-
Micro Coaxial Drone: Flight Dynamics, Simulation and Ground Testing
-
Nonlinear Slewing Control of a Large Flexible Spacecraft Using Reaction Wheels
-
The Need for Multi-Sensor Data Fusion in Structural Health Monitoring of Composite Aircraft Structures
-
Icon Design for Representing Safety-Critical Aircraft Functions to Support Supervisory Control of Remotely Piloted Aircraft Systems
-
A Comprehensive Survey on Climate Optimal Aircraft Trajectory Planning
Journal Description
Aerospace
Aerospace
is a peer-reviewed, open access journal of aeronautics and astronautics published monthly online by MDPI. The European Aeronautics Science Network (EASN), and the ECATS International Association are affiliated with Aerospace and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Inspec, and many other databases.
- Journal Rank: JCR - Q1 (Engineering, Aerospace) / CiteScore - Q2 (Aerospace Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 22.8 days after submission; acceptance to publication is undertaken in 3.8 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journal: Astronomy.
Impact Factor:
2.660 (2021)
;
5-Year Impact Factor:
2.579 (2021)
Latest Articles
Load Identification for the More Electric Aircraft Distribution System Based on Intelligent Algorithm
Aerospace 2022, 9(7), 350; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070350 (registering DOI) - 29 Jun 2022
Abstract
Accurate identification of electrical load working status can provide information support to the remote electrical distribution system (EDS) of more electric aircraft (MEA), which could use it to realize redundant switching and protection. This paper presents a method to automatically identify the load
[...] Read more.
Accurate identification of electrical load working status can provide information support to the remote electrical distribution system (EDS) of more electric aircraft (MEA), which could use it to realize redundant switching and protection. This paper presents a method to automatically identify the load status on the remote power distribution unit (RPDU) of MEA by using an intelligent algorithm. The experimental platform is built in an aircraft Electrical Power System (EPS) distribution large-scale test cabin. Four pieces of typical aviation equipment are installed in the test cabin and powered from RPDU. Voltage and current values under 15 working combinations on the RPDU are measured to extract the steady-state V-I trajectory. In total, 750 group samples were collected in the feature parameter database. A generalized regression neural network (GRNN) identification model was established, and the smoothing factor was calculated by using a conventional cross-validation method to train and reach an optimal value. However, the identification results are not ideal. In order to improve the accuracy, the parameter of GRNN was optimized by genetic algorithms. The proposed model shows great performance as accuracy of all 15 classifications reached 100%. The proposed model has advantages of flexible network structure, high fault tolerance, and robustness. It can realize global approximation optimization, avoid local optimization, effectively improve GRNN fitting accuracy, improve model generalization ability, and reduce model training calculation.
Full article
(This article belongs to the Section Aeronautics)
Open AccessArticle
Retrofitting Cost Modeling in Aircraft Design
Aerospace 2022, 9(7), 349; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070349 (registering DOI) - 29 Jun 2022
Abstract
Aircraft retrofitting is a challenging task involving multiple scenarios and stakeholders. Providing a strategy to retrofit an existing platform needs detailed knowledge of multiple aspects, ranging from aircraft performance and emissions, development and conversion costs to the projected operating costs. This paper proposes
[...] Read more.
Aircraft retrofitting is a challenging task involving multiple scenarios and stakeholders. Providing a strategy to retrofit an existing platform needs detailed knowledge of multiple aspects, ranging from aircraft performance and emissions, development and conversion costs to the projected operating costs. This paper proposes a methodology to account for retrofitting costs at an industrial level, explaining the activities related to such a process. Costs are mainly derived from three contributions: development costs, conversion costs and equipment acquisition costs. Different retrofitting packages, such as engine conversion and onboard systems electrification, are applied in the retrofitting of an existing 90 PAX regional turbofan aircraft, highlighting the impact on both aircraft performance and industrial costs. Multiple variables and scenarios are considered regarding trade-offs and decision-making, including the number of aircraft to be retrofitted, the heritage of an aircraft and its utilization, the fuel price and the airport charges. The results show that a reduction of 15% in fuel demand and emissions are achievable, considering a fleet of 500 platforms, through a conspicuous investment of around EUR 20 million per aircraft (50% of the estimated price). Furthermore, depending on the scenarios driven by the regulatory authorities, governments or airlines, this paper provides a useful methodology to evaluate the feasibility of retrofitting activities.
Full article
(This article belongs to the Section Aeronautics)
►▼
Show Figures

Figure 1
Open AccessArticle
A Novel Direct Optimization Framework for Hypersonic Waverider Inverse Design Methods
Aerospace 2022, 9(7), 348; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070348 (registering DOI) - 29 Jun 2022
Abstract
Waverider is a hypersonic vehicle that improves the lift-to-drag ratio using the shockwave attached to the leading edge of the lifting surface. Owing to its superior aerodynamic performance, it exhibits a viable external configuration in hypersonic flight conditions. Most of the existing studies
[...] Read more.
