Chromite Deposits: Mineralogy, Petrology and Genesis

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (10 February 2022) | Viewed by 28210

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Geology and Geochemisty, Ural Branch, Russian Academy of Sciences, 620000 Yekaterinburg, Russia
Interests: petrology of mafic–ultramafic complexes; ore deposits; platinum-group minerals;

E-Mail Website
Guest Editor
Geosciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
Interests: ore deposits; geochemistry and mineralogy of noble metals; mafic–ultramafic rocks; ophiolite
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Magmatic chromite deposits (chromitites) are the main source of chromium for industrial use, and, in some cases, they may carry variable amounts of accessory metals (Ni, Cu, Au, and platinum-group elements) which may have a great economic interest as byproduct of chromium extraction. Exceptionally, some chromite deposits have become a major source of precious metals, among which Pt is the most outstanding resource. Since the sixties, seminal experimental works have demonstrated how the mineral chemistry of chrome spinel was a potential guide to the composition of the parental magma and, thereby, chromite deposits became significant indicator of the geological setting of their formation. Since then, chromites have been classified into two descriptive types: “stratiform deposits” mainly associated with layered intrusions in continental cratons, and “podiform deposits” associated with ultramafic complexes in orogenic belts (ophiolites, Ural–Alaskan-type intrusions and subcontinental mantle). The two types may have several mineralogical and geochemical characters in common, although the mechanisms for chromite precipitation may be various and significantly differ regarding geodynamic and thermodynamic conditions, not all of which are completely understood in detail.

This Special Issue will focus on recent advances in the study of geology, mineralogy, and geochemistry of chromite deposits from different geological settings for improving our knowledge in chromite ore formation. Contributions dealing with experimental mineralogy and petrology of chromite and related minerals are also welcome.

Dr. Evgenii Pushkarev
Prof. Dr. Giorgio Garuti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • chromite deposits
  • ophiolite
  • layered mafic–ultramafic intrusions
  • Ural–Alaskan-type intrusions
  • composition of ore and zonality
  • mineralogical indicators of chromite ore formation

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 8234 KiB  
Article
Different Tectonic Evolution of Fast Cooling Ophiolite Mantles Recorded by Olivine-Spinel Geothermometry: Case Studies from Iballe (Albania) and Nea Roda (Greece)
by Micol Bussolesi, Giovanni Grieco, Alessandro Cavallo and Federica Zaccarini
Minerals 2022, 12(1), 64; https://0-doi-org.brum.beds.ac.uk/10.3390/min12010064 - 04 Jan 2022
Cited by 8 | Viewed by 2812
Abstract
Mg-Fe2+ diffusion patterns in olivine and chromite are useful tools for the study of the thermal history of ultramafic massifs. In the present contribution, we applied the exponential modeling of diffusion patterns to geothermometry and geospeedometry of chromitite ores from two different [...] Read more.
Mg-Fe2+ diffusion patterns in olivine and chromite are useful tools for the study of the thermal history of ultramafic massifs. In the present contribution, we applied the exponential modeling of diffusion patterns to geothermometry and geospeedometry of chromitite ores from two different ophiolite contexts. The Iballe ophiolite (Northern Albania) hosts several chromitite pods within dunites. Primary and re-equilibrated Mg#, estimated by using an exponential function, provided re-equilibration and primary temperatures ranging between 677 and 996 °C for chromitites and between 527 and 806 °C for dunites. Cooling rates for chromitites are higher than for dunites, suggesting a different genesis for the two lithologies, confirmed also by spinel mineral chemistry. Chromitites with MORB affinity formed in a SSZ setting at a proto-forearc early stage, explaining the higher cooling rates, while dunites, with boninitic affinity, were formed deeper in the mantle in a more mature subduction setting. At the Nea Roda ophiolite (Northern Greece) olivine in chromitites do not show Mg-Fe variations, and transformation into ferrian chromite produced “fake” diffusion patterns within chromite. The absence of diffusion patterns and the low estimated temperatures (550–656 °C) suggest that Nea Roda chromitites were completely re-equilibrated during an amphibolite-facies metamorphic event that obliterated all primary features. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

