magnetic separation; magnetic levitation

E-Mail Website
Guest Editor
Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama-shi Kanagawa-ken 2238522, Japan
Interests: applied superconductivity; ultrasonic nondestructive evaluation; microbubble; nonlinear dynamics

Special Issue Information

Dear Colleagues,

Actuators are becoming increasingly necessary in various industries and applications, such as manufacturing, transportation, vehicles and airplanes. In particular, actuators using electromagnetic forces have excellent characteristics. On the other hand, superconducting materials demonstrate many beneficial properties, such as zero electrical resistance, perfect diamagnetism, pinning effect and permanent current. Therefore, superconducting actuators with these excellent characteristics carry great potential. In this Special Issue, we will focus on actuators and actuator systems with superconducting characteristics and the related actuators. A wide variety of journal papers are welcome.

Prof. Dr. Mochimitsu Komori
Prof. Dr. Tetsuo Oka
Prof. Dr. Toshihiko Sugiura
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • superconducting actuators
  • superconducting actuator systems
  • superconducting magnetic devices
  • superconducting levitations
  • superconducting energy storage systems
  • superconducting energy harvesting systems
  • superconducting power transmission
  • superconducting applications for medical area
  • superconducting transportation vehicles
  • cryogenic actuators

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3920 KiB  
Article
Simulation of the Braking Effects of Permanent Magnet Eddy Current Brake and Its Effects on Levitation Characteristics of HTS Maglev Vehicles
by Gaowei Zhang, Jianmei Zhu, Yan Li, Yuhang Yuan, Yuqing Xiang, Peng Lin, Li Wang, Jianxin Liu, Le Liang and Zigang Deng
Actuators 2022, 11(10), 295; https://0-doi-org.brum.beds.ac.uk/10.3390/act11100295 - 13 Oct 2022
Cited by 3 | Viewed by 1815
Abstract
High-temperature superconducting (HTS) magnetic levitation (maglev) trains for designed high speed need a non-contact braking method that can produce stable and sufficient braking forces to ensure the safety of the train during emergency braking. In order to study the braking effects of permanent [...] Read more.
High-temperature superconducting (HTS) magnetic levitation (maglev) trains for designed high speed need a non-contact braking method that can produce stable and sufficient braking forces to ensure the safety of the train during emergency braking. In order to study the braking effects of permanent magnet eddy current braking (PMECB) used in HTS maglev vehicles and its effects on the levitation performance of HTS maglev vehicles, an equivalent two-dimensional simulation model of PMECB for a HTS maglev test vehicle under different working air gaps of 5 mm, 10 mm, 15 mm and 20 mm was established in Maxwell software. Then, a 6 degree of freedom dynamic model of the vehicle was established in Universal Mechanism software. In the dynamic simulation, the normal force of PMECB was not considered, and only the detent force of PMECB was taken as the excitation of the vehicle. The simulation results show that PMECBs can reduce the vehicle to relatively low speed in a few seconds. During the operation of PMECBs, the levitation height and levitation force of the maglev Dewar will be affected, and maximum variations in levitation heights and levitation forces occur on the Dewars at both ends of the vehicle. These help us to understand the braking and levitation performance of HTS maglev vehicles under the action of PMECBs and enrich the design idea of braking and levitation systems of HTS maglev vehicles equipped with PMECBs. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

11 pages, 2850 KiB  
Article
Characterization of LCR Parallel-Type Electromagnetic Shunt Damper for Superconducting Magnetic Levitation
by Kentaro Fujita and Toshihiko Sugiura
Actuators 2022, 11(8), 216; https://0-doi-org.brum.beds.ac.uk/10.3390/act11080216 - 02 Aug 2022
Cited by 2 | Viewed by 1832
Abstract
This study investigated the effect of electromagnetic shunt dampers on the resonance amplitude reduction in a superconducting magnetic levitation system. There are two types of electromagnetic shunt dampers, series type and parallel type, depending on the configuration of the electric circuit, and their [...] Read more.
This study investigated the effect of electromagnetic shunt dampers on the resonance amplitude reduction in a superconducting magnetic levitation system. There are two types of electromagnetic shunt dampers, series type and parallel type, depending on the configuration of the electric circuit, and their damping characteristics may differ depending on the external resistance value in the circuit. In this study, after discussing the vibration-suppression effects of both types according to the governing equations, vibration experiments were conducted using both dampers with different resistance values. As a result, it was confirmed that, for the larger resistance value, the amplitude reduction effect is smaller in the series-type damper, while it remained high in the parallel type. We also performed numerical integrations, including the nonlinearity of magnetic force in the superconducting magnetic levitation system. As a result, it was numerically confirmed that the parallel-type damper can also be expected to reduce amplitude at a resonance caused by nonlinearity. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

12 pages, 8251 KiB  
Article
Suspension-Type of Flywheel Energy Storage System Using High Tc Superconducting Magnetic Bearing (SMB)
by Mochimitsu Komori, Hirohisa Kato and Ken-ichi Asami
Actuators 2022, 11(8), 215; https://0-doi-org.brum.beds.ac.uk/10.3390/act11080215 - 01 Aug 2022
Cited by 2 | Viewed by 1929
Abstract
In this paper, a new superconducting flywheel energy storage system is proposed, whose concept is different from other systems. The superconducting flywheel energy storage system is composed of a radial-type superconducting magnetic bearing (SMB), an induction motor, and some positioning actuators. The SMB [...] Read more.
In this paper, a new superconducting flywheel energy storage system is proposed, whose concept is different from other systems. The superconducting flywheel energy storage system is composed of a radial-type superconducting magnetic bearing (SMB), an induction motor, and some positioning actuators. The SMB is composed of a superconducting stator and a flywheel rotor. The flywheel rotor is suspended by the superconducting stator, whose one end is fixed to a stable and heavy base. Free-run experiments in the case of the unfixed stator are performed. The natural rotation decay curve, displacement at the upper position of the rotor and displacement at a lower position of the rotor are measured. Moreover, free-run experiments in the case of the fixed stator are performed, and the same dynamic characteristics of the unfixed stator are measured. Especially, impulse responses for the rotor in the case of an unfixed stator are very different from those in the case of a fixed stator. The experimental results discuss some important characteristics of the superconducting flywheel energy storage system, whose rotor is suspended by the superconducting stator. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