Waverider is a hypersonic vehicle that improves the lift-to-drag ratio using the shockwave attached to the leading edge of the lifting surface. Owing to its superior aerodynamic performance, it exhibits a viable external configuration in hypersonic flight conditions. Most of the existing studies on waverider employ the inverse design method to generate vehicle configuration. However, the waverider inverse design method exhibits two limitations; inaccurate definition of design space and unfeasible performance estimation during the design process. To address these issues, a novel framework to directly optimize the waverider is proposed in this paper. The osculating cone theory is adopted as a waverider inverse design method. A general methodology to define the design space is suggested by analyzing the design curves of the osculating cone theory. The performance of the waverider is estimated accurately and rapidly via combining a high-fidelity computational fluid dynamics solver and a surrogate model. A comparison study shows that the proposed direct optimization framework enables a more accurate design space and efficient performance estimation. The framework is applied to the multi-objective optimization problem, which maximizes internal volume and minimizes aerodynamic drag. Finally, general characteristics for waverider are presented by analyzing the optimized results with data mining methods such as K-means.
Full article
(This article belongs to the Collection Hypersonics: Emerging Research)
►▼
Show Figures

Figure 1
Open AccessArticle
Study on Numerical Algorithm of the N-S Equation for Multi-Body Flows around Irregular Disintegrations in Near Space
Aerospace 2022, 9(7), 347; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070347 - 28 Jun 2022
Abstract
There has been a concern that the accurate numerical simulation of multi-body flow, which is caused by the multiple disintegrations of expired spacecraft re-entering into the near space, has a critical bottleneck impact on the falling area of the disintegrated debris. To solve
[...] Read more.
There has been a concern that the accurate numerical simulation of multi-body flow, which is caused by the multiple disintegrations of expired spacecraft re-entering into the near space, has a critical bottleneck impact on the falling area of the disintegrated debris. To solve this problem, an O-type grid topology method has been designed for the multi-body flow field of irregular debris formed by multiple disintegrations in near space, and a finite-volume implicit numerical scheme has been constructed for the Navier-Stokes equations to solve the aerodynamic interference characteristics of irregular multi-body flow, and further the N-S equation numerical algorithm has been established for the irregular multi-body flows in near space. The reliability of the method has been verified by the comparison of the present computation and the experiment of the low-density wind tunnel for the two-body flow of sphere, cylinder and square scripts. The objects of this study are from the multiple disintegrations of the Tiangong-1 spacecraft during uncontrolled re-entry into the atmosphere, including propelling cylinders and low-temperature lock cabinets. A series of simulations of multi-body flow mechanisms around different combinations have been carried out with varied shapes and spacing. As a result, it is found that when the distance of irregular debris (e.g., two propelling cylinders) in the near space is in the range of Δy < 3D or Δx < D, there is an obvious multi-body interference between debris, and the flow characteristics are obviously changed. When the distance between the debris in near space reaches a certain level, the influence of mutual interference can be ignored. For example, when the y-direction distance between multiple bodies is greater than 3D, the flow interference tends to be small and can be ignored, and we can regard them as two separate pieces to be carried out by the numerical prediction of flight track and falling area in engineering application. The results provide a practical design criterion for the integrated simulation platform which is used to simulate the multi-physics complex aerodynamics of space vehicles from the free-molecule flow of the outer space to the near-ground continuum flow.
Full article
Open AccessArticle
Parametric Research and Aerodynamic Characteristic of a Two-Stage Transonic Compressor for a Turbine Based Combined Cycle Engine
by
Aerospace 2022, 9(7), 346; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070346 - 28 Jun 2022
Abstract
This paper researches the parametric optimization of a two-stage transonic compressor having a large air bypass at partial rotating speed according to flow analysis for a turbine-based combined cycle engine (TBCC). To obtain adequate thrust, the inlet transonic compressor of the turbofan part
[...] Read more.
