Nanomaterials Template for Organic or Composite Polymers in Biomedical Application II

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: closed (10 March 2023) | Viewed by 38260

Special Issue Editor


E-Mail Website
Guest Editor
Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
Interests: biomaterials; material analysis; polymer chemistry; medical engineering; functional fiber composites; nanomaterials; tissue engineering; hydrogels
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Very recently, nanomaterials have attracted a lot of attention in multidisciplinary academic fields, including engineering, chemistry, solid-state physics, biotechnology, and biomedicine. The most important features of these nanomaterials are their polarity, modification capability, and diverse properties. Therefore, the application of nanomaterials in the clinical field revokes many revolutionary solutions in tissue reconstruction when the tissue is defective. In addition, nanomaterials are also useful in developing multi-functionalized drugs, antibacterial products, etc. The nanoparticle platforms that have been extensively explored for biomedical applications are predominantly either purely inorganic or organic materials. Hybrid nanoparticles or organic composites with inorganics can not only retain the beneficial features of both inorganic and organic nanomaterials, but they can also possess unique advantages over the other two types. The changeable material design can derive a variety of clinical treatment strategies.

This Special Issue focuses on the use of organic/inorganic or hybrid nanomaterials for biomedical applications. We invite full papers, communications, and reviews. We would like to invite you to contribute to this Special Issue. Research topics of interest cover one or several of the topics included in (or related to) the keywords below.

Prof. Dr. Wen-Cheng Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • composites
  • nanomaterials
  • micelles
  • hydrogels
  • biodegradable
  • apatite
  • drug delivery
  • slow release
  • scaffold
  • tissue regeneration
  • biocompatibility
  • delivery
  • antibacterial
  • therapy
  • nanoparticle manufacture and processing

Related Special Issues

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 6981 KiB  
Article
Long-Lasting Electret Melt-Blown Nonwoven Functional Filters Made of Organic/Inorganixc Macromolecular Micron Materials: Manufacturing Techniques and Property Evaluations
by Jia-Horng Lin, Yan-Yu Lin, Yang-Min Sue, Mei-Chen Lin, Yueh-Sheng Chen and Ching-Wen Lou
Polymers 2023, 15(10), 2306; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15102306 - 14 May 2023
Cited by 1 | Viewed by 1634
Abstract
Melt-blown nonwoven fabrics for filtration are usually manufactured using polypropylene, but after a certain time period the middle layer of the mask may have a reduced effect on adsorbing particles and may not be easily stored. Adding electret materials not only increases storage [...] Read more.
Melt-blown nonwoven fabrics for filtration are usually manufactured using polypropylene, but after a certain time period the middle layer of the mask may have a reduced effect on adsorbing particles and may not be easily stored. Adding electret materials not only increases storage time, but also shows in this study that the addition of electret can improve filtration efficiency. Therefore, this experiment uses a melt-blown method to prepare a nonwoven layer, and adds MMT, CNT, and TiO2 electret materials to it for experiments. Polypropylene (PP) chip, montmorillonite (MMT) and titanium dioxide (TiO2) powders, and carbon nanotube (CNT) are blended and made into compound masterbatch pellets using a single-screw extruder. The resulting compound pellets thus contain different combinations of PP, MMT, TiO2, and CNT. Next, a hot pressor is used to make the compound chips into a high-poly film, which is then measured with differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The optimal parameters are yielded and employed to form the PP/MMT/TiO2 nonwoven fabrics and PP/MMT/CNT nonwoven fabrics. The basis weight, thickness, diameter, pore size, fiber covering ratio, air permeability, and tensile property of different nonwoven fabrics are evaluated in order to have the optimal group of PP-based melt-blown nonwoven fabrics. According to the results of DSC and FTIR measurements, PP and MMT, CNT, and TiO2 are completely mixed, and the melting temperature (Tm), crystallization temperature (Tc) and endotherm area are changed accordingly. The difference in enthalpy of melting changes the crystallization of PP pellets, which in turn changes the fibers. Moreover, the Fourier transform infrared (FTIR) spectroscopy results substantiate that PP pellets are well blended with CNT and MMT, according to the comparisons of characteristic peaks. Finally, the scanning electron microscopy (SEM) observation suggests that with a spinning die temperature of 240 °C and a spinning die pressure lower than 0.01 MPa, the compound pellets can be successfully formed into melt-blown nonwoven fabrics with a 10-micrometer diameter. The proposed melt-blown nonwoven fabrics can be processed with electret to form long-lasting electret melt-blown nonwoven filters. Full article
Show Figures