23 pages, 8595 KiB  
Article
Chromite-PGM Mineralization in the Lherzolite Mantle Tectonite of the Kraka Ophiolite Complex (Southern Urals, Russia)
by Giorgio Garuti, Evgenii V. Pushkarev, Irina A. Gottman and Federica Zaccarini
Minerals 2021, 11(11), 1287; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111287 - 19 Nov 2021
Cited by 1 | Viewed by 2542
Abstract
The mantle tectonite of the Kraka ophiolite contains several chromite deposits. Two of them consisting of high-Cr podiform chromitite—the Bolshoi Bashart located within harzburgite of the upper mantle transition zone and Prospect 33 located in the deep lherzolitic mantle—have been investigated. Both deposits [...] Read more.
The mantle tectonite of the Kraka ophiolite contains several chromite deposits. Two of them consisting of high-Cr podiform chromitite—the Bolshoi Bashart located within harzburgite of the upper mantle transition zone and Prospect 33 located in the deep lherzolitic mantle—have been investigated. Both deposits are enveloped in dunite, and were formed by reaction between the mantle protolith and high-Mg, anhydrous magma, enriched in Al2O3, TiO2, and Na2O compared with boninite. The PGE mineralization is very poor (<100 ppb) in both deposits. Laurite (RuS2) is the most common PGM inclusion in chromite, although it is accompanied by erlichmanite (OsS2) and (Ir,Ni) sulfides in Prospect 33. Precipitation of PGM occurred at sulfur fugacity and temperatures of logƒS2 = (−3.0), 1300–1100 °C in Bolshoi Bashart, and logƒS2 = (−3.0/+1.0), 1100–800 °C in Prospect 33, respectively. The paucity of chromite-PGM mineralization compared with giant chromite deposits in the mantle tectonite in supra-subduction zones (SSZ) of the Urals (Ray-Iz, Kempirsai) is ascribed to the peculiar petrologic nature (low depleted lherzolite) and geodynamic setting (rifted continental margin?) of the Kraka ophiolite, which did not enable drainage of the upper mantle with a large volume of mafic magma. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

22 pages, 4601 KiB  
Article
Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield)
by Artem V. Mokrushin and Valery F. Smol’kin
Minerals 2021, 11(7), 772; https://0-doi-org.brum.beds.ac.uk/10.3390/min11070772 - 16 Jul 2021
Cited by 7 | Viewed by 2582
Abstract
In 1990, the Sopcheozero Cr deposit was discovered in the Monchegorsk Paleoproterozoic layered mafic-ultramafic layered intrusion (Monchepluton). This stratiform early-magmatic deposit occurs in the middle part of the Dunite Block, which is a member of the Monchepluton layered series. The Cr2O [...] Read more.
In 1990, the Sopcheozero Cr deposit was discovered in the Monchegorsk Paleoproterozoic layered mafic-ultramafic layered intrusion (Monchepluton). This stratiform early-magmatic deposit occurs in the middle part of the Dunite Block, which is a member of the Monchepluton layered series. The Cr2O3 average-weighted content in ordinary and rich ores of the deposit is 16.65 and 38.76 wt.%, respectively, at gradually changing concentrations within the rich, ordinary and poor ore types and ore body in general. The ores of the Sopcheozero deposit, having a ratio of Cr2O3/FeOtotal = 0.9–1.7, can serve as raw materials for the refractory and chemical industries. The ore Cr-spinel (magnochromite and magnoalumochromite) is associated with highly magnesian olivine (96–98 Fo) rich in Ni (0.4–1.1 wt.%). It confirms a low S content in the melt and complies with the low oxygen fugacity. The coexisting Cr-spinel-olivine pairs crystallized at temperatures from 1258 to 1163 °C, with accessory Cr-spinel crystallizing at relatively low, while ore Cr-spinel at higher temperatures. The host rock and ore distinguish with widespread plastic deformations of olivine at the postcrystallization phase under conditions of high temperature (above 400 °C) and pressure (5 kbar). At the post magmatic Svecofennian stage (1.84 Ga), the deposit, jointly with the Monchepluton, was subject to diverse tectonic deformations. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