This paper researches the parametric optimization of a two-stage transonic compressor having a large air bypass at partial rotating speed according to flow analysis for a turbine-based combined cycle engine (TBCC). To obtain adequate thrust, the inlet transonic compressor of the turbofan part of the TBCC is required to have a wider frequently used corrected rotating speed range and a larger mass-flow rate at low rotating speed, which is different from a typical transonic compressor. The one-dimensional blade design parameters and flow path of the baseline two-stage transonic compressor are introduced. With the widely used CFD software Numeca, the three-dimensional flow fields of the baseline transonic compressor and effects of the flow path between Stage 1 and Stage 2 on the inlet mass flow rate are analyzed for indicating the further improvement direction. For design speed (NC = 1.0), to improve the efficiency at the design point, parametric research is carried out on Rotor 2 to optimize the shock structure and strength, resulting in enhanced efficiency at the design point due to reduced shock loss of Rotor 2. For partial speed (NC = 0.8 and 0.7), since the flow field analysis indicates that the flow blockage in S1 limits the entire mass flow rate, the parametric redesign of stator S1 aims at obtaining an increased blade throat width to enhance the flow capacity of S1. Simulation confirms the increase in the mass-flow rate and efficiency at partial speed due to the reduction in flow blockage and related viscous losses. Aerodynamic analysis at representative operation points indicates that the modifications of R2 and S1 lead to obvious aerodynamic improvement at all rotating speeds (NC = 1.0 to 0.7), while maintaining sufficient stall margin.
Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (Volume II))
►▼
Show Figures

Figure 1
Open AccessArticle
Layout Design and Verification of a Space Payload Distributed Capture and Lock System
Aerospace 2022, 9(7), 345; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070345 - 28 Jun 2022
Abstract
In this paper, the mechanism scheme and parametric design of a capture and lock system are studied based on the high reliability of locking systems. By analyzing the workflow and boundary conditions of the capture and lock system, a positioning design is carried
[...] Read more.
In this paper, the mechanism scheme and parametric design of a capture and lock system are studied based on the high reliability of locking systems. By analyzing the workflow and boundary conditions of the capture and lock system, a positioning design is carried out by combining it with the layout of a distributed capture and lock system. Based on the error domain for the passive end in the presence of errors in the manipulator, planning for the capture trajectory and configuration of the design for the active end are carried out. The influence of the passive end on the dynamic performance of the system is comprehensively considered to design the configuration of the passive end. According to the structure of the active end, a mathematical model for the capture and lock mechanism is established, and an analysis of the influence of trajectory parameters on the active end is carried out. The layout design of the capture hook for the active end is carried out based on an analysis of the influence of its layout on posture adjustment. The large-tolerance capability of the system layout is verified with a tolerance simulation analysis and a ground simulation capture test.
Full article
(This article belongs to the Section Astronautics & Space Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Quantifying the Resilience Performance of Airport Flight Operation to Severe Weather
Aerospace 2022, 9(7), 344; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070344 - 27 Jun 2022
Abstract
The increased number of severe weather events caused by global warming in recent years is a major turbulence factor for airport operation and results in more irregular flights. Quantifying the system response status towards turbulence is critical, in order for airports to deal
[...] Read more.
The increased number of severe weather events caused by global warming in recent years is a major turbulence factor for airport operation and results in more irregular flights. Quantifying the system response status towards turbulence is critical, in order for airports to deal with severe weather. For this reason, we propose a resilience framework that is in compliance with resilience theory to evaluate airport flight operations. In this framework, the departure rate (DPR), normal weather baseline (NWB), and nonnegative general resilience (NGR) were defined and used. Meanwhile, the whole process is divided into five phases before and after disturbance, and the system capacities of susceptibility, absorption, adaptation, and recovery are assessed. In order to clarify the performance of the framework towards various severe weather conditions, an analysis was conducted at Beijing Capital Airport in China based on a dataset that includes both the meteorological terminal aviation weather report (METAR) and flight operations from January to July 2021. The results show that the newly proposed resilience framework can commendably reflect airport flight operation performance. The airport flight operation resilience characteristic is different with severe weather. Compared to sandstorms and snow, airport flight operation with stronger robustness was observed during thunderstorm events. The study also confirms that, as the weather warning level increases, the disruption time increases and response time decreases accordingly. The above results could assist researchers and policy makers in clearly understanding the real-world resilience of airport flight operation, in both theory and practice, and responding to emergent disruptive events effectively.
Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
►▼
Show Figures

Figure 1
Open AccessArticle
The Confirmation of Thermal Boundary Parameters in an Oxygen Kerosene Fuel-Rich Rocket Engine
Aerospace 2022, 9(7), 343; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070343 - 26 Jun 2022
Abstract
The thermal environment is an important factor in the design of liquid rockets. In this paper, theoretical analysis, numerical simulation and experimental testing are conducted to study the boundary thermal characteristics of a GOX/kerosene liquid rocket motor with a total flow rate of
[...] Read more.