11 pages, 6250 KiB  
Article
Stabilization of a Magnetic Repulsive Levitation Flywheel System Using a High-Efficiency Superconducting Magnetic Bearing
by Iwanori Murakami, Yiming Zhao and Tatuhiro Tashiro
Actuators 2022, 11(7), 180; https://0-doi-org.brum.beds.ac.uk/10.3390/act11070180 - 29 Jun 2022
Cited by 7 | Viewed by 2979
Abstract
In this study, we developed a superconducting magnetic bearing using a permanent repulsive magnet. A repulsive magnetic levitation system with a permanent magnet can generate a strong levitation force in the absence of a power supply. However, it is unstable, except in the [...] Read more.
In this study, we developed a superconducting magnetic bearing using a permanent repulsive magnet. A repulsive magnetic levitation system with a permanent magnet can generate a strong levitation force in the absence of a power supply. However, it is unstable, except in the direction of repulsion. In contrast, superconducting magnetic bearings can generate a restoring force in all directions by utilizing the magnetic flux pinning property of the superconductors. Therefore, we constructed a superconducting magnetic bearing (SMB), which is stable along all axes without control, and has a strong axial levitation force, by combining a repulsive-type magnetic levitation system and a superconducting magnetic levitation system. We also reduced the amount of HTS used for the SMB and proposed an efficient method of using HTS. Furthermore, a driving test of the flywheel incorporating the SMB was conducted to verify the characteristics of the SMB. The experiment confirmed that the flywheel could overcome the resonance and drive the flywheel. In the drive experiment, the flywheel was driven up to 10,000 rpm. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

11 pages, 8752 KiB  
Article
Magnetic Suspension System with Large Distance of 82 mm Using Persistent Current in Superconducting Coil
by Mochimitsu Komori, Shun Imada, Kaoru Nemoto and Ken-ichi Asami
Actuators 2022, 11(2), 48; https://0-doi-org.brum.beds.ac.uk/10.3390/act11020048 - 05 Feb 2022
Cited by 2 | Viewed by 1947
Abstract
Superconducting techniques are applied to a superconducting magnetic suspension system. A superconducting coil, copper coils, a magnetically suspended object, a photo sensor, a PID controller, and power amplifiers are the main components of the suspension system. A persistent current in the superconducting coil [...] Read more.
Superconducting techniques are applied to a superconducting magnetic suspension system. A superconducting coil, copper coils, a magnetically suspended object, a photo sensor, a PID controller, and power amplifiers are the main components of the suspension system. A persistent current in the superconducting coil and a control current in the copper coils are used for suspending the object and controlling the object, respectively. This paper discusses a large gap trial for the suspension system, and the static and dynamic characteristics of the suspension system are studied. As a result, it is found that the magnetically suspended object continues to be suspended at a distance of 82 mm for more than 60 s. Since a superconducting persistent current has a maximum limit for the suspension system, a persistent current of 50 A is adopted. The details of the superconducting persistent current are studied for the performance of the suspension system. There are few reports about such a suspension system with a large gap of more than 80 mm using a superconducting persistent current. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

21 pages, 13801 KiB  
Article
Optimization of the Guiding Stability of a Horizontal Axis HTS ZFC Radial Levitation Bearing
by António J. Arsénio, Francisco Ferreira da Silva, João F. P. Fernandes and Paulo J. Costa Branco
Actuators 2021, 10(12), 311; https://0-doi-org.brum.beds.ac.uk/10.3390/act10120311 - 26 Nov 2021
Cited by 3 | Viewed by 2197
Abstract
This document presents a study on the optimization of the 3D geometry of a horizontal axis radial levitation bearing with zero-field cooled (ZFC) high-temperature superconductor (HTS) bulks in the stator, and radially magnetized permanent magnet (PM) rings in the rotor. The optimization of [...] Read more.
This document presents a study on the optimization of the 3D geometry of a horizontal axis radial levitation bearing with zero-field cooled (ZFC) high-temperature superconductor (HTS) bulks in the stator, and radially magnetized permanent magnet (PM) rings in the rotor. The optimization of component dimensions and spacing to minimize the volume or cost concerning only the maximization of the levitation force was previously studied. The guidance force and guiding stability depend on the spacing between PM rings in the rotor and between the rings of HTS bulks in the stator. This new optimization study aims to find the optimum spacing that maximize the guidance force with given HTS bulk and PM ring dimensions while maintaining the minimum required levitation force. Decisions are taken using the non-dominated sorting genetic algorithm (NSGA-II) over 3D finite element analysis (FEA). A simplified electromagnetic model of equivalent relative permeability is used on 3D FEA to reduce numerical processing and optimization time. Experimental prototypes were built to measure magnetic forces and validate appropriate values of equivalent magnetic permeability. An analysis of stable and unstable geometry domains depending on the spacing between rings of HTS bulks and PM rings is also done for two HTS bulk sizes. Full article
(This article belongs to the Special Issue Advanced Technologies in Superconducting Actuators)
Show Figures

Figure 1

Back to TopTop