Bionic Engineering for Boosting Multidisciplinary Integration 2023

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biomimetics of Materials and Structures".

Deadline for manuscript submissions: 15 July 2024 | Viewed by 3398

Special Issue Editors


E-Mail Website
Guest Editor
1. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
2. Weihai Institute for Bionics, Jilin University, Weihai 264207, China
Interests: biomimetic composites; bioinspired functional structures; bionic interface engineering
Special Issues, Collections and Topics in MDPI journals
Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
Interests: nanocomposites; interface engineering; carbon materials
Special Issues, Collections and Topics in MDPI journals
Tenure-Track Associate Professor, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
Interests: chemical biology; medicinal chemistry; DNA nanotechnology; multiscale simulation
Special Issues, Collections and Topics in MDPI journals
Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
Interests: functional nanomaterials; chiral nanoparticles; self-assembly; biomedical applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bionics has been featured with distinctive multi-disciplinary properties since its birth. The vigorous development of fundamental research in bionics in recent decades has further promoted multi-disciplinary integrated innovation. In particular, combining the advantages of fundamental disciplines such as mechanical engineering, materials science, physical chemistry, biology, and medicine, bionic engineering has embodied and engineered the ideology of “learning from nature but going beyond nature”, showing imaginative engineering application prospects. Moreover, the comprehensive sustainable development in bionic engineering application fields, such as bionic intelligent robots, bionic functional materials, bionic medical engineering, and many other emerging research branches, also greatly expand the research boundaries of traditional fundamental disciplines. Therefore, it should be meaningful and beneficial to assess the development vein of bionic engineering, and thus accurately predict its future development trends, by focusing on the unique role of bionic engineering in promoting multidisciplinary integration. This could also help researchers in the multi-disciplinary field grasp the frontiers of bionic engineering research.

This Special Issue mainly focuses on the latest research progress and original insights in bionic engineering for boosting multidisciplinary integration, including, but not limited to, the topics of bionic innovative design, bionic material preparation, bionic engineering application, and so on. We sincerely invite biomimeticians, biologists, mechanical engineers, materials scientists, and chemists from all over the world to contribute to the Special Issue. We also would like to together create an international, open, and shared academic exchange platform for researchers in the bionic engineering field and jointly promote the high-quality development of bionics in the interdisciplinary field.

Dr. Zhengzhi Mu
Dr. Wenxin Cao
Dr. Zhi-bei Qu
Dr. Jiao Yan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bionic novel design
  • bionic functional surfaces
  • bionic functional materials
  • bionic green fabrication
  • bionic engineering application

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2593 KiB  
Article
Size Control of Biomimetic Curved-Edge Vaterite with Chiral Toroid Morphology via Sonochemical Synthesis
by Ki Ha Min, Dong Hyun Kim and Seung Pil Pack
Biomimetics 2024, 9(3), 174; https://0-doi-org.brum.beds.ac.uk/10.3390/biomimetics9030174 - 13 Mar 2024
Viewed by 903
Abstract
The metastable vaterite polymorph of calcium carbonate (CaCO3) holds significant practical importance, particularly in regenerative medicine, drug delivery, and various personal care products. Controlling the size and morphology of vaterite particles is crucial for biomedical applications. This study explored the synergistic [...] Read more.
The metastable vaterite polymorph of calcium carbonate (CaCO3) holds significant practical importance, particularly in regenerative medicine, drug delivery, and various personal care products. Controlling the size and morphology of vaterite particles is crucial for biomedical applications. This study explored the synergistic effect of ultrasonic (US) irradiation and acidic amino acids on CaCO3 synthesis, specifically the size, dispersity, and crystallographic phase of curved-edge vaterite with chiral toroids (chiral-curved vaterite). We employed 40 kHz US irradiation and introduced L- or D-aspartic acid as an additive for the formation of spheroidal chiral-curved vaterite in an aqueous solution of CaCl2 and Na2CO3 at 20 ± 1 °C. Chiral-curved vaterites precipitated through mechanical stirring (without US irradiation) exhibited a particle size of approximately 15 μm, whereas those formed under US irradiation were approximately 6 μm in size and retained their chiral topoid morphology. When a fluorescent dye was used for the analysis of loading efficiency, the size-reduced vaterites with chiral morphology, produced through US irradiation, exhibited a larger loading efficiency than the vaterites produced without US irradiation. These results hold significant value for the preparation of biomimetic chiral-curved CaCO3, specifically size-reduced vaterites, as versatile biomaterials for material filling, drug delivery, and bone regeneration. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration 2023)
Show Figures

