Biomaterials in Medical Diagnosis and Treatment

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Biomaterials and Devices for Healthcare Applications".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 5347

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
Interests: physiology; inflammation; carcinogenesis; medical imaging; transplantation; molecular signaling; MR spectroscopy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Embryology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
Interests: dentin-pulp complex; biomaterials; salivary research
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The rapid technological and medical advances of our times have significantly improved the field of functional biomaterials, offering new applications and uses in various domains. There is an increasing interest in developing newer, safer, more efficient, and more reliable implants for medical applications. Furthermore, various biomaterials are continuously developed for a wide range of medical use, including in vitro and in vivo diagnosis, the modulation of the host response or microenvironment, and multiple therapeutic applications. However, any biomaterial must be thoroughly investigated and tested before approval for human use.

This Special Issue will host papers related to recent developments in the medical use of biomaterials, and it will include but not be limited to biocompatibility; advances in biomedical devices; natural materials with medical applications; compounds used in medical imaging; and the immune response to biomaterials.

Dr. Cristian Scheau
Prof. Dr. Andreea Didilescu
Prof. Dr. Constantin Caruntu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomedical devices
  • medical implants
  • dental implants
  • implant imaging
  • immune response
  • biocompatibility
  • dental materials
  • nanoparticles
  • contrast agents
  • natural materials

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 4406 KiB  
Article
Applications of Cu2+-Loaded Silica Nanoparticles to Photothermal Therapy and Tumor-Specific Fluorescence Imaging
by Ji-Ho Park, Yejin Sung, SeongHoon Jo, Seung Ho Lee, Ju Hee Ryu, In-Cheol Sun and Cheol-Hee Ahn
J. Funct. Biomater. 2024, 15(4), 81; https://0-doi-org.brum.beds.ac.uk/10.3390/jfb15040081 - 25 Mar 2024
Viewed by 734
Abstract
Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu2+-loaded silica nanoparticles fabricated through the [...] Read more.
Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu2+-loaded silica nanoparticles fabricated through the chelation of Cu2+ ions by silanol groups. The integration of Cu2+ ions into uniformly sized silica nanoparticles imparts a photothermal therapy effect. Additionally, the amine functionalization of the silica coating facilitates the chemical conjugation of tumor-specific fluorescence probes. These probes are strategically designed to remain in an ‘off’ state through the Förster resonance energy transfer mechanism until exposed to cysteine enzymes in cancer cells, inducing the recovery of their fluorescence. Consequently, our Cu2+-loaded silica nanoparticles demonstrate an efficient photothermal therapy effect and selectively enable cancer imaging. Full article
(This article belongs to the Special Issue Biomaterials in Medical Diagnosis and Treatment)
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 2937 KiB  
Review
Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications
by Iosif-Aliodor Timofticiuc, Octavian Călinescu, Adrian Iftime, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Andreea Cristiana Didilescu, Constantin Caruntu and Cristian Scheau
J. Funct. Biomater. 2024, 15(1), 7; https://0-doi-org.brum.beds.ac.uk/10.3390/jfb15010007 - 22 Dec 2023
Cited by 3 | Viewed by 1826
Abstract
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D [...] Read more.
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D printing, with its main advantages being a high printing speed and the ability to produce high-resolution structures. A major challenge in using VPP 3D-printed materials in medicine is the general incompatibility of standard VPP resin mixtures with the requirements of biocompatibility and biofunctionality. Instead of developing completely new materials, an alternate approach to solving this problem involves adapting existing biomaterials. These materials are incompatible with VPP 3D printing in their pure form but can be adapted to the VPP chemistry and general process through the use of innovative mixtures and the addition of specific pre- and post-printing steps. This review’s primary objective is to highlight biofunctional and biocompatible materials that have been adapted to VPP. We present and compare the suitability of these adapted materials to different medical applications and propose other biomaterials that could be further adapted to the VPP 3D printing process in order to fulfill patient-specific medical requirements. Full article
(This article belongs to the Special Issue Biomaterials in Medical Diagnosis and Treatment)
Show Figures

Figure 1

17 pages, 1876 KiB  
Review
The Role of Natural Compounds in Optimizing Contemporary Dental Treatment—Current Status and Future Trends
by Dana Gabriela Budala, Maria-Alexandra Martu, George-Alexandru Maftei, Diana Antonela Diaconu-Popa, Vlad Danila and Ionut Luchian
J. Funct. Biomater. 2023, 14(5), 273; https://0-doi-org.brum.beds.ac.uk/10.3390/jfb14050273 - 14 May 2023
Cited by 5 | Viewed by 2150
Abstract
For a long period of time, natural remedies were the only ailment available for a multitude of diseases, and they have proven effective even after the emergence of modern medicine. Due to their extremely high prevalence, oral and dental disorders and anomalies are [...] Read more.
For a long period of time, natural remedies were the only ailment available for a multitude of diseases, and they have proven effective even after the emergence of modern medicine. Due to their extremely high prevalence, oral and dental disorders and anomalies are recognized as major public health concerns. Herbal medicine is the practice of using plants with therapeutic characteristics for the purpose of disease prevention and treatment. Herbal agents have made a significant entry into oral care products in recent years, complementing traditional treatment procedures due to their intriguing physicochemical and therapeutic properties. There has been a resurgence of interest in natural products because of recent updates, technological advancements, and unmet expectations from current strategies. Approximately eighty percent of the world’s population uses natural remedies, especially in poorer nations. When conventional treatments have failed, it may make sense to use natural drugs for the treatment of pathologic oral dental disorders, as they are readily available, inexpensive, and have few negative effects. The purpose of this article is to provide a comprehensive analysis of the benefits and applications of natural biomaterials in dentistry, to gather relevant information from the medical literature with an eye toward its practical applicability, and make suggestions for the directions for future study. Full article
(This article belongs to the Special Issue Biomaterials in Medical Diagnosis and Treatment)
Show Figures

Figure 1

Back to TopTop