Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

18 pages, 4898 KiB  
Article
Analysis and Comparison of Shading Strategies to Increase Human Thermal Comfort in Urban Areas
by Ivan Lee, James A. Voogt and Terry J. Gillespie
Atmosphere 2018, 9(3), 91; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos9030091 - 01 Mar 2018
Cited by 53 | Viewed by 7010
Abstract
With the expected increase in warmer conditions caused by climate change, heat-related illnesses are becoming a more pressing issue. One way that humans can protect themselves from this is to seek shade. The design of urban spaces can provide individuals with a variety [...] Read more.
With the expected increase in warmer conditions caused by climate change, heat-related illnesses are becoming a more pressing issue. One way that humans can protect themselves from this is to seek shade. The design of urban spaces can provide individuals with a variety of ways to obtain this shade. The objective of this study was to perform a detailed evaluation and comparison of three shading strategies that could be used in an urban environment: shade from a building, from a tree, and from an umbrella. This was done through using field measurements to calculate the impact of each strategy on a thermal comfort index (Comfort Formula (COMFA)) in two urban settings during sunny days of the summer of 2013 and 2014 in London, Canada. Building shade was found to be the most effective cooling strategy, followed by the tree strategy and the umbrella strategy. As expected, the main determinant of this ranking was a strategy’s ability to block incoming shortwave radiation. Further analysis indicated that changes in the convective loss of energy and in longwave radiation absorption had a smaller impact that caused variations in the strategy effectiveness between settings. This suggests that under non-sunny days, these rankings could change. Full article
(This article belongs to the Special Issue Urban Design and City Microclimates)
Show Figures

Graphical abstract

1964 KiB  
Article
An Effective Surrogate Tracer Technique for S. aureus Bioaerosols in a Mechanically Ventilated Hospital Room Replica Using Dilute Aqueous Lithium Chloride
by Marco-Felipe King, Miller Alonso Camargo-Valero, Adriana Matamoros-Veloza, P. Andrew Sleigh and Catherine J. Noakes
Atmosphere 2017, 8(12), 238; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos8120238 - 01 Dec 2017
Cited by 5 | Viewed by 4382
Abstract
Finding a non-pathogenic surrogate aerosol that represents the deposition of typical bioaerosols in healthcare settings is beneficial from the perspective of hospital facility testing, general infection control and outbreak analysis. This study considers aerosolization of dilute aqueous lithium chloride (LiCl) and sodium chloride [...] Read more.
Finding a non-pathogenic surrogate aerosol that represents the deposition of typical bioaerosols in healthcare settings is beneficial from the perspective of hospital facility testing, general infection control and outbreak analysis. This study considers aerosolization of dilute aqueous lithium chloride (LiCl) and sodium chloride (NaCl) solutions as surrogate tracers capable of representing Staphylococcus aureus bioaerosol deposition on surfaces in mechanically ventilated rooms. Tests were conducted in a biological test chamber set up as a replica hospital single patient room. Petri dishes on surfaces were used to collect the Li, Na and S. aureus aerosols separately after release. Biological samples were analyzed using cultivation techniques on solid media, and flame atomic absorption spectroscopy was used to measure Li and Na atom concentrations. Spatial deposition distribution of Li tracer correlated well with S. aureus aerosols (96% of pairs within a 95% confidence interval). In the patient hospital room replica, results show that the most contaminated areas were on surfaces 2 m away from the source. This indicates that the room’s airflow patterns play a significant role in bioaerosol transport. NaCl proved not to be sensitive to spatial deposition patterns. LiCl as a surrogate tracer for bioaerosol deposition was most reliable as it was robust to outliers, sensitive to spatial heterogeneity and found to require less replicates than the S. aureus counterpart to be in good spatial agreement with biological results. Full article
(This article belongs to the Special Issue Indoor Air Pollution)
Show Figures

Figure 1

10426 KiB  
Article
Development of an Unmanned Aerial Vehicle for the Measurement of Turbulence in the Atmospheric Boundary Layer
by Brandon M. Witte, Robert F. Singler and Sean C. C. Bailey
Atmosphere 2017, 8(10), 195; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos8100195 - 04 Oct 2017
Cited by 58 | Viewed by 8450
Abstract
This paper describes the components and usage of an unmanned aerial vehicle developed for measuring turbulence in the atmospheric boundary layer. A method of computing the time-dependent wind speed from a moving velocity sensor data is provided. The physical system built to implement [...] Read more.
This paper describes the components and usage of an unmanned aerial vehicle developed for measuring turbulence in the atmospheric boundary layer. A method of computing the time-dependent wind speed from a moving velocity sensor data is provided. The physical system built to implement this method using a five-hole probe velocity sensor is described along with the approach used to combine data from the different on-board sensors to allow for extraction of the wind speed as a function of time and position. The approach is demonstrated using data from three flights of two unmanned aerial vehicles (UAVs) measuring the lower atmospheric boundary layer during transition from a stable to convective state. Several quantities are presented and show the potential for extracting a range of atmospheric boundary layer statistics. Full article
(This article belongs to the Special Issue Atmospheric Measurements with Unmanned Aerial Systems (UAS))
Show Figures

Graphical abstract

228 KiB  
Article
The Impact of Residential Combustion Emissions on Health Expenditures: Empirical Evidence from Sub-Saharan Africa
by Aboubacar Badamassi, Deyi Xu and Boubacar Hamidou Leyla
Atmosphere 2017, 8(9), 157; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos8090157 - 25 Aug 2017
Cited by 11 | Viewed by 4038
Abstract
Residential combustion of fuels, especially solid, for cooking, heating and other activities generates high level emissions that considerably contribute to indoor and outdoor air pollutants concentrations, which adversely affect human health and are likely to influence heath expenditures. We used the system General [...] Read more.
Residential combustion of fuels, especially solid, for cooking, heating and other activities generates high level emissions that considerably contribute to indoor and outdoor air pollutants concentrations, which adversely affect human health and are likely to influence heath expenditures. We used the system General Method of Moments (GMM) technique to examine the role of residential combustion (proxied by: particulate matter (PM2.5), carbon monoxide (CO), nitrogen oxide (NOx) and sulphur dioxide (SO2) emissions) in determining health expenditures while controlling for ambient air pollutants emissions from the other categories such as transportation, manufacturing industries and construction, and others. We employed data covering the period 1995–2010 in 44 countries of Sub-Saharan Africa (SSA). Health expenditures are categorized into per capita, public and private out-of-pocket; and we run three separate regressions according to the categories. The findings indicate that residential sector combustion was significantly associated with higher health expenditures, especially the out-of-pocket compared with other categories. Moreover, PM2.5 is found to have the highest impact on health expenditures. The implementation of effective public health and environmental health policies that encourage the access and use of cleaner fuels or improved cook stoves in SSA would be associated with not only a reduction in healthcare expenditures but also with other health and socio-economic benefits. Full article
(This article belongs to the Special Issue Indoor Air Pollution)

Editorial

5 pages, 172 KiB  
Editorial
The Effect of Helio-Geomagnetic Activity in the Geo-Environment and by Extension to Human Health
by Panagiota Preka-Papadema and Chris G. Tzanis
Atmosphere 2024, 15(3), 293; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos15030293 - 27 Feb 2024
Viewed by 1182
Abstract
Solar activity encompasses various phenomena within the solar atmosphere, notably including eruptive events like solar flares and coronal mass ejections (CMEs) [...] Full article

Review

24 pages, 1942 KiB  
Review
Review: Fractal Geometry in Precipitation
by Robert Monjo and Oliver Meseguer-Ruiz
Atmosphere 2024, 15(1), 135; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos15010135 - 22 Jan 2024
Viewed by 892
Abstract
Rainfall, or more generally the precipitation process (flux), is a clear example of chaotic variables resulting from a highly nonlinear dynamical system, the atmosphere, which is represented by a set of physical equations such as the Navier–Stokes equations, energy balances, and the hydrological [...] Read more.
Rainfall, or more generally the precipitation process (flux), is a clear example of chaotic variables resulting from a highly nonlinear dynamical system, the atmosphere, which is represented by a set of physical equations such as the Navier–Stokes equations, energy balances, and the hydrological cycle, among others. As a generalization of the Euclidean (ordinary) measurements, chaotic solutions of these equations are characterized by fractal indices, that is, non-integer values that represent the complexity of variables like the rainfall. However, observed precipitation is measured as an aggregate variable over time; thus, a physical analysis of observed fluxes is very limited. Consequently, this review aims to go through the different approaches used to identify and analyze the complexity of observed precipitation, taking advantage of its geometry footprint. To address the review, it ranges from classical perspectives of fractal-based techniques to new perspectives at temporal and spatial scales as well as for the classification of climatic features, including the monofractal dimension, multifractal approaches, Hurst exponent, Shannon entropy, and time-scaling in intensity–duration–frequency curves. Full article
(This article belongs to the Special Issue Geometry in Meteorology and Climatology)
Show Figures