Figure 1

11 pages, 2806 KiB  
Article
Repeatable Acoustic Vaporization of Coated Perfluorocarbon Bubbles for Micro-Actuation Inspired by Polypodium aureum
by Se-Yun Jeong, Han-Bok Seo, Myung-Hyun Seo, Jin-Woo Cho, Seho Kwon, Gihun Son and Seung-Yop Lee
Biomimetics 2024, 9(2), 106; https://0-doi-org.brum.beds.ac.uk/10.3390/biomimetics9020106 - 11 Feb 2024
Viewed by 938
Abstract
Polypodium aureum, a fern, possesses a specialized spore-releasing mechanism like a catapult induced by the quick expansion of vaporized bubbles. This study introduces lipid-coated perfluorocarbon droplets to enable repeatable vaporization–condensation cycles, inspired by the repeatable vaporization of Polypodium aureum. Lipid-perfluorocarbon droplets [...] Read more.
Polypodium aureum, a fern, possesses a specialized spore-releasing mechanism like a catapult induced by the quick expansion of vaporized bubbles. This study introduces lipid-coated perfluorocarbon droplets to enable repeatable vaporization–condensation cycles, inspired by the repeatable vaporization of Polypodium aureum. Lipid-perfluorocarbon droplets have been considered not to exhibit repeatable oscillations due to bubble collapse of the low surface tension of lipid layers. However, a single lipid-dodecafluoropentane droplet with a diameter of 9.17 µm shows expansion–contraction oscillations over 4000 cycles by changing lipid composition and applying a low-power 1.7 MHz ultrasound to induce the partial vaporization of the droplets. The optimal combinations of shell composition, droplet fabrication, and acoustic conditions can minimize the damage on shell structure and promote a quick recovery of damaged shell layers. The highly expanding oscillatory microbubbles provide a new direction for fuel-free micro- or nanobots, as well as biomedical applications of contrast agents and drug delivery. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration 2023)
Show Figures

Figure 1

12 pages, 1955 KiB  
Article
Enhanced Synaptic Behaviors in Chitosan Electrolyte-Based Electric-Double-Layer Transistors with Poly-Si Nanowire Channel Structures
by Dong-Hee Lee, Hwi-Su Kim, Ki-Woong Park, Hamin Park and Won-Ju Cho
Biomimetics 2023, 8(5), 432; https://0-doi-org.brum.beds.ac.uk/10.3390/biomimetics8050432 - 18 Sep 2023
Viewed by 1089
Abstract
In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a [...] Read more.
In this study, we enhance the synaptic behavior of artificial synaptic transistors by utilizing nanowire (NW)-type polysilicon channel structures. The high surface-to-volume ratio of the NW channels enables efficient modulation of the channel conductance, which is interpreted as the synaptic weight. As a result, NW-type synaptic transistors exhibit a larger hysteresis window compared to film-type synaptic transistors, even within the same gate voltage sweeping range. Moreover, NW-type synaptic transistors demonstrate superior short-term facilitation and long-term memory transition compared with film-type ones, as evidenced by the measured paired-pulse facilitation and excitatory post-synaptic current characteristics at varying frequencies and pulse numbers. Additionally, we observed gradual potentiation/depression characteristics, making these artificial synapses applicable to artificial neural networks. Furthermore, the NW-type synaptic transistors exhibit improved Modified National Institute of Standards and Technology pattern recognition rate of 91.2%. In conclusion, NW structure channels are expected to be a promising technology for next-generation artificial intelligence (AI) semiconductors, and the integration of NW structure channels has significant potential to advance AI semiconductor technology. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration 2023)
Show Figures

Figure 1

Back to TopTop