The thermal environment is an important factor in the design of liquid rockets. In this paper, theoretical analysis, numerical simulation and experimental testing are conducted to study the boundary thermal characteristics of a GOX/kerosene liquid rocket motor with a total flow rate of 120 g/s and an oxygen-fuel ratio of 1:1. We measured the axial temperature in different positions in the combustor using thermocouples and the heat flux using a flux meter. We found that the heat flux at 182 mm increases by 6.8% when a carbon deposit exists. For the theoretical results, after correcting the thermal conductivity by the volume fraction of carbon deposition, the theoretical heat flux (1.11 MW/m2, using the corrected thermal conductivity) and the numerical result (0.89 MW/m2, considering the injectors) are similar to the experimental value (0.937 MW/m2). This study validates the accuracy of theoretical and simulation calculation in this case, and provides verification data for future numerical calculation, as well as data for setting gas temperature at the wall in the simulation of the gas phase.
Full article
(This article belongs to the Special Issue Liquid Rocket Engines)
Open AccessArticle
Semi-Physical Simulation of Fan Rotor Assembly Process Optimization for Unbalance Based on Reinforcement Learning
Aerospace 2022, 9(7), 342; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070342 - 25 Jun 2022
Abstract
An aero engine fan rotor is composed of a multi-stage disk and multi-stage blades. Excessive unbalance of the aero engine fan rotor after assembly is the main cause of aero engine vibration. In the rotor assembly process, blade sequencing optimization and multi-stage blade
[...] Read more.
An aero engine fan rotor is composed of a multi-stage disk and multi-stage blades. Excessive unbalance of the aero engine fan rotor after assembly is the main cause of aero engine vibration. In the rotor assembly process, blade sequencing optimization and multi-stage blade set assembly phase optimization are important for reducing the overall rotor unbalance. To address this problem, this paper proposes a semi-physical simulation method based on reinforcement learning to optimize the balance in the fan rotor assembly process. Firstly, based on the mass moments of individual blades, the diagonal mass moment difference is introduced as a constraint to build a single-stage blade sorting optimization model, and reinforcement learning is used to find the optimal sorting path so that the balance of the single-stage blade after sorting is optimal. Then, on the basis of the initial unbalance of the disk and the unbalance of the single-stage blade set, a multi-stage blade assembly phase optimization model is established, and reinforcement learning is used to find the optimal assembly phase so that the overall balance of the rotor is optimal. Finally, based on the collection of data during the assembly of the rotor, the least-squares method is used to fit and calculate the real-time assembly unbalance to achieve a semi-physical simulation of the optimization of balance during the assembly process. The feasibility and effectiveness of the proposed method are verified by experiments.
Full article
(This article belongs to the Special Issue Application of Multidisciplinary Optimization and Artificial Intelligence Techniques to Aerospace Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
An Improved Fault Identification Method for Electromechanical Actuators
Aerospace 2022, 9(7), 341; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070341 - 25 Jun 2022
Abstract
Adoption of electromechanical actuation systems in aerospace is increasing, and so reliable diagnostic and prognostics schemes are required to ensure safe operations, especially in key, safety-critical systems such as primary flight controls. Furthermore, the use of prognostics methods can increase the system availability
[...] Read more.
Adoption of electromechanical actuation systems in aerospace is increasing, and so reliable diagnostic and prognostics schemes are required to ensure safe operations, especially in key, safety-critical systems such as primary flight controls. Furthermore, the use of prognostics methods can increase the system availability during the life cycle and thus reduce costs if implemented in a predictive maintenance framework. In this work, an improvement of an already presented algorithm will be introduced, whose scope is to predict the actual degradation state of a motor in an electromechanical actuator, also providing a temperature estimation. This objective is achieved by using a properly processed back-electromotive force signal and a simple feed-forward neural network. Good prediction of the motor health status is achieved with a small degree of inaccuracy.
Full article
(This article belongs to the Special Issue Electro-Mechanical Actuators for Safety-Critical Aerospace Applications)
Open AccessArticle
Induction Mechanism of Auditory-Assisted Vision for Target Search Localization in Mixed Reality (MR) Environments
Aerospace 2022, 9(7), 340; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070340 - 25 Jun 2022
Abstract
In MR (mixed reality) environments, visual searches are often used for search and localization missions. There are some problems with search and localization technologies, such as a limited field of view and information overload. They are unable to satisfy the need for the
[...] Read more.