Figure 1

20 pages, 378 KiB  
Review
Review of Smog Chamber Experiments for Secondary Organic Aerosol Formation
by Hyun Kim, Dahyun Kang, Heon Young Jung, Jongho Jeon and Jae Young Lee
Atmosphere 2024, 15(1), 115; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos15010115 - 18 Jan 2024
Viewed by 956
Abstract
In this study, we reviewed smog chamber systems and methodologies used in secondary organic aerosol (SOA) formation studies. Many important chambers across the world have been reviewed, including 18 American, 24 European, and 8 Asian chambers. The characteristics of the chambers (location, reactor [...] Read more.
In this study, we reviewed smog chamber systems and methodologies used in secondary organic aerosol (SOA) formation studies. Many important chambers across the world have been reviewed, including 18 American, 24 European, and 8 Asian chambers. The characteristics of the chambers (location, reactor size, wall materials, and light sources), measurement systems (popular equipment and working principles), and methodologies (SOA yield calculation and wall-loss correction) are summarized. This review discussed key experimental parameters such as surface-to-volume ratio (S/V), temperature, relative humidity, light intensity, and wall effect that influence the results of the experiment, and how the methodologies have evolved for more accurate simulation of atmospheric processes. In addition, this review identifies the sources of uncertainties in finding SOA yields that are originated from experimental systems and methodologies used in previous studies. The intensity of the installed artificial lights (photolysis rate of NO2 varied from 0.1/min to 0.40/min), SOA density assumption (varied from 1 g/cm3 to 1.45 g/cm3), wall-loss management, and background contaminants were identified as important sources of uncertainty. The methodologies developed in previous studies to minimize those uncertainties are also discussed. Full article
15 pages, 1299 KiB  
Review
The Causes and Forecasting of Icing Events on Power Transmission Lines in Southern China: A Review and Perspective
by Luyao Wang, Zechang Chen, Wenjie Zhang, Zhumao Lu, Yang Cheng, Xiaoli Qu, Chaman Gul and Yuanjian Yang
Atmosphere 2023, 14(12), 1815; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14121815 - 13 Dec 2023
Cited by 1 | Viewed by 888
Abstract
The icing on power transmission lines, as a major hazard affecting the safety of electricity usage in China during winter, poses a significant challenge in systematically evaluating the weather conditions and their distribution characteristics during the icing period. Understanding the interaction between the [...] Read more.
The icing on power transmission lines, as a major hazard affecting the safety of electricity usage in China during winter, poses a significant challenge in systematically evaluating the weather conditions and their distribution characteristics during the icing period. Understanding the interaction between the microterrain and micrometeorology and achieving a refined analysis of the physical mechanisms during the icing process remain difficult tasks in this field. These are crucial aspects for the development of more accurate icing prediction models across southern China. Therefore, this study provides a comprehensive review and summary of the current research state and progress in the study of power transmission line icing in southern China from three perspectives: (1) large-scale circulation characteristics; (2) microphysical process, terrain–atmosphere interaction, microtopography and local micrometeorological conditions for the occurrence of icing events; and (3) numerical icing event modeling and forecasting. This study also looks ahead to the scientific issues and technological bottlenecks that need to be overcome for the prediction of ice coating on power transmission lines in southern China. The goal is to provide guidance for the causal analysis and forecasting warnings of power transmission line icing in the complex microterrain of the southern region. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 1985 KiB  
Review
New Ways to Modelling and Predicting Ionosphere Variables
by Sandro M. Radicella
Atmosphere 2023, 14(12), 1788; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14121788 - 05 Dec 2023
Cited by 1 | Viewed by 991
Abstract
The new way of thinking science from Newtonian determinism to nonlinear unpredictability and the dawn of advanced computer science and technology can be summarized in the words of the theoretical physicist Michel Baranger, who, in 2000, said in a conference: “Twenty-first-century theoretical physics [...] Read more.
The new way of thinking science from Newtonian determinism to nonlinear unpredictability and the dawn of advanced computer science and technology can be summarized in the words of the theoretical physicist Michel Baranger, who, in 2000, said in a conference: “Twenty-first-century theoretical physics is coming out of the chaos revolution; it will be about complexity and its principal tool will be the computer.”. This can be extended to natural sciences in general. Modelling and predicting ionosphere variables have been considered since many decades as a paramount objective of research by scientists and engineers. The new approach to natural sciences influenced also ionosphere research. Ionosphere as a part of the solar–terrestrial environment is recognized to be a complex chaotic system, and its study under this new way of thinking should become an important area of ionospheric research. After discussing the new context, this paper will try to review recent advances in the exploration of ionosphere parameter time series in terms of chaos theory and the use of machine-learning algorithms. Full article
Show Figures

Figure 1

27 pages, 2287 KiB  
Review
The Status of Space Weather Infrastructure and Research in Africa
by Paul Baki, Babatunde Rabiu, Christine Amory-Mazaudier, Rolland Fleury, Pierre J. Cilliers, Joseph Adechinan, Anas Emran, Aziza Bounhir, Claudio Cesaroni, J. Bienvenue Dinga, Patricia Doherty, Idrissa Gaye, Hassen Ghalila, Franck Grodji, John-Bosco Habarulema, Bruno Kahindo, Ayman Mahrous, Honoré Messanga, Patrick Mungufeni, Bruno Nava, Melessew Nigussie, Joseph Olwendo, Patrick Sibanda, René Tato Loua, Jean Uwamahoro, Naima Zaourar and Jean-Louis Zerboadd Show full author list remove Hide full author list
Atmosphere 2023, 14(12), 1791; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14121791 - 05 Dec 2023
Viewed by 1469
Abstract
Space weather science has been a growing field in Africa since 2007. This growth in infrastructure and human capital development has been accompanied by the deployment of ground-based observing infrastructure, most of which was donated by foreign institutions or installed and operated by [...] Read more.
Space weather science has been a growing field in Africa since 2007. This growth in infrastructure and human capital development has been accompanied by the deployment of ground-based observing infrastructure, most of which was donated by foreign institutions or installed and operated by foreign establishments. However, some of this equipment is no longer operational due to several factors, which are examined in this paper. It was observed that there are considerable gaps in ground-based space-weather-observing infrastructure in many African countries, a situation that hampers the data acquisition necessary for space weather research, hence limiting possible development of space weather products and services that could help address socio-economic challenges. This paper presents the current status of space weather science in Africa from the point of view of some key leaders in this field, focusing on infrastructure, situation, human capital development, and the research landscape. Full article
Show Figures

Figure 1

9 pages, 261 KiB  
Review
Bedrooms and the Vulnerability of Sleepers to Extreme Heat Events
by Stephen Emmitt
Atmosphere 2023, 14(12), 1782; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14121782 - 02 Dec 2023
Cited by 1 | Viewed by 938
Abstract
Insufficient sleep is known to have an impact on health, wellbeing, and productivity. Sleep has been explored extensively in the medical literature but has received scant attention in the built environment journals. With the climate becoming unpredictable, combined with the climate emergency and [...] Read more.
Insufficient sleep is known to have an impact on health, wellbeing, and productivity. Sleep has been explored extensively in the medical literature but has received scant attention in the built environment journals. With the climate becoming unpredictable, combined with the climate emergency and concerns over energy poverty, questions need to be asked about the suitability of the housing stock and, especially, bedrooms. This is pertinent for vulnerable individuals (e.g., very young, elder members of society, and those with medical conditions) who may be unable to adapt their sleep environment in extreme and prolonged heat events. The aim of this narrative review is to raise awareness of the complex inter-relationship between the sleeper and the bedroom in domestic properties. It highlights the vulnerability of sleepers and the need for adaptation strategies to cope with extreme heat events without resorting to mechanical air conditioning. It emphasises the need for interdisciplinary research to better inform stakeholders of the risks posed to sleep quality by climate change, and contributes positively to the promotion of health. Full article
13 pages, 1789 KiB  
Review
The Climate Change Crisis: A Review of Its Causes and Possible Responses
by Albert J. Gabric
Atmosphere 2023, 14(7), 1081; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14071081 - 27 Jun 2023
Cited by 6 | Viewed by 4935
Abstract
Anthropogenic climate change (ACC) has evolved into a set of crises due to society’s deep economic dependency on fossil fuels. These multiple crises have been well documented and span diverse ecological, human health and economic settings. Given the scale and breadth of CC [...] Read more.
Anthropogenic climate change (ACC) has evolved into a set of crises due to society’s deep economic dependency on fossil fuels. These multiple crises have been well documented and span diverse ecological, human health and economic settings. Given the scale and breadth of CC impacts, expert labeling of the issues has gradually changed from the somewhat benign sounding “global warming” to the more frightening description of a “climate emergency”. Notwithstanding calls for transformative societal change, serious attempts to confront ACC have been hampered by decades of government policy inaction, various scientific debates, political conservatism and denial and public ignorance or apathy. Meanwhile, atmospheric greenhouse gas concentrations have increased inexorably and show no sign of plateauing. The impacts of ACC are becoming evident sooner than expected, and projections for the future of the planet’s ecosystems and the human population which depends on them are dire. Proposals to geoengineer the climate are currently being hotly debated within the scientific community but may prove to be a last resort if the impacts of unmitigated warming become even more severe. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

15 pages, 4530 KiB  
Review
Microplastic Pollution Research Based on the VOS Viewer Software: Research Trends, Ecological Effects, and Testing Methods
by Yange Wang, Bowen Zhang, Rongshuo Zhang, Yangbing Wei, Yunjing Wang and Rencheng Zhu
Atmosphere 2023, 14(5), 838; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14050838 - 08 May 2023
Cited by 1 | Viewed by 1689
Abstract
Microplastics (MPs) are receiving increasing attention because of their potential harm to the environment and human health. This research aims to summarize the abundance, toxicological effects, and analysis methods of MPs, as well as present their current status and trends in scientific research. [...] Read more.
Microplastics (MPs) are receiving increasing attention because of their potential harm to the environment and human health. This research aims to summarize the abundance, toxicological effects, and analysis methods of MPs, as well as present their current status and trends in scientific research. Bibliometric analysis confirmed a substantial rise in annual research papers on MPs, predominantly over the previous nine years. The central research areas relating to MPs include distribution, sources, toxic effects, analytical approaches, and adsorption of MPs with other pollutants. Airborne MPs are a primary source of microplastic pollution in remote areas. Humans may inhale and ingest MPs, leading to the accumulation of these particles in their bodies. Additionally, microplastics can have biological toxicity that poses a potential threat to human health. Standard procedures for sampling and both qualitative and quantitative analysis of microplastics in various environmental media must be established urgently to enable effective comparison of experimental conclusions. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