31 pages, 11043 KiB  
Article
Chromite Paleoplacer in the Permian Sediments at the East Edge of the East European Platform: Composition and Potential Sources
by Ildar R. Rakhimov, Evgenii V. Pushkarev and Irina A. Gottman
Minerals 2021, 11(7), 691; https://0-doi-org.brum.beds.ac.uk/10.3390/min11070691 - 27 Jun 2021
Cited by 3 | Viewed by 2729
Abstract
A chromite occurrence called the Sabantuy paleoplacer was discovered in the Southern Pre-Ural region, at the east edge of the East-European Platform in the transitional zone to the Ural Foredeep. A ca. 1 m-thick chromite-bearing horizon is traced at a depth of 0.7–1.5 [...] Read more.
A chromite occurrence called the Sabantuy paleoplacer was discovered in the Southern Pre-Ural region, at the east edge of the East-European Platform in the transitional zone to the Ural Foredeep. A ca. 1 m-thick chromite-bearing horizon is traced at a depth of 0.7–1.5 m from the earth’s surface for the area of ca. 15,000 m2. The chromspinel content in sandstones reaches 30–35%, maximum values of Cr2O3 are 16–17 wt.%. The grain size of detrital chromspinel ranges from 0.15 to 0.25 mm. Subangular octahedral crystals dominate; rounded grains and debris are rare. The composition of detrital chromspinel varies widely and is constrained by the substitution of Al3+ and Cr3+, Fe2+ and Mg2+ cations. Chemically, low-Al (Al2O3 = 12 wt.%) and high-Cr (Cr2O3 = 52–56 wt.%) chromspinel prevail. The compositional analysis using discrimination diagrams showed that most chromites correspond to mantle peridotites of subduction settings. Volcanic rocks could be an additional source for detrital chromites. It is confirmed by compositions of monomineralic, polymineralic and melt inclusions in chromspinels. The presented data indicates that ophiolite peridotites and related chromite ore associated with oceanic and island-arc volcanic rocks, widespread in the Ural orogen, could be the main sources of the detrital chromspinel of the Sabantuy paleoplacer. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Graphical abstract

36 pages, 14365 KiB  
Article
Testing Trace-Element Distribution and the Zr-Based Thermometry of Accessory Rutile from Chromitite
by Federica Zaccarini, Giorgio Garuti, George L. Luvizotto, Yuri de Melo Portella and Athokpam K. Singh
Minerals 2021, 11(7), 661; https://0-doi-org.brum.beds.ac.uk/10.3390/min11070661 - 22 Jun 2021
Cited by 2 | Viewed by 2252
Abstract
Trace element distribution and Zr-in-rutile temperature have been investigated in accessory rutile from stratiform (UG2, Merensky Reef, Jacurici), podiform (Loma Peguera), and metamorphic chromitites in cratonic shields (Cedrolina, Nuasahi). Rutile from chromitite has typical finger-print of Cr-V-Nb-W-Zr, whose relative abundance distinguishes magmatic from [...] Read more.
Trace element distribution and Zr-in-rutile temperature have been investigated in accessory rutile from stratiform (UG2, Merensky Reef, Jacurici), podiform (Loma Peguera), and metamorphic chromitites in cratonic shields (Cedrolina, Nuasahi). Rutile from chromitite has typical finger-print of Cr-V-Nb-W-Zr, whose relative abundance distinguishes magmatic from metamorphic chromitite. In magmatic deposits, rutile precipitates as an intercumulus phase, or forms by exsolution from chromite, between 870 °C and 540 °C. The Cr-V in rutile reflects the composition of chromite, both Nb and Zr are moderately enriched, and W is depleted, except for in Jacurici, where moderate W excess was a result of crustal contamination of the mafic magma. In metamorphic deposits, rutile forms by removal of Ti-Cr-V from chromite during metamorphism between 650 °C and 400 °C, consistent with greenschist-amphibolite facies, and displays variable Cr-Nb, low V-Zr, and anomalous enrichment in W caused by reaction with felsic fluids emanating from granitoid intrusions. All deposits, except Cedrolina, contain Rutile+PGM composite grains (<10 µm) locked in chromite, possibly representing relics of orthomagmatic assemblages. The high Cr-V content and the distinctive W-Nb-Zr signature that typifies accessory rutile in chromitite provide a new pathfinder to trace the provenance of detrital rutile in placer deposits. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