In MR (mixed reality) environments, visual searches are often used for search and localization missions. There are some problems with search and localization technologies, such as a limited field of view and information overload. They are unable to satisfy the need for the rapid and precise location of specific flying objects in a group of air and space targets under modern air and space situational requirements. They lead to inefficient interactions throughout the mission process. A human being’s decision and judgment will be affected by inefficient interactions. Based on this problem, we carried out a multimodal optimization study on the use of an auditory-assisted visual search for localization in an MR environment. In the spatial–spherical coordinate system, the target flight object position is uniquely determined by the height h, distance r, and azimuth θ. Therefore, there is an urgent need to study the cross-modal connections between the auditory elements and these three coordinates based on a visual search. In this paper, an experiment was designed to study the correlation between auditory intuitive perception and vision and the cognitive induction mechanism. The experiment included the three cross-modal mappings of pitch–height, volume–distance, and vocal tract alternation–spatial direction. The research conclusions are as follows: (1) Visual cognition is induced by high, medium, and low pitches to be biased towards the high, medium, and low spatial regions of the visual space. (2) Visual cognition is induced by loud, medium, and low volumes to be biased towards the near, middle, and far spatial regions of the visual space. (3) Based on the HRTF application, the vocal track alternation scheme is expected to significantly improve the efficiency of visual interactions. Visual cognition is induced by left short sounds, right short sounds, left short and long sounds, and right short and long sounds to be biased towards the left, right, left-rear, and right-rear directions of visual space. (4) The cognitive load of search and localization technologies is significantly reduced by incorporating auditory factors. In addition, the efficiency and effect of the accurate search and positioning of space-flying objects have been greatly improved. The above findings can be applied to the research on various types of target search and localization technologies in an MR environment and can provide a theoretical basis for the subsequent study of spatial information perception and cognitive induction mechanisms in an MR environment with visual–auditory coupling.
Full article
Open AccessArticle
Design of an Integrated Platform for Active Debris Removal
Aerospace 2022, 9(7), 339; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070339 - 25 Jun 2022
Abstract
In research concerning active debris removal, scholars have proposed dozens of schemes for removing debris. However, every scheme has both advantages and disadvantages, and no scheme possesses an overwhelming advantage. This paper proposes an integrated platform scheme which integrates multiple capture and deorbit
[...] Read more.
In research concerning active debris removal, scholars have proposed dozens of schemes for removing debris. However, every scheme has both advantages and disadvantages, and no scheme possesses an overwhelming advantage. This paper proposes an integrated platform scheme which integrates multiple capture and deorbit technologies, such as a tethered net, harpoon, and robotic arm, to improve the success rate in terms of the active removal of debris of different shapes and different sizes. The design of the mechanisms of the integrated platform is presented in detail.
Full article
(This article belongs to the Special Issue Space Debris Removal: Challenges and Opportunities)
►▼
Show Figures

Figure 1
Open AccessArticle
Numerical Investigation of the Aerofoil Aerodynamics with Surface Heating for Anti-Icing
Aerospace 2022, 9(7), 338; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070338 - 24 Jun 2022
Abstract
The aerodynamics of an aerofoil with surface heating was numerically studied with the objective to build an effective anti-icing strategy and balance the aerodynamics performance and energy consumption. NACA0012, RAE2822 and ONERA M6 aerofoils were adopted as the test cases and the simulations
[...] Read more.
The aerodynamics of an aerofoil with surface heating was numerically studied with the objective to build an effective anti-icing strategy and balance the aerodynamics performance and energy consumption. NACA0012, RAE2822 and ONERA M6 aerofoils were adopted as the test cases and the simulations were performed in the subsonic flight condition of commercial passenger aircraft. In the first session, the numerical scheme was firstly validated with the experimental data. A parametric study with different heating temperatures and heating areas was carried out. The lift and drag coefficients both drop with surface heating, especially at a larger angle of attack. It was found that the separation point on the upper surface of the aerofoil is sensitive to heating. Higher heating temperature or larger heating area pushes the shock wave and hence flow separation point moving towards the leading edge, which reduces the low-pressure region of the upper surface and decreases the lift. In the second session, the conclusions obtained are applied to inform the design of the heating scheme for NACA0012. Further guidelines for different flight conditions were proposed to shed light on the optimisation of the heating strategy.
Full article
(This article belongs to the Special Issue Aerodynamics Design)
►▼
Show Figures

Figure 1
Open AccessArticle
Fault-Tolerant Control of a Dual-Stator PMSM for the Full-Electric Propulsion of a Lightweight Fixed-Wing UAV
Aerospace 2022, 9(7), 337; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070337 - 24 Jun 2022
Abstract
The reliability enhancement of electrical machines is one of the key enabling factors for spreading the full-electric propulsion to next-generation long-endurance UAVs. This paper deals with the fault-tolerant control design of a Full-Electric Propulsion System (FEPS) for a lightweight fixed-wing UAV, in which
[...] Read more.