30 pages, 3704 KiB  
Review
Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review
by Bo Yuan, Tao Zhu, Yiwei Han, Xueli Zhang, Meidan Wang and Chen Li
Atmosphere 2023, 14(5), 770; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14050770 - 23 Apr 2023
Cited by 4 | Viewed by 2611
Abstract
In recent decades, the massive emission of greenhouse gases, such as carbon dioxide and methane, into the atmosphere has had a serious impact on the ecological environment. The dry reforming of carbon dioxide and methane to syngas cannot only realize the resource utilization [...] Read more.
In recent decades, the massive emission of greenhouse gases, such as carbon dioxide and methane, into the atmosphere has had a serious impact on the ecological environment. The dry reforming of carbon dioxide and methane to syngas cannot only realize the resource utilization of methane and carbon dioxide but also reduce global climate change. It is of great significance in carbon emission reduction. Owing to the dry reforming of methane (DRM) being a strongly endothermic reaction, it needs to be carried out under high-temperature conditions. It makes the catalyst have problems of the sintering of metal, carbon deposition, and poisoning. This article revolves around the problem of catalyst deactivation during the DRM reaction. It expands upon the thermodynamics and mechanisms of the DRM reaction, analyzes the causes of metal catalyst deactivation due to carbon deposition, sintering, and poisoning, and summarizes how the active components, supports, and additives of metal catalysts restrain the DRM catalyst deactivation during the reaction. The analysis revealed that changing the type and size of the active metal, adjusting the properties of the support, and adding additives can further regulate the dispersion of the active component, the interaction between the active component and the support, the oxygen vacancies of the support, and the acidity and basicity of the catalyst surface, ultimately achieving control over the metal catalyst’s resistance to sintering, carbon deposition, and sulfur poisoning. In addition, it discusses the application of metal catalysts in photothermal and plasma-catalyzed DRM. Finally, it outlines the prospects for research on metal catalysts for the DRM. Full article
Show Figures

Figure 1

28 pages, 15502 KiB  
Review
Thunderstorm Ground Enhancements Measured on Aragats and Progress of High-Energy Physics in the Atmosphere
by Ashot Chilingarian
Atmosphere 2023, 14(2), 300; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14020300 - 02 Feb 2023
Cited by 3 | Viewed by 1346
Abstract
High-energy physics in the atmosphere (HEPA) has undergone an intense reformation in the last decade. Correlated measurements of particle fluxes modulated by strong atmospheric electric fields, simultaneous measurements of the disturbances of the near-surface electric fields and lightning location, and registration of various [...] Read more.
High-energy physics in the atmosphere (HEPA) has undergone an intense reformation in the last decade. Correlated measurements of particle fluxes modulated by strong atmospheric electric fields, simultaneous measurements of the disturbances of the near-surface electric fields and lightning location, and registration of various meteorological parameters on the Earth have led to a better understanding of the complex processes in the terrestrial atmosphere. The cooperation of cosmic rays and atmospheric physics has led to the development of models for the origin of particle bursts recorded on the Earth’s surface, estimation of vertical and horizontal profiles of electric fields in the lower atmosphere, recovery of electron and gamma ray energy spectra, the muon deceleration effect, etc. The main goal of this review is to demonstrate how the measurements performed at the Aragats cosmic ray observatory led to new results in atmospheric physics. We monitored particle fluxes around the clock using synchronized networks of advanced sensors that recorded and stored multidimensional data in databases with open, fast, and reliable access. Visualization and statistical analysis of particle data from hundreds of measurement channels disclosed the structure and strength of the atmospheric electric fields and explained observed particle bursts. Consequent solving of direct and inverse problems of cosmic rays revealed the modulation effects that the atmospheric electric field has on cosmic ray fluxes. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

42 pages, 2507 KiB  
Review
Review of Carbon Capture and Methane Production from Carbon Dioxide
by Stephen Okiemute Akpasi and Yusuf Makarfi Isa
Atmosphere 2022, 13(12), 1958; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13121958 - 24 Nov 2022
Cited by 8 | Viewed by 4647
Abstract
In the last few decades, excessive greenhouse gas emissions into the atmosphere have led to significant climate change. Many approaches to reducing carbon dioxide (CO2) emissions into the atmosphere have been developed, with carbon capture and sequestration (CCS) techniques being identified [...] Read more.
In the last few decades, excessive greenhouse gas emissions into the atmosphere have led to significant climate change. Many approaches to reducing carbon dioxide (CO2) emissions into the atmosphere have been developed, with carbon capture and sequestration (CCS) techniques being identified as promising. Flue gas emissions that produce CO2 are currently being captured, sequestered, and used on a global scale. These techniques offer a viable way to encourage sustainability for the benefit of future generations. Finding ways to utilize flue gas emissions has received less attention from researchers in the past than CO2 capture and storage. Several problems also need to be resolved in the field of carbon capture and sequestration (CCS) technology, including those relating to cost, storage capacity, and reservoir durability. Also covered in this research is the current carbon capture and sequestration technology. This study proposes a sustainable approach combining CCS and methane production with CO2 as a feedstock, making CCS technology more practicable. By generating renewable energy, this approach provides several benefits, including the reduction of CO2 emissions and increased energy security. The conversion of CO2 into methane is a recommended practice because of the many benefits of methane, which make it potentially useful for reducing pollution and promoting sustainability. Full article
Show Figures

Figure 1

27 pages, 10737 KiB  
Review
Study of the Mesosphere and Lower Thermosphere by the Method of Creating Artificial Periodic Irregularities of the Ionospheric Plasma
by Nataliya V. Bakhmetieva and Gennadiy I. Grigoriev
Atmosphere 2022, 13(9), 1346; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13091346 - 24 Aug 2022
Cited by 6 | Viewed by 1777
Abstract
This article presented a brief review of studies of the Earth’s ionosphere at the heights of the mesosphere and lower thermosphere by a method based on the creation of artificial periodic inhomogeneities (APIs) of the ionospheric plasma by high-frequency radiation from powerful thermal [...] Read more.
This article presented a brief review of studies of the Earth’s ionosphere at the heights of the mesosphere and lower thermosphere by a method based on the creation of artificial periodic inhomogeneities (APIs) of the ionospheric plasma by high-frequency radiation from powerful thermal installations. APIs are created by a standing wave due to the interference between upward-propagating radio waves and those reflected from the ionosphere. API studies of the ionosphere were based on Bragg scattering of probing impulse signals from an artificial periodic structure. The method makes it possible to measure the parameters of the neutral and ionized components of the Earth’s atmosphere. Note that, despite the fact that the API method assumes an artificial perturbation of the ionospheric plasma, the parameters of the mesosphere and lower thermosphere are determined at the stage of inhomogeneity relaxation and characterize the undisturbed medium. To date, periodic inhomogeneities have been observed at the heating points of Zimenki and Sura ionospheric heating facility (SURA, Vasilsursk, Russia), Gissar (Tajikistan), Arecibo (Puerto Rico, USA), High Power Auroral Stimulation Observatory (HIPAS) and High Frequency Active Auroral Research Program (HAARP, Gakona, AK, USA), and European Incoherent Scatter (EISCAT, Tromso, Norway). Most of the API studies of the ionosphere were carried out at the SURA mid-latitude heating facility (56.1° N; 46.1° E). The review presented the main results of determining the parameters of the ionosphere and neutral atmosphere at altitudes of 60–120 km and studies of the atmosphere during sunrise and sunset events and solar eclipses. In fact, the review is far from a complete illustration of the possibilities of using the API method to study the mesosphere and lower thermosphere. Full article
(This article belongs to the Special Issue Mesosphere and Lower Thermosphere)
Show Figures

Figure 1

17 pages, 751 KiB  
Review
A Literature Review of Cooling Center, Misting Station, Cool Pavement, and Cool Roof Intervention Evaluations
by Flannery Black-Ingersoll, Julie de Lange, Leila Heidari, Abgel Negassa, Pilar Botana, M. Patricia Fabian and Madeleine K. Scammell
Atmosphere 2022, 13(7), 1103; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13071103 - 13 Jul 2022
Cited by 6 | Viewed by 3942
Abstract
Heat islands and warming temperatures are a growing global public health concern. Although cities are implementing cooling interventions, little is known about their efficacy. We conducted a literature review of field studies measuring the impact of urban cooling interventions, focusing on cooling centers, [...] Read more.
Heat islands and warming temperatures are a growing global public health concern. Although cities are implementing cooling interventions, little is known about their efficacy. We conducted a literature review of field studies measuring the impact of urban cooling interventions, focusing on cooling centers, misting stations, cool pavements, and cool or green roofs. A total of 23 articles met the inclusion criteria. Studies of cooling centers measured the potential impact, based on evaluations of population proximity and heat-vulnerable populations. Reductions in temperature were reported for misting stations and cool pavements across a range of metrics. Misting station use was evaluated with temperature changes and user questionnaires. The benefits and disadvantages of each intervention are presented, and metrics for evaluating cooling interventions are compared. Gaps in the literature include a lack of measured impacts on personal thermal comfort, limited documentation on intervention costs, the need to standardize temperature metrics, and evaluation criteria. Full article
(This article belongs to the Special Issue Cool Cities: Towards Sustainable and Healthy Urban Environments)
Show Figures