Figure 1

13 pages, 6232 KiB  
Article
Effect of Citric Acid on Swelling Resistance and Physicochemical Properties of Post-Crosslinked Electrospun Polyvinyl Alcohol Fibrous Membrane
by Ssu-Meng Huang, Shih-Ming Liu, Hua-Yi Tseng and Wen-Cheng Chen
Polymers 2023, 15(7), 1738; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15071738 - 31 Mar 2023
Cited by 5 | Viewed by 2704
Abstract
A series of electrospun polyvinyl alcohol (PVA) fiber membranes were crosslinked with citric acid (CA) at concentrations of 10, 20, and 30 wt.% (designated as CA10, CA20, and CA30). The effects of CA on the chemical structure, mechanical strength, swelling resistance, and cytotoxicity [...] Read more.
A series of electrospun polyvinyl alcohol (PVA) fiber membranes were crosslinked with citric acid (CA) at concentrations of 10, 20, and 30 wt.% (designated as CA10, CA20, and CA30). The effects of CA on the chemical structure, mechanical strength, swelling resistance, and cytotoxicity of the crosslinked PVA fibrous membranes were investigated. Infrared spectroscopy indicated the enhanced esterification of carboxyl and hydroxyl groups between CA and PVA. The modulus and strength of the electrospun PVA membrane increased due to the crosslinking between CA and PVA. The crosslinking of the PVA fiber matrix with CA increased the PVA binding point, thereby increasing the swelling resistance and modulus; however, the concentration of CA used was limited. Results showed that the water absorption of the PVA membranes decreased from 6.58 ± 0.04 g/g for CA10 to 3.56 ± 3.33 g/g for CA20 and 2.85 ± 0.40 g/g for CA30 with increasing CA. The water absorption remained unchanged after the membrane was soaked for a period of time, so no significant difference was found in the water absorption capacity of the same group after immersion from 1 h to 3 d. The tensile strength increased from 20.52 MPa of CA10 to 22.09 MPa of CA20. With an increased amount of CA used for crosslinking, the tensile strength and modulus of CA30 decreased to 11.48 and 13.94 MPa, respectively. Our study also showed that CA was not toxic to L929 cell viability when used for fiber crosslinking at less than 20 wt.% PVA, meaning it may be a good candidate as a support layer for guided tissue engineering. Full article
Show Figures

Graphical abstract

20 pages, 6408 KiB  
Article
In Vitro Characterizations of Post-Crosslinked Gelatin-Based Microspheres Modified by Phosphatidylcholine or Diammonium Phosphate as Antibiotic Delivery Vehicles
by Kai-Chi Chang, Pei-Jheng Chang, Jian-Chih Chen, Ssu-Meng Huang, Shih-Ming Liu, Chi-Jen Shih and Wen-Cheng Chen
Polymers 2023, 15(6), 1504; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15061504 - 17 Mar 2023
Cited by 2 | Viewed by 1393
Abstract
Hydrogel-based microspheres prepared by emulsification have been widely used as drug carriers, but biocompatibility remains a challenging issue. In this study, gelatin was used as the water phase, paraffin oil was used as the oil phase, and Span 80 was used as the [...] Read more.
Hydrogel-based microspheres prepared by emulsification have been widely used as drug carriers, but biocompatibility remains a challenging issue. In this study, gelatin was used as the water phase, paraffin oil was used as the oil phase, and Span 80 was used as the surfactant. Microspheres were prepared using a water-in-oil (W/O) emulsification. Diammonium phosphate (DAP) or phosphatidylcholine (PC) were further used to improve the biocompatibility of post-crosslinked gelatin microspheres. The biocompatibility of DAP-modified microspheres (0.5–10 wt.%) was better than that of PC (5 wt.%). The microspheres soaked in phosphate-buffered saline (PBS) lasted up to 26 days before fully degrading. Based on microscopic observation, the microspheres were all spherical and hollow inside. The particle size distribution ranged from 19 μm to 22 μm in diameter. The drug release analysis showed that the antibiotic gentamicin loaded on the microspheres was released in a large amount within 2 h of soaking in PBS. It was stabilized until the amount of microspheres integrated was significantly reduced after soaking for 16 days and then released again to form a two-stage drug release curve. In vitro experiments showed that DAP-modified microspheres at concentrations less than 5 wt.% had no cytotoxicity. Antibiotic-impregnated and DAP-modified microspheres had good antibacterial effects against Staphylococcus aureus and Escherichia coli, but these drug-impregnated groups hinder the biocompatibility of hydrogel microspheres. The developed drug carrier can be combined with other biomaterial matrices to form a composite for delivering drugs directly to the affected area in the future to achieve local therapeutic effects and improve the bioavailability of drugs. Full article
Show Figures