21 pages, 6484 KiB  
Article
Accessory Cr-Spinels in the Section of the Nude-Poaz Massif in the Monchegorsk (2.5 Ga) Mafic-Ultramafic Layered Complex (Kola Peninsula, Russia): Comparison with Ore-Forming Chromites
by Tatiana Rundkvist and Pavel Pripachkin
Minerals 2021, 11(6), 602; https://0-doi-org.brum.beds.ac.uk/10.3390/min11060602 - 03 Jun 2021
Viewed by 2523
Abstract
The paper studies accessory Cr-spinels from deep drill holes crossing the Nude-Poaz massif, which is a part of the Monchegorsk mafic-ultramafic layered complex (2.5 Ga, Kola Peninsula, Russia). Cr-spinels occur as two morphological types that differ in their chemical composition, i.e., Cr-spinels of [...] Read more.
The paper studies accessory Cr-spinels from deep drill holes crossing the Nude-Poaz massif, which is a part of the Monchegorsk mafic-ultramafic layered complex (2.5 Ga, Kola Peninsula, Russia). Cr-spinels occur as two morphological types that differ in their chemical composition, i.e., Cr-spinels of the first type are more aluminous, while Cr-spinels of the second type are more ferruginous and titaniferous. Cr-spinels of the Nude-Poaz massif are characterized by a Fe-Ti trend known for layered intrusions in the world. Cr-spinels of the Nude-Poaz massif quite clearly differ in composition from chromites of the Sopcheozero deposit: they are more ferruginous and less chromous. The specific composition of Cr-spinels in rocks of the Nude-Poaz massif can be correlated with the sequence of the magmatic phases intrusion. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

10 pages, 2103 KiB  
Article
Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis
by Shoji Arai
Minerals 2021, 11(2), 209; https://0-doi-org.brum.beds.ac.uk/10.3390/min11020209 - 16 Feb 2021
Cited by 7 | Viewed by 5506
Abstract
No genetic link between the two main types of chromitite, stratiform and podiform chromitites, has ever been discussed. These two types of chromitite have very different geological contexts; the stratiform one is a member of layered intrusions, representing fossil magma chambers, in the [...] Read more.
No genetic link between the two main types of chromitite, stratiform and podiform chromitites, has ever been discussed. These two types of chromitite have very different geological contexts; the stratiform one is a member of layered intrusions, representing fossil magma chambers, in the crust, and the podiform one forms pod-like bodies, representing fossil magma conduits, in the upper mantle. Chromite grains contain peculiar polymineralic inclusions derived from Na-bearing hydrous melts, whose features are so similar between the two types that they may form in a similar fashion. The origin of the chromite-hosted inclusions in chromitites has been controversial but left unclear. The chromite-hosted inclusions also characterize the products of the peridotite–melt reaction or melt-assisted partial melting, such as dunites, troctolites and even mantle harzburgites. I propose a common origin for the inclusion-bearing chromites, i.e., a reaction between the mantle peridotite and magma. Some of the chromite grains in the stratiform chromitite originally formed in the mantle through the peridotite–magma reaction, possibly as loose-packed young podiform chromitites, and were subsequently disintegrated and transported to a crustal magma chamber as suspended grains. It is noted, however, that the podiform chromitites left in the mantle beneath the layered intrusions are different from most of the podiform chromitites now exposed in the ophiolites. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

32 pages, 23030 KiB  
Article
Zones of PGE–Chromite Mineralization in Relation to Crystallization of the Pados-Tundra Ultramafic Complex, Serpentinite Belt, Kola Peninsula, Russia
by Andrei Y. Barkov, Andrey A. Nikiforov, Larisa P. Barkova, Vladimir N. Korolyuk and Robert F. Martin
Minerals 2021, 11(1), 68; https://0-doi-org.brum.beds.ac.uk/10.3390/min11010068 - 12 Jan 2021
Cited by 8 | Viewed by 3075
Abstract
The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, [...] Read more.
The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of fO2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in fO2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630 °C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

Back to TopTop