Figure 1

15 pages, 2747 KiB  
Review
Thermospheric Neutral Wind Measurements and Investigations across the African Region—A Review
by Daniel Okoh, Aziza Bounhir, John Bosco Habarulema, Babatunde Rabiu, Zama Katamzi-Joseph, Taiwo Ojo, Qian Wu and Jonathan J. Makela
Atmosphere 2022, 13(6), 863; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13060863 - 25 May 2022
Cited by 5 | Viewed by 2128
Abstract
This paper briefly reviews studies of thermospheric neutral wind dynamics over the African region. The literature includes a review of the observations of neutral winds over five African locations using the Fabry–Perot Interferometer (FPI), and the comparison between the FPI observations and predictions [...] Read more.
This paper briefly reviews studies of thermospheric neutral wind dynamics over the African region. The literature includes a review of the observations of neutral winds over five African locations using the Fabry–Perot Interferometer (FPI), and the comparison between the FPI observations and predictions of the horizontal wind model (HWM-14). So far, there are reports of FPI thermospheric wind measurements in South Africa and Morocco representing the mid-latitude regions in the southern and northern hemispheres, respectively. Within the low latitudes, FPI instruments are installed in the Ivory Coast, Ethiopia, and Nigeria. For the literature reviewed, the years covered in the FPI data are 2018–2019 (South Africa), 2016–2017 (Nigeria), 2015–2016 (Ethiopia), 2013–2016 (Morocco), and 1994–1995 (Ivory Coast). Overall, the HWM-14 reproduces the climatological behavior of the meridional and zonal winds, with varying levels of fidelity for the different regions. The HWM-14 is more accurate in the stations located in the northern hemisphere of the African region; a result attributed to the presence of data during the development of this empirical model. Full article
Show Figures

Figure 1

13 pages, 2482 KiB  
Review
Dendroclimatology in Latin America: A Review of the State of the Art
by Oscar David Sánchez-Calderón, Teodoro Carlón-Allende, Manuel E. Mendoza and José Villanueva-Díaz
Atmosphere 2022, 13(5), 748; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13050748 - 06 May 2022
Cited by 4 | Viewed by 2241
Abstract
The application of dendrochronology for understanding climatic variations has been of great interest to climatologists, ecologists, geographers, archeologists, among other sciences, particularly in recent decades when more dendrochronological studies have been developed. We analyzed and identified the current state and recent advances in [...] Read more.
The application of dendrochronology for understanding climatic variations has been of great interest to climatologists, ecologists, geographers, archeologists, among other sciences, particularly in recent decades when more dendrochronological studies have been developed. We analyzed and identified the current state and recent advances in dendroclimatology in Latin America for the period 1990 to 2020. We carried out reviews in ScienceDirect, Web of Science, and Scopus databases with the keywords “dendrochronology”, “dendroclimatology”, “dendrochronology and climatic variability”, “dendroclimatology and climatic variability”, “dendrochronology and trend”, and “dendroclimatology and trend” for each Latin American country. Results show that dendroclimatological research in the last 11 years has increased and has been mainly developed in temperate climate zones (83%) and tropical or subtropical areas (17%), where conifer species have been the most used with over 59% of the studies. However, broadleaf species for dendrochronological studies have also increased in the last decade. Dendroclimatological research in Latin America has provided important advances in the study of climatic variability by defining the response functions of tree-rings to climate and developing climatic reconstructions. Our research identified areas where it is necessary to increase dendroclimatic studies (e.g., dry and tropical forests), in addition to applying new techniques such as isotope analysis, blue intensity, dendrochemistry, among other tree-ring applications. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

13 pages, 1005 KiB  
Review
Space Weather Effects on the Earth’s Upper Atmosphere: Short Report on Ionospheric Storm Effects at Middle Latitudes
by Ioanna Tsagouri
Atmosphere 2022, 13(2), 346; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13020346 - 18 Feb 2022
Cited by 4 | Viewed by 3474
Abstract
During geomagnetic storm events, the highly variable solar wind energy input in the magnetosphere significantly alters the structure of the Earth’s upper atmosphere through the interaction of the ionospheric plasma with atmospheric neutrals. A key element of the ionospheric storm-time response is considered [...] Read more.
During geomagnetic storm events, the highly variable solar wind energy input in the magnetosphere significantly alters the structure of the Earth’s upper atmosphere through the interaction of the ionospheric plasma with atmospheric neutrals. A key element of the ionospheric storm-time response is considered to be the large-scale increases and decreases in the peak electron density that are observed globally to formulate the so-called positive and negative ionospheric storms, respectively. Mainly due to their significant impact on the reliable performance of technological systems, ionospheric storms have been extensively studied in recent decades, and cumulated knowledge and experience have been assigned to their understanding. Nevertheless, ionospheric storms constitute an important link in the complex chain of solar-terrestrial relations. In this respect, any new challenge introduced in the field by a better understanding of the geospace environment, new modeling and monitoring capabilities and/or new technologies and requirements also introduces new challenges for the interpretation of ionospheric storms. This paper attempts a brief survey of present knowledge on the fundamental aspects of large-scale ionospheric storm time response at middle latitudes. Further attention is paid to the results obtained regarding the critical role that solar wind conditions which trigger disturbances may play on the morphology and the occurrence of ionospheric storm effects. Full article
Show Figures

Figure 1

43 pages, 1694 KiB  
Review
A Review of Field Measurement Studies on Thermal Comfort, Indoor Air Quality and Virus Risk
by Christina Kakoulli, Alexis Kyriacou and Michalis P. Michaelides
Atmosphere 2022, 13(2), 191; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13020191 - 25 Jan 2022
Cited by 22 | Viewed by 6606
Abstract
People spend up to 90% of their time indoors where they continuously interact with the indoor environment. Indoor Environmental Quality (IEQ), and in particular thermal comfort, Indoor Air Quality (IAQ), and acoustic and visual comfort, have proven to be significant factors that influence [...] Read more.
People spend up to 90% of their time indoors where they continuously interact with the indoor environment. Indoor Environmental Quality (IEQ), and in particular thermal comfort, Indoor Air Quality (IAQ), and acoustic and visual comfort, have proven to be significant factors that influence the occupants’ health, comfort, productivity and general well-being. The ongoing COVID-19 pandemic has also highlighted the need for real-life experimental data acquired through field measurement studies to help us understand and potentially control the impact of IEQ on the occupants’ health. In this context, there was a significant increase over the past two decades of field measurement studies conducted all over the world that analyse the IEQ in various indoor environments. In this study, an overview of the most important factors that influence the IAQ, thermal comfort, and the risk of virus transmission is first presented, followed by a comprehensive review of selected field measurement studies from the last 20 years. The main objective is to provide a broad overview of the current status of field measurement studies, to identify key characteristics, common outcomes, correlations, insights, as well as gaps, and to serve as the starting point for conducting future field measurement studies. Full article
(This article belongs to the Special Issue Field Measurement for Thermal Comfort and Indoor Air Quality)
Show Figures

Figure 1

27 pages, 5637 KiB  
Review
Review of Long-Term Trends in the Equatorial Ionosphere Due the Geomagnetic Field Secular Variations and Its Relevance to Space Weather
by Ana G. Elias, Blas F. de Haro Barbas, Bruno S. Zossi, Franco D. Medina, Mariano Fagre and Jose V. Venchiarutti
Atmosphere 2022, 13(1), 40; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13010040 - 28 Dec 2021
Cited by 9 | Viewed by 2761
Abstract
The Earth’s ionosphere presents long-term trends that have been of interest since a pioneering study in 1989 suggesting that greenhouse gases increasing due to anthropogenic activity will produce not only a troposphere global warming, but a cooling in the upper atmosphere as well. [...] Read more.
The Earth’s ionosphere presents long-term trends that have been of interest since a pioneering study in 1989 suggesting that greenhouse gases increasing due to anthropogenic activity will produce not only a troposphere global warming, but a cooling in the upper atmosphere as well. Since then, long-term changes in the upper atmosphere, and particularly in the ionosphere, have become a significant topic in global change studies with many results already published. There are also other ionospheric long-term change forcings of natural origin, such as the Earth’s magnetic field secular variation with very special characteristics at equatorial and low latitudes. The ionosphere, as a part of the space weather environment, plays a crucial role to the point that it could certainly be said that space weather cannot be understood without reference to it. In this work, theoretical and experimental results on equatorial and low-latitude ionospheric trends linked to the geomagnetic field secular variation are reviewed and analyzed. Controversies and gaps in existing knowledge are identified together with important areas for future study. These trends, although weak when compared to other ionospheric variations, are steady and may become significant in the future and important even now for long-term space weather forecasts. Full article
Show Figures