Graphical abstract

10 pages, 2331 KiB  
Article
The Effect of Polysaccharides on Preventing Proteins and Cholesterol from Being Adsorbed on the Surface of Orthokeratology Lenses
by Ting-Yao Wu, Lung-Kun Yeh, Chen-Ying Su, Pin-Hsuan Huang, Chi-Chun Lai and Hsu-Wei Fang
Polymers 2022, 14(21), 4542; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14214542 - 26 Oct 2022
Cited by 1 | Viewed by 1578
Abstract
The adsorption of tear film compositions such as proteins and lipids on the orthokeratology lenses often lead to infection or corneal damage. In order to investigate whether polysaccharides could prevent tear compositions from being adsorbed on the lens, alginic acid and lambda-carrageenan were [...] Read more.
The adsorption of tear film compositions such as proteins and lipids on the orthokeratology lenses often lead to infection or corneal damage. In order to investigate whether polysaccharides could prevent tear compositions from being adsorbed on the lens, alginic acid and lambda-carrageenan were added into artificial tear solution. By measuring daily adsorption of cholesterol, lysozyme, and albumin, our results showed that polysaccharides could weakly prevent cholesterol adsorption. In addition, polysaccharides could also reduce albumin deposition over time. Although the effect of polysaccharides on lysozyme adsorption was distinct depending on the concentrations of polysaccharides, the overall results demonstrated that polysaccharides could decrease protein deposition over time. Our results provided an in vitro evidence that polysaccharides may be applied as coating materials on the lens or as the composition of artificial tear solutions or eyedrops, in order to prevent adsorption of tear film compositions that may lead to a reduced incidence of infection or corneal damage for orthokeratology lens wearers. Full article
Show Figures

Graphical abstract

12 pages, 2861 KiB  
Article
Plasma-Initiated Grafting of Bioactive Peptide onto Nano-CuO/Tencel Membrane
by Tzer-Liang Hu, Guan-Yu Chen, Shih-Chen Shi and Jason Hsiao Chun Yang
Polymers 2022, 14(21), 4497; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14214497 - 24 Oct 2022
Cited by 1 | Viewed by 1303
Abstract
A bioactive peptide has been successfully grafted onto nano-CuO impregnated Tencel membranes by a simple and rapid method involving a series of textile processes, and an atmospheric argon plasma treatment that requires no additional solvent or emulsifier. Surface morphology shows an apparent change [...] Read more.
A bioactive peptide has been successfully grafted onto nano-CuO impregnated Tencel membranes by a simple and rapid method involving a series of textile processes, and an atmospheric argon plasma treatment that requires no additional solvent or emulsifier. Surface morphology shows an apparent change from smooth, slightly roughened, and stripped with increasing plasma treatment time. The FT-IR characteristic peaks confirm the presence of the CuO nanoparticle and peptide on the extremely hydrophilic Tencel membranes that exhibit a zero-degree contact angle. Prepared nano-CuO/Tencel membranes with 90 s plasma treatment time exhibit excellent antimicrobial activity against E. coli and S. aureus, and promote fibroblast cell viability with the assistance of a grafted bioactive peptide layer on the membrane surface. Full article
Show Figures