The reliability enhancement of electrical machines is one of the key enabling factors for spreading the full-electric propulsion to next-generation long-endurance UAVs. This paper deals with the fault-tolerant control design of a Full-Electric Propulsion System (FEPS) for a lightweight fixed-wing UAV, in which a dual-stator Permanent Magnet Synchronous Machine (PMSM) drives a twin-blade fixed-pitch propeller. The FEPS is designed to operate with both stators delivering power (active/active status) during climb, to maximize performances, while only one stator is used (active/stand-by status) in cruise and landing, to enhance reliability. To assess the fault-tolerant capabilities of the system, as well as to evaluate the impacts of its failure transients on the UAV performances, a detailed model of the FEPS (including three-phase electrical systems, digital regulators, drivetrain compliance and propeller loads) is integrated with the model of the UAV longitudinal dynamics, and the system response is characterized by injecting a phase-to-ground fault in the motor during different flight manoeuvres. The results show that, even after a stator failure, the fault-tolerant control permits the UAV to hold altitude and speed during cruise, to keep on climbing (even with reduced performances), and to safely manage the flight termination (requiring to stop and align the propeller blades with the UAV wing), by avoiding potentially dangerous torque ripples and structural vibrations.
Full article
(This article belongs to the Special Issue Electro-Mechanical Actuators for Safety-Critical Aerospace Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Numerical Simulation of Sintering of DLP Printed Alumina Ceramics
Aerospace 2022, 9(7), 336; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070336 - 24 Jun 2022
Abstract
Digital Light Processing (DLP) technology exhibits the capability of producing components with complex structures for a variety of technical applications. Postprocessing of additively printed ceramic components has been shown to be an important step in determining the final product resolution and mechanical qualities,
[...] Read more.
Digital Light Processing (DLP) technology exhibits the capability of producing components with complex structures for a variety of technical applications. Postprocessing of additively printed ceramic components has been shown to be an important step in determining the final product resolution and mechanical qualities, particularly with regard to distortions and resultant density. The goal of this research is to study the sintering process parameters to create a nearly fully dense, defect-free, ceramic component. A high-solid-loading alumina slurry with suitable rheological and photopolymerisable characteristics for DLP was created. TGA/DSC analysis was used to estimate thermal debinding parameters. The sintering process of the debound parts was studied by employing a numerical model based on thermo-viscoelasticity theory to describe the sintering process. The validated Finite Element Modelling (FEM) code was capable of predicting shrinkage and relative density changes during the sintering cycle, as well as providing meaningful information on the final shape. Archimedes’ principle and scanning electron microscope (SEM) were used to characterise the sintered parts and validate the numerical model. Samples with high relative density (>98.5%) were produced and numerical data showed close matches for predicted shrinkages and relative densities, with less than 2% mismatch between experimental results and simulations. The current model may allow to effectively predict the properties of alumina ceramics produced via DLP and tailor them for specific applications.
Full article
(This article belongs to the Special Issue Additive Manufacturing of Ceramic Materials in Aerospace)
►▼
Show Figures

Figure 1
Open AccessArticle
Aeroelastic Tailoring of the Next Generation Civil Tiltrotor Technological Demonstrator Composite Wing
by
, , , , , , , and
Aerospace 2022, 9(7), 335; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070335 - 23 Jun 2022
Abstract
The tiltrotor wing structure is one of the most critical and heavily investigated structures in design due to the fundamental need to consider the interactions between the wing, pylon, and rotor systems to achieve aircraft aeroelastic stability. Indeed, in high-speed forward flight, wing
[...] Read more.
The tiltrotor wing structure is one of the most critical and heavily investigated structures in design due to the fundamental need to consider the interactions between the wing, pylon, and rotor systems to achieve aircraft aeroelastic stability. Indeed, in high-speed forward flight, wing flexural and torsional stiffness have fundamental roles in pitch-whirl stability. Another specific concern of tiltrotors is dynamic mode placement; it is necessary to properly place wing bending modes away from prop-rotor forcing frequencies. The main aeroelastic stability and dynamics requirements and the wing design process flow for the next generation civil tiltrotor are presented in this work. In this context, the use of composite materials plays a fundamental role in the attempt to satisfy the requirements, with the perpetual aim of minimizing the structural weight. An overview of the idealized and adopted models for strength, aeroelasticity, and whirl flutter analysis is provided. The primary focus was on the aeroelastic tailoring process. To satisfy, at the same time, all of the structural dynamic and aeroelastic stability requirements, the best compromise, with an acceptable weight penalty, was the mixture of two methodological solutions: adding unidirectional tape in the zones of the upper and lower skins for flexural out-of-plane frequency and adding a proper number of ±45° fabric layers at the locations of the skin with the highest value of strain energy for in-plane torsional modes. The results show that the proposed method based on modal strain energy analysis enables a tiltrotor aeroelastic tailored wing design. It can be easily employed in similar applications (e.g., vehicle scale-up/down) with the advantage of using the stiffness requirements derived directly from the aeroelastic ones (i.e., structural frequencies). The specific wing achieved aeroelastic clearance by adding only 2.7% of extra mass.