Figure 1

10 pages, 2988 KiB  
Review
Turbulence: Vertical Shear of the Horizontal Wind, Jet Streams, Symmetry Breaking, Scale Invariance and Gibbs Free Energy
by Adrian F. Tuck
Atmosphere 2021, 12(11), 1414; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12111414 - 27 Oct 2021
Cited by 6 | Viewed by 2106
Abstract
The increase of the vertical scaling exponent of the horizontal wind Hv(s) with altitude from the surface of the Pacific Ocean to 13 km altitude, as observed by GPS dropsondes, is investigated. An explanation is offered in terms of the [...] Read more.
The increase of the vertical scaling exponent of the horizontal wind Hv(s) with altitude from the surface of the Pacific Ocean to 13 km altitude, as observed by GPS dropsondes, is investigated. An explanation is offered in terms of the decrease of gravitational force and decrease of quenching efficiency of excited photofragments from ozone photodissociation with increasing altitude (decreasing pressure). Turbulent scaling is examined in both the vertical from dropsondes and horizontal from aircraft observations; the scaling exponents H for both wind speed and temperature in both coordinates are positively correlated with traditional measures of jet stream strength. Interpretation of the results indicates that persistence of molecular velocity after collision induces symmetry breaking emergence of hydrodynamic flow via the mechanism first modelled by Alder and Wainwright, enabled by the Gibbs free energy carried by the highest speed molecules. It is suggested that the combined effects have the potential to address the cold bias in numerical models of the global atmosphere. Full article
(This article belongs to the Special Issue Structure of Atmospheric Turbulence)
Show Figures

Figure 1

12 pages, 563 KiB  
Review
Effects of PM2.5 on Chronic Airway Diseases: A Review of Research Progress
by Xin Li and Xiaoju Liu
Atmosphere 2021, 12(8), 1068; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12081068 - 20 Aug 2021
Cited by 12 | Viewed by 3762
Abstract
The adverse effects of polluted air on human health have been increasingly appreciated worldwide. It is estimated that outdoor air pollution is associated with the death of 4.2 million people globally each year. Accumulating epidemiological studies indicate that exposure to ambient fine particulate [...] Read more.
The adverse effects of polluted air on human health have been increasingly appreciated worldwide. It is estimated that outdoor air pollution is associated with the death of 4.2 million people globally each year. Accumulating epidemiological studies indicate that exposure to ambient fine particulate matter (PM2.5), one of the important air pollutants, significantly contributes to respiratory mortality and morbidity. PM2.5 causes lung damage mainly by inducing inflammatory response and oxidative stress. In this paper, we reviewed the research results of our group on the effects of PM2.5 on chronic obstructive pulmonary disease, asthma, and lung cancer. And recent research progress on epidemiological studies and potential mechanisms were also discussed. Reducing air pollution, although remaining a major challenge, is the best and most effective way to prevent the onset and progression of respiratory diseases. Full article
(This article belongs to the Special Issue Outdoor Air Pollution and Human Health)
Show Figures

Figure 1

22 pages, 2141 KiB  
Review
Air Pollution and the Airways: Lessons from a Century of Human Urbanization
by Janne Goossens, Anne-Charlotte Jonckheere, Lieven J. Dupont and Dominique M. A. Bullens
Atmosphere 2021, 12(7), 898; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12070898 - 11 Jul 2021
Cited by 16 | Viewed by 5252
Abstract
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted [...] Read more.
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide, volatile organic compounds, and heavy metals, each having its own effects on the human body. In the last decades, a lot of research investigating the underlying risks and effects of air pollution and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro experiments. The goal of this review is to give an overview of the recent data on the effects of air pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway symptoms and/or damage both in mice and humans. Full article
(This article belongs to the Special Issue Air Pollution and Public Health Effects)
Show Figures

Figure 1

18 pages, 1287 KiB  
Review
Deposition of Aerosols onto Upper Ocean and Their Impacts on Marine Biota
by Andreia Ventura, Eliana F. C. Simões, Antoine S. Almeida, Roberto Martins, Armando C. Duarte, Susana Loureiro and Regina M. B. O. Duarte
Atmosphere 2021, 12(6), 684; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12060684 - 27 May 2021
Cited by 15 | Viewed by 7242
Abstract
Atmospheric aerosol deposition (wet and dry) is an important source of macro and micronutrients (N, P, C, Si, and Fe) to the oceans. Most of the mass flux of air particles is made of fine mineral particles emitted from arid or semi-arid areas [...] Read more.
Atmospheric aerosol deposition (wet and dry) is an important source of macro and micronutrients (N, P, C, Si, and Fe) to the oceans. Most of the mass flux of air particles is made of fine mineral particles emitted from arid or semi-arid areas (e.g., deserts) and transported over long distances until deposition to the oceans. However, this atmospheric deposition is affected by anthropogenic activities, which heavily impacts the content and composition of aerosol constituents, contributing to the presence of potentially toxic elements (e.g., Cu). Under this scenario, the deposition of natural and anthropogenic aerosols will impact the biogeochemical cycles of nutrients and toxic elements in the ocean, also affecting (positively or negatively) primary productivity and, ultimately, the marine biota. Given the importance of atmospheric aerosol deposition to the oceans, this paper reviews the existing knowledge on the impacts of aerosol deposition on the biogeochemistry of the upper ocean, and the different responses of marine biota to natural and anthropogenic aerosol input. Full article
(This article belongs to the Special Issue Feature Papers of Aerosol Impacts on Climate and Air Quality)
Show Figures

Figure 1

36 pages, 57857 KiB  
Review
Recent Advances in Our Understanding of Tropical Cyclone Intensity Change Processes from Airborne Observations
by Robert F. Rogers
Atmosphere 2021, 12(5), 650; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12050650 - 19 May 2021
Cited by 13 | Viewed by 5037
Abstract
Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation [...] Read more.
Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation to major hurricane status. Topics covered include (1) characterizing TC structure and its relationship to intensity change; (2) TC intensification in vertical shear; (3) planetary boundary layer (PBL) processes and air–sea interaction; (4) upper-level warm core structure and evolution; (5) genesis and development of weak TCs; and (6) secondary eyewall formation/eyewall replacement cycles (SEF/ERC). Gaps in our airborne observational capabilities are discussed, as are new observing technologies to address these gaps and future directions for airborne TC intensity change research. Full article
(This article belongs to the Special Issue Rapid Intensity Changes of Tropical Cyclones)
Show Figures

Figure 1

22 pages, 857 KiB  
Review
Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances
by Fotoula Droulia and Ioannis Charalampopoulos
Atmosphere 2021, 12(4), 495; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12040495 - 14 Apr 2021
Cited by 75 | Viewed by 10635
Abstract
Climate change is a continuous spatiotemporal reality, possibly endangering the viability of the grapevine (Vitis vinifera L.) in the future. Europe emerges as an especially responsive area where the grapevine is largely recognised as one of the most important crops, playing a [...] Read more.
Climate change is a continuous spatiotemporal reality, possibly endangering the viability of the grapevine (Vitis vinifera L.) in the future. Europe emerges as an especially responsive area where the grapevine is largely recognised as one of the most important crops, playing a key environmental and socio-economic role. The mounting evidence on significant impacts of climate change on viticulture urges the scientific community in investigating the potential evolution of these impacts in the upcoming decades. In this review work, a first attempt for the compilation of selected scientific research on this subject, during a relatively recent time frame (2010–2020), is implemented. For this purpose, a thorough investigation through multiple search queries was conducted and further screened by focusing exclusively on the predicted productivity parameters (phenology timing, product quality and yield) and cultivation area alteration. Main findings on the potential impacts of future climate change are described as changes in grapevine phenological timing, alterations in grape and wine composition, heterogeneous effects on grapevine yield, the expansion into areas that were previously unsuitable for grapevine cultivation and significant geographical displacements in traditional growing areas. These compiled findings may facilitate and delineate the implementation of effective adaptation and mitigation strategies, ultimately potentiating the future sustainability of European viticulture. Full article
Show Figures