Graphical abstract

9 pages, 5289 KiB  
Article
Influence of Aging on the Fracture Characteristics of Polyetheretherketone Dental Crowns: A Preliminary Study
by Wen-Ju Lu, Viritpon Srimaneepong, Chiang-Sang Chen, Chang-Hung Huang, Hui-Ching Lin, Chia-Fei Liu and Her-Hsiung Huang
Polymers 2022, 14(19), 4123; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14194123 - 01 Oct 2022
Cited by 1 | Viewed by 1296
Abstract
Although polyetheretherketone (PEEK) is becoming more widely used in dentistry applications, little is known about how aging will affect this material. Therefore, this study aimed to investigate the influence of an aging treatment on fracture characteristics of PEEK dental crowns. Additionally, the impact [...] Read more.
Although polyetheretherketone (PEEK) is becoming more widely used in dentistry applications, little is known about how aging will affect this material. Therefore, this study aimed to investigate the influence of an aging treatment on fracture characteristics of PEEK dental crowns. Additionally, the impact of the addition of titanium dioxide (TiO2) into PEEK was examined. Two types of commercial PEEK discs were used in this study, including TiO2-free and 20% TiO2-containing PEEK. The PEEK dental crowns were fabricated and aging-treated at 134 °C and 0.2 MPa for 5 h in accordance with the ISO 13356 specification before being cemented on artificial tooth abutments. The fracture loads of all crown samples were measured under compression tests. Results demonstrated that adding TiO2 enhanced the fracture load of PEEK crowns compared to TiO2-free PEEK crowns before the aging treatment. However, the aging treatment decreased the fracture load of TiO2-containing PEEK crowns while increasing the fracture load of TiO2-free PEEK crowns. The fracture morphology of TiO2-containing PEEK crowns revealed finer feather shapes than that of the TiO2-free PEEK crowns. We concluded that adding TiO2 increased the fracture load of PEEK crowns without aging treatment. Still, the aging treatment influenced the fracture load and microscopic fracture morphology of PEEK crowns, depending on the addition of TiO2. Full article
Show Figures

Figure 1

15 pages, 6853 KiB  
Article
A Tumor Accelerator Based on Multicomponent Bone Scaffolds and Cancer Cell Homing
by Chen-Ji Huang, Pei-Kuan Chou, Zong-Yi Sher, You-Rong Chen, Tan-Yueh Chen and Guo-Chung Dong
Polymers 2022, 14(16), 3340; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14163340 - 16 Aug 2022
Viewed by 1602
Abstract
Bone tissue attracts cancer cell homing biologically, mechanically, or chemically. It is difficult and time consuming to identify their complex cross-talk using existed methods. In this study, a multi-component bone matrix was fabricated using gelatin, hydroxyapatite (HAp), and epidermal growth factor (EGF) as [...] Read more.
Bone tissue attracts cancer cell homing biologically, mechanically, or chemically. It is difficult and time consuming to identify their complex cross-talk using existed methods. In this study, a multi-component bone matrix was fabricated using gelatin, hydroxyapatite (HAp), and epidermal growth factor (EGF) as raw materials to investigate how “acellular” bone matrix affects cancer cell homing in bone. Then, EGF-responsive cancer cells were cultured with the scaffold in a dynamical bioreactor. For different culture periods, the effects of HAp, gelatin, and EGF on the cell adhesion, proliferation, 3D growth, and migration of cancer were evaluated. The results indicated that a small amount of calcium ion released from the scaffolds accelerated cancer MDA-MB-231 adhesion on the surface of inner pores. Moreover, degradable gelatin key caused cancer cell growth on the scaffold surface to turn into a 3D aggregation. Despite this, the formation of cancer spheroids was slow, and required 14 days of dynamic culture. Thankfully, EGF promoted cancer cell adhesion, proliferation, and migration, and cancer spheroids were observed only after 3-day culture. We concluded that the combination of the multiple components in this scaffold allows cancer cells to meet multiple requirements of cancer dynamic progression. Full article
Show Figures

Graphical abstract

16 pages, 4754 KiB  
Article
Development and Optimization of Nigella sativa Nanoemulsion Loaded with Pioglitazone for Hypoglycemic Effect
by Tamer M. Shehata, Mervt M. Almostafa and Heba S. Elsewedy
Polymers 2022, 14(15), 3021; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14153021 - 26 Jul 2022
Cited by 5 | Viewed by 1684
Abstract
Diabetes mellitus (DM) is a metabolic disorder associated with an increased blood glucose level. The world health burden of DM has increased as a result of numerous causes that necessitates suitable treatment. Pioglitazone (PGZ) is a generally prescribed medication for managing type II [...] Read more.
Diabetes mellitus (DM) is a metabolic disorder associated with an increased blood glucose level. The world health burden of DM has increased as a result of numerous causes that necessitates suitable treatment. Pioglitazone (PGZ) is a generally prescribed medication for managing type II diabetes. However, its low solubility creates complications for its formulation. Therefore, the aim of the current study was to incorporate PGZ into a nanoemulsion (NE) formulation prepared with Nigella sativa oil (NSO) to boost the action of PGZ. To our knowledge, no previous study has addressed the combination and synergistic effect of PGZ and NSO as a hypoglycemic NE formulation intended for oral administration. An experiment was designed to test several PGZ-loaded NE formulations, varying factors such as NSO, surfactant and co-surfactant concentrations. These factors were investigated for their influence on responses including particle size and in vitro release. An optimized PGZ-loaded NE was selected and examined for its morphology, kinetic activity and stability. Further, the anti-diabetic effect of the optimized formulation was evaluated using diabetically induced rats. The optimized formula exhibited a good particle size of 167.1 nm and in vitro release of 89.5%. A kinetic study revealed that the drug release followed the Korsmeyer–Peppas mechanism. Additionally, the PGZ-loaded NE formulation was found to be stable, showing non-significant variation in the evaluated parameters when stored at 4 and 25 °C for a period of 3 months. In vivo investigation of the PGZ-loaded NE formulation showed a significant reduction in blood glucose level, which appeared to be enhanced by the presence of NSO. In conclusion, NS-NE could be a promising nanocarrier for enhancing the hypoglycemic effect of PGZ. Full article
Show Figures