Full article
(This article belongs to the Special Issue Smart Wing Aircraft)
Open AccessArticle
Landing Performance Study for Four Wheels Twin Tandem Landing Gear Based on Drop Test
Aerospace 2022, 9(7), 334; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070334 - 22 Jun 2022
Abstract
The drop tests of a twin tandem landing gear with different filling parameters are carried out in two different landing attitudes (level and tail-down). The overload coefficient and power absorption efficiency are obtained. Curves of dynamic oscillation and pressure change for the pitch
[...] Read more.
The drop tests of a twin tandem landing gear with different filling parameters are carried out in two different landing attitudes (level and tail-down). The overload coefficient and power absorption efficiency are obtained. Curves of dynamic oscillation and pressure change for the pitch damper are obtained. The results show that twin tandem landing gear has a good ability to absorb the work of landing impact. Under landing weight, the vertical overload coefficients during level landing and tail-down landing are 1.14 and 1.07, respectively, when the corresponding efficiencies of its buffer system are 80.9% and 83.3%. During tail-down landing, the work absorbed by the pitch damper accounts for only 14.9% of the maximum pitching kinetic energy of the trolley. When the orifice diameter of the pitch damper keeps the same, its peak axial load does not change significantly with the change of its initial pressure. When the initial pressure of the pitch damper keeps the same, the decrease of its orifice diameter is beneficial to the vibration attenuation of the trolley. The smaller recoil channel may lead to a significant increase in the peak pressure of the pitch damper, which should be a consideration in its design.
Full article
(This article belongs to the Section Aeronautics)
►▼
Show Figures

Figure 1
Open AccessArticle
Resilient Multi-Source Integrated Navigation Method for Aerospace Vehicles Based on On-Line Evaluation of Redundant Information
Aerospace 2022, 9(7), 333; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070333 - 22 Jun 2022
Abstract
Aerospace vehicle navigation systems are equipped with multi-source redundant navigation sensors. According to the characteristics of the above navigation system configuration, building a resilient navigation framework to improve the accuracy and robustness of the navigation system has become an urgent problem to be
[...] Read more.
Aerospace vehicle navigation systems are equipped with multi-source redundant navigation sensors. According to the characteristics of the above navigation system configuration, building a resilient navigation framework to improve the accuracy and robustness of the navigation system has become an urgent problem to be solved. In the existing integrated navigation methods, redundant information is only used for backup. So, it cannot use the redundant navigation information to improve the accuracy of the navigation system. In this paper, a resilient multi-source fusion integrated navigation method based on comprehensive information evaluation has been proposed by combining of qualitative analysis and quantitative analysis in information theory. Firstly, this paper proposes a multi-layer evaluation framework of redundant information and carries out quantitative analysis of redundant information with the information disorder analysis theory to improve the reliability of the navigation system. Secondly, a navigation output effectiveness evaluation system has been established to analyze the output of heterogeneous navigation subsystems qualitatively to improve the fusion accuracy. Finally, through the mutual correction of multi-level information evaluation results, the error decoupling between the output parameters of heterogeneous navigation sensors has been realized to improve the robustness of the system. The experimental results show that the method proposed in this paper can adaptively allocate and adjust the weight of navigation information at all levels, realize the “non-stop” work of the navigation system and enhance the resilient of the navigation architecture. The navigation accuracy is improved compared with the existing multi-source fusion algorithm, which reflects the reliability and robustness of this algorithm.
Full article
Open AccessArticle
Water Surface Flight Control of a Cross Domain Robot Based on an Adaptive and Robust Sliding Mode Barrier Control Algorithm
Aerospace 2022, 9(7), 332; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9070332 - 21 Jun 2022
Abstract
When a cross-domain robot (CDR) flies on the water surface, the large pitch angle and roll angle may lead to water flooding into the robot cabin or even overturning. In addition, the CDR is influenced by some uncertain parameters and external disturbances, such
[...] Read more.
When a cross-domain robot (CDR) flies on the water surface, the large pitch angle and roll angle may lead to water flooding into the robot cabin or even overturning. In addition, the CDR is influenced by some uncertain parameters and external disturbances, such as the water resistance and current. To constrain the robot attitude angle and improve the robustness of the controller, a non-singular terminal sliding mode asymmetric barrier control (NTSMABC) algorithm is proposed. All the uncertain disturbances are regarded as a lump disturbance, and a radial basis function neural network (RBFNN) is designed to compensate for the output of the controllers. Unlike the traditional quadrotors, the robot controls the yaw angle by paddles when the robot flies on the water surface. To prevent the actuator saturation and the robot from rolling over due to excessive yaw angular velocity, an adaptive integral sliding mode barrier control (AISMBC) algorithm is proposed to constrain the yaw angular velocity directly. This algorithm adaptively adjusts the gain of the sliding surface to suppress the influence of the lump disturbance on the robot. Another RBFNN is designed to compensate for the output of the controller. Simulation results demonstrate the effectiveness of the proposed control methods.