Figure 1

10 pages, 272 KiB  
Review
Particulate Matter and Associated Metals: A Link with Neurotoxicity and Mental Health
by Nicole A. Potter, Gabriella Y. Meltzer, Oyemwenosa N. Avenbuan, Amna Raja and Judith T. Zelikoff
Atmosphere 2021, 12(4), 425; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12040425 - 26 Mar 2021
Cited by 28 | Viewed by 3976
Abstract
Particulate air pollution (PM) is a mixture of heterogenous components from natural and anthropogenic sources and contributes to a variety of serious illnesses, including neurological and behavioral effects, as well as millions of premature deaths. Ultrafine (PM0.1) and fine-size ambient particles [...] Read more.
Particulate air pollution (PM) is a mixture of heterogenous components from natural and anthropogenic sources and contributes to a variety of serious illnesses, including neurological and behavioral effects, as well as millions of premature deaths. Ultrafine (PM0.1) and fine-size ambient particles (PM2.5) can enter the circulatory system and cross the blood–brain barrier or enter through the optic nerve, and then upregulate inflammatory markers and increase reactive oxygen species (ROS) in the brain. Toxic and neurotoxic metals such as manganese (Mn), zinc (Zn), lead (Pb), copper (Cu), nickel (Ni), and barium (Ba) can adsorb to the PM surface and potentially contribute to the neurotoxic effects associated with PM exposure. Epidemiological studies have shown a negative relationship between exposure to PM-associated Mn and neurodevelopment amongst children, as well as impaired dexterity in the elderly. Inhaled PM-associated Cu has also been shown to impair motor performance and alter basal ganglia in schoolchildren. This paper provides a brief review of the epidemiological and toxicological studies published over the last five years concerning inhaled PM, PM-relevant metals, neurobiology, and mental health outcomes. Given the growing interest in mental health and the fact that 91% of the world’s population is considered to be exposed to unhealthy air, more research on PM and PM-associated metals and neurological health is needed for future policy decisions and strategic interventions to prevent public harm. Full article
(This article belongs to the Special Issue Metals in Ambient Particles: Sources and Effects on Human Health)
26 pages, 3753 KiB  
Review
Thermal Environment of Urban Schoolyards: Current and Future Design with Respect to Children’s Thermal Comfort
by Dimitrios Antoniadis, Nikolaos Katsoulas and Dimitris Κ. Papanastasiou
Atmosphere 2020, 11(11), 1144; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos11111144 - 22 Oct 2020
Cited by 27 | Viewed by 5443
Abstract
Urban outdoor thermal conditions, and its impacts on the health and well-being for the city inhabitants have reached increased attention among biometeorological studies during the last two decades. Children are considered more sensitive and vulnerable to hot ambient conditions compared to adults, and [...] Read more.
Urban outdoor thermal conditions, and its impacts on the health and well-being for the city inhabitants have reached increased attention among biometeorological studies during the last two decades. Children are considered more sensitive and vulnerable to hot ambient conditions compared to adults, and are affected strongly by their thermal environment. One of the urban outdoor environments that children spend almost one third of their school time is the schoolyard. The aims of the present manuscript were to review studies conducted worldwide, in order to present the biophysical characteristics of the typical design of the urban schoolyard. This was done to assess, in terms of bioclimatology, the interactions between the thermal environment and the children’s body, to discuss the adverse effects of thermal environment on children, especially the case of heat stress, and to propose measures that could be applied to improve the thermal environment of schoolyards, focusing on vegetation. Human thermal comfort monitoring tools are mainly developed for adults, thus, further research is needed to adapt them to children. The schemes that are usually followed to design urban schoolyards create conditions that favour the exposure of children to excessive heat, inducing high health risks to them. The literature survey showed that typical urban schoolyard design (i.e., dense surface materials, absence of trees) triggered high surface temperatures (that may exceed 58 °C) and increased absorption of radiative heat load (that may exceed 64 °C in terms of Mean Radiant Temperature) during a clear day with intense solar radiation. Furthermore, vegetation cover has a positive impact on schoolyard’s microclimate, by improving thermal comfort and reducing heat stress perception of children. Design options for urban schoolyards and strategies that can mitigate the adverse effects of heat stress are proposed with focus on vegetation cover that affect positively their thermal environment and improve their aesthetic and functionality. Full article
(This article belongs to the Special Issue Challenges in Applied Human Biometeorology)
Show Figures

Figure 1

40 pages, 5318 KiB  
Review
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases
by Deborah A. Cory-Slechta, Marissa Sobolewski and Günter Oberdörster
Atmosphere 2020, 11(10), 1098; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos11101098 - 14 Oct 2020
Cited by 9 | Viewed by 4786
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. [...] Read more.
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements. Full article
(This article belongs to the Special Issue Metals in Ambient Particles: Sources and Effects on Human Health)
Show Figures

Figure 1

18 pages, 1222 KiB  
Review
Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential
by Carolina Molina, Richard Toro A., Carlos A. Manzano, Silvia Canepari, Lorenzo Massimi and Manuel. A. Leiva-Guzmán
Atmosphere 2020, 11(9), 917; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos11090917 - 28 Aug 2020
Cited by 40 | Viewed by 6361
Abstract
The mass concentration of atmospheric particulate matter (PM) has been systematically used in epidemiological studies as an indicator of exposure to air pollutants, connecting PM concentrations with a wide variety of human health effects. However, these effects can be hardly explained by using [...] Read more.
The mass concentration of atmospheric particulate matter (PM) has been systematically used in epidemiological studies as an indicator of exposure to air pollutants, connecting PM concentrations with a wide variety of human health effects. However, these effects can be hardly explained by using one single parameter, especially because PM is formed by a complex mixture of chemicals. Current research has shown that many of these adverse health effects can be derived from the oxidative stress caused by the deposition of PM in the lungs. The oxidative potential (OP) of the PM, related to the presence of transition metals and organic compounds that can induce the production of reactive oxygen and nitrogen species (ROS/RNS), could be a parameter to evaluate these effects. Therefore, estimating the OP of atmospheric PM would allow us to evaluate and integrate the toxic potential of PM into a unique parameter, which is related to emission sources, size distribution and/or chemical composition. However, the association between PM and particle-induced toxicity is still largely unknown. In this commentary article, we analyze how this new paradigm could help to deal with some unanswered questions related to the impact of atmospheric PM over human health. Full article
(This article belongs to the Special Issue Air Quality and Health in the Mediterranean)
Show Figures

Graphical abstract

23 pages, 393 KiB  
Review
Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research
by Adam C. Watts, Vera Samburova and Hans Moosmüller
Atmosphere 2020, 11(6), 640; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos11060640 - 16 Jun 2020
Cited by 7 | Viewed by 3596
Abstract
Studies of the emissions from wildland fires are important for understanding the role of these events in the production, transport, and fate of emitted gases and particulate matter, and, consequently, their impact on atmospheric and ecological processes, and on human health and wellbeing. [...] Read more.
Studies of the emissions from wildland fires are important for understanding the role of these events in the production, transport, and fate of emitted gases and particulate matter, and, consequently, their impact on atmospheric and ecological processes, and on human health and wellbeing. Wildland fire emission research provides the quantitative information needed for the understanding and management of wildland fire emissions impacts based on human needs. Recent work to characterize emissions from specific fuel types, or those from specific areas, has implicitly been driven by the recognition of the importance of those fuel types in the context of wildland fire science; however, the importance of specific fuels in driving investigations of biomass-burning emissions has not been made explicit thus far. Here, we make a first attempt to discuss the development and application of criteria to answer the question, “What are the most important fuels for biomass-burning emissions investigations to inform wildland fire science and management?” Four criteria for fuel selection are proposed: “(1) total emissions, (2) impacts, (3) availability and uncertainty, and (4) potential for future importance.” Attempting to develop and apply these criteria, we propose a list of several such fuels, based on prior investigations and the body of wildland-fire emission research. Full article
21 pages, 6097 KiB  
Review
Geobibliography and Bibliometric Networks of Polar Tourism and Climate Change Research
by O. Cenk Demiroglu and C. Michael Hall
Atmosphere 2020, 11(5), 498; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos11050498 - 13 May 2020
Cited by 25 | Viewed by 6241
Abstract
In late 2019, the Intergovernmental Panel on Climate Change (IPCC) released their much-awaited Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC). High mountain areas, polar regions, low-lying islands and coastal areas, and ocean and marine ecosystems, were separately dealt [...] Read more.
In late 2019, the Intergovernmental Panel on Climate Change (IPCC) released their much-awaited Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC). High mountain areas, polar regions, low-lying islands and coastal areas, and ocean and marine ecosystems, were separately dealt by experts to reveal the impacts of climate change on these regions, as well as the responses of the natural and human systems inhabiting or related to these regions. The tourism sector was found, among the main systems, influenced by climate change in the oceanic and cryospheric environments. In this study, we deepen the understanding of tourism and climate interrelationships in the polar regions. In doing so, we step outside the climate resilience of polar tourism paradigm and systematically assess the literature in terms of its gaps relating to an extended framework where the impacts of tourism on climate through a combined and rebound effects lens are in question as well. Following a systematic identification and screening on two major bibliometric databases, a final selection of 93 studies, spanning the 2004–2019 period, are visualized in terms of their thematic and co-authorship networks and a study area based geobibliography, coupled with an emerging hot spots analysis, to help identify gaps for future research. Full article
(This article belongs to the Special Issue Tourism Climatology: Past, Present and Future)
Show Figures

Figure 1

27 pages, 2357 KiB  
Review
How Can Odors Be Measured? An Overview of Methods and Their Applications
by Carmen Bax, Selena Sironi and Laura Capelli
Atmosphere 2020, 11(1), 92; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos11010092 - 13 Jan 2020
Cited by 66 | Viewed by 20279
Abstract
In recent years, citizens’ attention towards air quality and pollution has increased significantly, and nowadays, odor pollution related to different industrial activities is recognized as a well-known environmental issue. For this reason, odors are subjected to control and regulation in many countries, and [...] Read more.
In recent years, citizens’ attention towards air quality and pollution has increased significantly, and nowadays, odor pollution related to different industrial activities is recognized as a well-known environmental issue. For this reason, odors are subjected to control and regulation in many countries, and specific methods for odor measurement have been developed and standardized over the years. This paper, conceived within the H2020 D-NOSES project, summarizes odor measurement techniques, highlighting their applicability, advantages, and limits, with the aim of providing experienced as well as non-experienced users a useful tool that can be consulted in the management of specific odor problems for evaluating and identifying the most suitable approach. The paper also presents relevant examples of the application of the different methods discussed, thereby mainly referring to scientific articles published over the last 10 years. Full article
Show Figures

Figure 1

38 pages, 7812 KiB  
Review
Crossing Multiple Gray Zones in the Transition from Mesoscale to Microscale Simulation over Complex Terrain
by Fotini Katopodes Chow, Christoph Schär, Nikolina Ban, Katherine A. Lundquist, Linda Schlemmer and Xiaoming Shi
Atmosphere 2019, 10(5), 274; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos10050274 - 14 May 2019
Cited by 72 | Viewed by 8286
Abstract
This review paper explores the field of mesoscale to microscale modeling over complex terrain as it traverses multiple so-called gray zones. In an attempt to bridge the gap between previous large-scale and small-scale modeling efforts, atmospheric simulations are being run at an unprecedented [...] Read more.
This review paper explores the field of mesoscale to microscale modeling over complex terrain as it traverses multiple so-called gray zones. In an attempt to bridge the gap between previous large-scale and small-scale modeling efforts, atmospheric simulations are being run at an unprecedented range of resolutions. The gray zone is the range of grid resolutions where particular features are neither subgrid nor fully resolved, but rather are partially resolved. The definition of a gray zone depends strongly on the feature being represented and its relationship to the model resolution. This paper explores three gray zones relevant to simulations over complex terrain: turbulence, convection, and topography. Taken together, these may be referred to as the gray continuum. The focus is on horizontal grid resolutions from ∼10 km to ∼10 m. In each case, the challenges are presented together with recent progress in the literature. A common theme is to address cross-scale interaction and scale-awareness in parameterization schemes. How numerical models are designed to cross these gray zones is critical to complex terrain applications in numerical weather prediction, wind resource forecasting, and regional climate modeling, among others. Full article
(This article belongs to the Special Issue Atmospheric Processes over Complex Terrain)
Show Figures

Figure 1

24 pages, 9498 KiB  
Review
A Review of Atmosphere–Ocean Forcings Outside the Tropical Pacific on the El Niño–Southern Oscillation Occurrence
by Shangfeng Chen, Bin Yu, Wen Chen and Renguang Wu
Atmosphere 2018, 9(11), 439; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos9110439 - 12 Nov 2018
Cited by 21 | Viewed by 6200
Abstract
The El Niño–Southern Oscillation (ENSO) is the strongest interannual air–sea coupled variability mode in the tropics, and substantially impacts the global weather and climate. Hence, it is important to improve our understanding of the ENSO variability. Besides the well-known air–sea interaction process over [...] Read more.
The El Niño–Southern Oscillation (ENSO) is the strongest interannual air–sea coupled variability mode in the tropics, and substantially impacts the global weather and climate. Hence, it is important to improve our understanding of the ENSO variability. Besides the well-known air–sea interaction process over the tropical Pacific, recent studies indicated that atmospheric and oceanic forcings outside the tropical Pacific also play important roles in impacting and modulating the ENSO occurrence. This paper reviews the impacts of the atmosphere–ocean variability outside the tropical Pacific on the ENSO variability, as well as their associated physical processes. The review begins with the contribution of the atmosphere–ocean forcings over the extratropical North Pacific, Atlantic, and Indian Ocean on the ENSO occurrence. Then, an overview of the extratropical atmospheric forcings over the Northern Hemisphere (including the Arctic Oscillation and the Asian monsoon systems) and the Southern Hemisphere (including the Antarctic Oscillation and the Pacific–South American teleconnection), on the ENSO occurrence, is presented. It is shown that the westerly (easterly) wind anomaly over the tropical western Pacific is essential for the occurrence of an El Niño (a La Niña) event. The wind anomalies over the tropical western Pacific also play a key role in relaying the impacts of the atmosphere–ocean forcings outside the tropical Pacific on the ENSO variability. Finally, some relevant questions, that remain to be explored, are discussed. Full article
Show Figures

Figure 1

22 pages, 803 KiB  
Review
Beyond Climate Change and Health: Integrating Broader Environmental Change and Natural Environments for Public Health Protection and Promotion in the UK
by Lora E. Fleming, Giovanni S. Leonardi, Mathew P. White, Jolyon Medlock, Ian Alcock, Helen L. Macintyre, Kath Maguire, Gordon Nichols, Benedict W. Wheeler, George Morris, Tim Taylor, Deborah Hemming, Gianni Lo Iacono, Emma L. Gillingham, Kayleigh M. Hansford, Clare Heaviside, Angie Bone and Raquel Duarte-Davidson
Atmosphere 2018, 9(7), 245; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos9070245 - 27 Jun 2018
Cited by 15 | Viewed by 7901
Abstract
Increasingly, the potential short and long-term impacts of climate change on human health and wellbeing are being demonstrated. However, other environmental change factors, particularly relating to the natural environment, need to be taken into account to understand the totality of these interactions and [...] Read more.
Increasingly, the potential short and long-term impacts of climate change on human health and wellbeing are being demonstrated. However, other environmental change factors, particularly relating to the natural environment, need to be taken into account to understand the totality of these interactions and impacts. This paper provides an overview of ongoing research in the Health Protection Research Unit (HPRU) on Environmental Change and Health, particularly around the positive and negative effects of the natural environment on human health and well-being and primarily within a UK context. In addition to exploring the potential increasing risks to human health from water-borne and vector-borne diseases and from exposure to aeroallergens such as pollen, this paper also demonstrates the potential opportunities and co-benefits to human physical and mental health from interacting with the natural environment. The involvement of a Health and Environment Public Engagement (HEPE) group as a public forum of “critical friends” has proven useful for prioritising and exploring some of this research; such public involvement is essential to minimise public health risks and maximise the benefits which are identified from this research into environmental change and human health. Research gaps are identified and recommendations made for future research into the risks, benefits and potential opportunities of climate and other environmental change on human and planetary health. Full article
(This article belongs to the Special Issue Impacts of Climate Change on Human Health)
Show Figures

Figure 1

32 pages, 1081 KiB  
Review
Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain
by Stefano Serafin, Bianca Adler, Joan Cuxart, Stephan F. J. De Wekker, Alexander Gohm, Branko Grisogono, Norbert Kalthoff, Daniel J. Kirshbaum, Mathias W. Rotach, Jürg Schmidli, Ivana Stiperski, Željko Večenaj and Dino Zardi
Atmosphere 2018, 9(3), 102; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos9030102 - 12 Mar 2018
Cited by 131 | Viewed by 15810
Abstract
The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and [...] Read more.
The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes. Full article
(This article belongs to the Special Issue Atmospheric Processes over Complex Terrain)
Show Figures

Figure 1

Other

13 pages, 21301 KiB  
Technical Note
On Saharan Air Layer Stability and Suppression of Convection over the Northern Tropical Atlantic: Case Study Analysis of a 2007 Dust Outflow Event
by Adrian Flores, Ricardo K. Sakai, Everette Joseph, Nicholas R. Nalli, Alexander Smirnov, Belay Demoz, Vernon R. Morris, Daniel Wolfe and Sen Chiao
Atmosphere 2023, 14(4), 707; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos14040707 - 12 Apr 2023
Cited by 1 | Viewed by 1561
Abstract
A prominent Saharan Air Layer (SAL) was detected over the Northern Atlantic from the West African Coast to the Caribbean Sea in 2007. Data was collected from the Aerosols and Ocean Science Expedition (AEROSE), which encountered a major dust outflow on 13 and [...] Read more.
A prominent Saharan Air Layer (SAL) was detected over the Northern Atlantic from the West African Coast to the Caribbean Sea in 2007. Data was collected from the Aerosols and Ocean Science Expedition (AEROSE), which encountered a major dust outflow on 13 and 14 May 2007. These observational measurements came from onboard instrumentation and radiosondes that captured the dust-front event from 13 to 14 May 2007. Aerosol backscatter was confined within the Marine Boundary Layer (MBL), with layers detected up to 3 km. Aerosol Optical Depth (AOD) increased by one order of magnitude during the dust front, from 0.1 to 1. Downward solar radiation was also attenuated by 200 W/m2 and 100 W/m2 on the first and second days, respectively. A weaker gradient at and above 500 m from potential temperature profiles indicates a less-defined MBL, and an ambient air temperature of 26 °C on 14 May and 28 °C on 15 May were observed above 500 m, reinforcing the temperature inversion and static stability of the SAL. Subsequent days, clear and boundary-layer cloudy days were observed after the dust front. From 14 to 18 May, a Convective Inhibition (CIN) layer started to form at the top of the MBL, developing into a negative buoyancy from 17 to 23 May, and reinforcing the large-scale anticyclonic atmospheric conditions. These results show that the SAL acts as positive feedback on suppressing deep convection over the tropical Atlantic during this dust outflow and several days after its passage. Full article
Show Figures

Figure 1

21 pages, 4339 KiB  
Viewpoint
The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm
by Jiang Liu, Xuemin Zhang, Weiwei Wu, Cong Chen, Mingming Wang, Muping Yang, Yufan Guo and Jun Wang
Atmosphere 2022, 13(11), 1745; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13111745 - 23 Oct 2022
Cited by 6 | Viewed by 1961
Abstract
Based on the multi-data of the global ionospheric map (GIM), ionospheric total electron content (TEC) inversed from GPS observations, the critical frequency of the F2 layer (fOF2) from the ionosonde, electron density (Ne), electron temperature (Te), and He+ [...] Read more.
Based on the multi-data of the global ionospheric map (GIM), ionospheric total electron content (TEC) inversed from GPS observations, the critical frequency of the F2 layer (fOF2) from the ionosonde, electron density (Ne), electron temperature (Te), and He+ and O+ densities detected by the China Seismo-Electromagnetic Satellite (CSES), the temporal and spatial characteristics of ionospheric multi-parameter perturbations were analyzed around the Maerkang Ms6.0 earthquake swarm on 9 June 2022. The results showed that the seismo-ionospheric disturbances were observed during 2–4 June around the epicenter under quiet solar-geomagnetic conditions. All parameters we studied were characterized by synchronous changes and negative anomalies, with a better consistency between ionospheric ground-based and satellite observations. The negative ionospheric anomalies for all parameters appeared 5–7 days before the Maerkang Ms6.0 earthquake swarm can be considered as significant signals of upcoming main shock. The seismo-ionospheric coupling mechanism may be a combination of two coupling channels: an overlapped DC electric field and an acoustic gravity wave, as described by the lithosphere–atmosphere–ionosphere coupling (LAIC). In addition, in order to make the investigations still more convincing, we completed a statistical analysis for the ionospheric anomalies of earthquakes over Ms6.0 in the study area (20°~40° N, 92°~112° E) from 1 January 2019 to 1 July 2022. The nine seismic events reveal that most strong earthquakes are preceded by obvious synchronous anomalies from ground-based and satellite ionospheric observations. The anomalous disturbances generally appear 1–15 days before the earthquakes, and the continuity and reliability of ground-based ionospheric anomaly detection are relatively high. Based on the integrated ionospheric satellite–ground observations, a cross-validation analysis can effectively improve the confidence level of anomaly identification and reduce the frequency of false anomalies. Full article
Show Figures