Full article
(This article belongs to the Special Issue Applications of Drones)
►▼
Show Figures

Figure 1
Open AccessArticle
Energy System Optimization and Simulation for Low-Altitude Solar-Powered Unmanned Aerial Vehicles
Aerospace 2022, 9(6), 331; https://0-doi-org.brum.beds.ac.uk/10.3390/aerospace9060331 - 20 Jun 2022
Abstract
The accurate calculation of energy system parameters makes a great contribution to the long-term low-altitude flight of solar-powered aircraft. The purpose of this paper is to propose a design method for optimization and management of the low-altitude and long-endurance Unmanned Aerial Vehicles (UAV)
[...] Read more.
The accurate calculation of energy system parameters makes a great contribution to the long-term low-altitude flight of solar-powered aircraft. The purpose of this paper is to propose a design method for optimization and management of the low-altitude and long-endurance Unmanned Aerial Vehicles (UAV) energy system. In terms of optimization, the power input and output generated by solar panels and cruise thrust are calculated, and the energy balance of the UAV during flight is analyzed. In addition, in order to meet the energy consumption requirements of UAV during day and night flight, the influence of local environmental conditions (such as morning and evening clouds and night interference) on the aircraft is considered, and the remaining time indicator is designed to ensure long-term flight stability. Battery capacity is also estimated by the remaining time. This paper will describe extended criteria for optimization and extension methods to improve the stability and robustness of aircraft flight performance for multiple consecutive days. In addition, a design method for the UAV has been developed, which simulates and optimizes the parameters of the solar-powered UAV so that it has a wingspan of 5 m and a relative battery mass of 3 kg. The simulation in this paper describes in detail the aircraft taking off from 7 a.m. on the first day to verify the aircraft’s full day and night flight capability, and achieving the aircraft’s long flight on 22 June to meet the mission requirements of multi-day flights. It also analyzed and verified the performance at the edge of the 48 h flight time window on 21 April, which differs from the lighting in August. Finally, a flight experiment was completed on 9 August. The feasibility of the proposed method and process is verified in this paper along with the performance of the designed UAV, which will provide more guidance for future work.
Full article
(This article belongs to the Section Aeronautics)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Aerospace Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Aerospace, Applied Sciences, ChemEngineering, J. Compos. Sci., Materials
Composites in Aerospace and Mechanical Engineering
Topic Editors: Stelios K. Georgantzinos, Georgios I. Giannopoulos, Konstantinos Stamoulis, Stylianos MarkolefasDeadline: 31 December 2022
Topic in
Energies, Aerospace, Applied Sciences, Remote Sensing, Sensors
GNSS Measurement Technique in Aerial Navigation
Topic Editors: Kamil Krasuski, Damian WierzbickiDeadline: 31 March 2023
Topic in
Aerospace, Applied Sciences, Remote Sensing, Sensors, Smart Cities
Multi-Sensor Integrated Navigation Systems
Topic Editors: Hang Guo, Marcin Uradzinski, You LiDeadline: 30 June 2023

Conferences
Special Issues
Special Issue in
Aerospace
Adaptive/Smart Structures and Multifunctional Materials in Aerospace
Guest Editors: Rafic Ajaj, Norman WereleyDeadline: 30 June 2022
Special Issue in
Aerospace
Smart Wing Aircraft
Guest Editor: Wolf-Reiner KrügerDeadline: 15 July 2022
Special Issue in
Aerospace
Avionic Systems
Guest Editors: Carlos Insaurralde, Francesco Dell’OlioDeadline: 20 July 2022
Special Issue in
Aerospace
Recent Advances in See and Avoid Systems for Aircraft
Guest Editor: Federico CorraroDeadline: 31 July 2022
Topical Collections
Topical Collection in
Aerospace
Hypersonics: Emerging Research
Collection Editors: Sergey Leonov, Kojiro Suzuki
Topical Collection in
Aerospace
Space Systems Dynamics
Collection Editors: Mikhail Ovchinnikov, Dmitry Roldugin
Topical Collection in
Aerospace
Unmanned Aerial Systems
Collection Editors: David Anderson, Javaan Chahl, Michael Wing
Topical Collection in
Aerospace
Air Transportation—Operations and Management
Collection Editors: Michael Schultz, Judith Rosenow