Figure 1

13 pages, 4047 KiB  
Viewpoint
Magnetic Signatures of Large-Scale Electric Currents in the Earth’s Environment at Middle and Low Latitudes
by Christine Amory-Mazaudier
Atmosphere 2022, 13(10), 1699; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13101699 - 17 Oct 2022
Viewed by 1854
Abstract
The purpose of space weather is the systemic study of the Sun–Earth system, in order to determine the impact of solar events on the electromagnetic environment of the Earth. This article proposes a new transdisciplinary approach of the Sun–Earth system based on the [...] Read more.
The purpose of space weather is the systemic study of the Sun–Earth system, in order to determine the impact of solar events on the electromagnetic environment of the Earth. This article proposes a new transdisciplinary approach of the Sun–Earth system based on the universal physical process of the dynamo. The dynamo process is based on two important parameters of the different plasmas of the Sun–Earth system, the motion and the magnetic field. There are four permanent dynamos in the Sun–Earth system: the solar dynamo, the Earth dynamo, the solar wind-magnetosphere dynamo, and the ionospheric dynamo. These four permanent dynamos are part of different scientific disciplines. This transdisciplinary approach links all of these dynamos in order to understand the variations in the Earth’s magnetic field. During a magnetic disturbed period, other dynamos exist. We focused on the ionospheric disturbed dynamo generated by Joule energy dissipated in the high latitude ionosphere during magnetic storms. Joule heating disrupts the circulation of thermospheric winds and in turn generates disturbances in the Earth’s magnetic field. This systemic approach makes it possible to understand magnetic disturbances previously not well understood. Full article
Show Figures

Figure 1

10 pages, 2430 KiB  
Commentary
Arctic Climate Extremes
by James E. Overland
Atmosphere 2022, 13(10), 1670; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13101670 - 13 Oct 2022
Cited by 4 | Viewed by 1936
Abstract
There are multiple extreme events underway in the Arctic that are beyond previous records: rain in Greenland, Alaska weather variability, and ecosystem reorganizations in the Barents and the northern Bering Sea associated with climate change and sea-ice loss. Such unique extreme events represent [...] Read more.
There are multiple extreme events underway in the Arctic that are beyond previous records: rain in Greenland, Alaska weather variability, and ecosystem reorganizations in the Barents and the northern Bering Sea associated with climate change and sea-ice loss. Such unique extreme events represent a philosophical challenge for interpretation, i.e., a lack of statistical basis, as well as important information for regional adaptation to climate change. These changes are affecting regional food security, human/wildlife health, cultural activities, and marine wildlife conservation. Twenty years ago, the Arctic was more resilient to climate change than now, as sea ice had a broader extent and was three times thicker than today. These new states cannot be assigned probabilities because one cannot a priori conceive of these states. They often have no historical analogues. A way forward for adaptation to future extremes is through scenario/narrative approaches; a recent development in climate change policy is through decision making under deep uncertainty (DMDU). Full article
Show Figures

Figure 1

16 pages, 4313 KiB  
Technical Note
Insight on Poleward Moisture and Energy Transport into the Arctic from ERA5
by Weifu Sun, Yu Liang, Haibo Bi, Yujia Zhao, Junmin Meng and Jie Zhang
Atmosphere 2022, 13(4), 616; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos13040616 - 11 Apr 2022
Cited by 2 | Viewed by 1840
Abstract
With the new-generation reanalysis product (ERA5), the spatiotemporal characteristics of poleward atmospheric moisture and energy transport over the past four decades (1979–2020) were examined. The main channels of atmospheric transport entering the Arctic in the Northern Hemisphere include the Chukchi Sea at 170° [...] Read more.
With the new-generation reanalysis product (ERA5), the spatiotemporal characteristics of poleward atmospheric moisture and energy transport over the past four decades (1979–2020) were examined. The main channels of atmospheric transport entering the Arctic in the Northern Hemisphere include the Chukchi Sea at 170° W, Baffin Bay at 50° W, North Atlantic at 0° E, and central Siberia at 90° E. Summer (winter) is characterized by high moisture (energy) transport across 70° N. No clear trend in moisture transport was found, whereas the winter and spring energy transport are declining significantly at a rate of −7.31 × 105 W/m/a (99% confidence) and −6.04 × 105 W/m/a (95% confidence), respectively. Meanwhile, an increasing trend was found in summer (4.48 × 105 W/m/a, 95% confidence) and autumn (3.61 × 105 W/m/a, not significant). The relationship between atmospheric moisture and energy transport and different large-scale atmospheric circulation patterns, including the Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and Dipole Anomaly (DA), was explored. Among them, DA was identified as the most favorable pattern in relation to moisture and/or energy intrusion into the Arctic. As a result, the surface air temperature increases are more pronounced over most of the central Arctic under the regulation of DA. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

8 pages, 255 KiB  
Commentary
Recent Advances in Studying Air Quality and Health Effects of Shipping Emissions
by Daniele Contini and Eva Merico
Atmosphere 2021, 12(1), 92; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos12010092 - 09 Jan 2021
Cited by 40 | Viewed by 4860
Abstract
The increase of global commerce and tourism makes the shipping sector an important contributor of atmospheric particles and gaseous pollutants. These have impacts on both health and climate, especially in populated coastal areas. Maritime activities could be an important driver for economic and [...] Read more.
The increase of global commerce and tourism makes the shipping sector an important contributor of atmospheric particles and gaseous pollutants. These have impacts on both health and climate, especially in populated coastal areas. Maritime activities could be an important driver for economic and social development, however, they are also an environmental pressure. Several policies were implemented in the last decades, at local/regional or international levels, mainly focused on reducing the content of sulphur in marine fuels. The last international IMO-2020 regulation was enforced on 1 January 2020. This work reviews some recent studies on this topic delineating current knowledge of the impacts of maritime emissions on air quality and health and the future projections relative to the benefits of the implementation of the new IMO-2020 regulation. In addition, future perspectives for further mitigation strategies are discussed. Full article
(This article belongs to the Section Air Quality and Human Health)
14 pages, 1765 KiB  
Technical Note
Overview of Model Inter-Comparison in Japan’s Study for Reference Air Quality Modeling (J-STREAM)
by Satoru Chatani, Kazuyo Yamaji, Tatsuya Sakurai, Syuichi Itahashi, Hikari Shimadera, Kyo Kitayama and Hiroshi Hayami
Atmosphere 2018, 9(1), 19; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos9010019 - 11 Jan 2018
Cited by 32 | Viewed by 8177
Abstract
The inter-comparison of regional air quality models is an effective way to understand uncertainty in ambient pollutant concentrations simulated using various model configurations, as well as to find ways to improve model performance. Based on the outcomes and experiences of Japanese projects thus [...] Read more.
The inter-comparison of regional air quality models is an effective way to understand uncertainty in ambient pollutant concentrations simulated using various model configurations, as well as to find ways to improve model performance. Based on the outcomes and experiences of Japanese projects thus far, a new model inter-comparison project called Japan’s study for reference air quality modeling (J-STREAM) has begun. The objective of J-STREAM is to establish reference air quality modeling for source apportionment and effective strategy making to suppress secondary air pollutants including PM2.5 and photochemical ozone in Japan through model inter-comparison. The first phase focuses on understanding the ranges and limitations in ambient PM2.5 and ozone concentrations simulated by participants using common input datasets. The second phase focuses on issues revealed in previous studies in simulating secondary inorganic aerosols, as well as on the three-dimensional characteristics of photochemical ozone as a new target. The third phase focuses on comparing source apportionments and sensitivities under heavy air pollution episodes simulated by participating models. Detailed understanding of model performance, uncertainty, and possible improvements to urban-scale air pollution involving secondary pollutants, as well as detailed sector-wise source apportionments over megacities in Japan are expected. Full article
(This article belongs to the Special Issue Regional Scale Air Quality Modelling)
Show Figures

Figure 1

2438 KiB  
Perspective
Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases
by Travis J. Schuyler and Marcelo I. Guzman
Atmosphere 2017, 8(10), 206; https://0-doi-org.brum.beds.ac.uk/10.3390/atmos8100206 - 23 Oct 2017
Cited by 53 | Viewed by 15754
Abstract
The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no [...] Read more.
The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m above ground level that can achieve spatiotemporal resolution on the order of meters and seconds. Unmanned aerial systems (UASs) can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1) micro aerial vehicles (MAVs); (2) vertical take-off and landing (VTOL); and, (3) low-altitude short endurance (LASE) systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL), which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change. Full article
(This article belongs to the Special Issue Atmospheric Measurements with Unmanned Aerial Systems (UAS))
Show Figures

Figure 1

Back to TopTop