Figure 1

21 pages, 2346 KiB  
Article
5-Fluorouracil and Curcumin Combination Coated with Pectin and Its Strategy towards Titanium Dioxide, Dimethylhydrazine Colorectal Cancer Model with the Evaluation of the Blood Parameters
by Chenmala Karthika, Md. Habibur Rahman, Raman Sureshkumar, Rokeya Akter, Azmat Ali Khan, Amer M. Alanazi, Abul Kalam Azad, Paritosh Barai and Hasi Rani Barai
Polymers 2022, 14(14), 2868; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14142868 - 14 Jul 2022
Viewed by 1787
Abstract
Colorectal cancer is considered the third most common cancer and the second leading cause of death globally. It has been proven that titanium dioxide nanoparticles produce oxidative stress and can lead to chronic inflammation, which could turn into diseases like cancer, cardiovascular disorders, [...] Read more.
Colorectal cancer is considered the third most common cancer and the second leading cause of death globally. It has been proven that titanium dioxide nanoparticles produce oxidative stress and can lead to chronic inflammation, which could turn into diseases like cancer, cardiovascular disorders, diabetes, and so on. To evaluate the effect of 5-fluorouracil (5-FU) curcumin (CUR) conjugate coated with pectin on colorectal cancer induced by titanium dioxide nanoparticles (TiO2-NPs) and dimethylhydrazine (DMH), male rats were administered TiO2-NPs (5 mg/kg) orally and DMH (1 mg/kg) peritoneally for 70 days and treated with 5-FU (60 mg/kg) and CUR (240 mg/kg) conjugate (1:4 ratio) coated with pectin. The bodyweight of the animals was evaluated, and the blood sugar level was calculated. Further blood and plasma analyses were conducted. Hematological parameters, antioxidant parameters, and biochemical estimation were taken into consideration. The TiO2-NPs level in the blood and colorectal region was also calculated. With the induction of colon cancer using TiO2-NPs and DMH, a significant increase in the body weight of the animals was seen; eventually, with treatment, it was reduced. The bodyweight increase was due to an increase in the blood sugar level. There were also significant changes in the hematological parameters and biochemical estimation reports when comparing those of the positive control, negative control, and treated groups. No significant effect on biochemical estimation reports was seen. Conclusions: These reports suggest that 5-FU CUR conjugate coated with pectin helps in the management of colorectal cancer induced by TiO2-NPs and DMH. Full article
Show Figures

Figure 1

11 pages, 1723 KiB  
Article
Pulmonary Delivery of Hydroxychloroquine Nanostructured Lipid Carrier as a Potential Treatment of COVID-19
by Ahmed Shaker Ali, Mohsen Geza Alrashedi, Osama Abdelhakim Aly Ahmed and Ibrahim M. Ibrahim
Polymers 2022, 14(13), 2616; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14132616 - 28 Jun 2022
Cited by 8 | Viewed by 1703
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2. Pneumonia is considered the most severe and long-term complication of COVID-19. Among other drugs, hydroxychloroquine (HCQ) was repurposed for the management of COVID-19; however, low efficacy and cardiac [...] Read more.
Coronavirus Disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2. Pneumonia is considered the most severe and long-term complication of COVID-19. Among other drugs, hydroxychloroquine (HCQ) was repurposed for the management of COVID-19; however, low efficacy and cardiac toxicity of the conventional dosage form limited its use in COVID-19. Therefore, utilizing nanotechnology, a pulmonary delivery system of HCQ was investigated to overcome these limitations. HCQ was formulated in nanostructured lipid carriers (HCQ-NLCs) using the hot emulsification–ultrasonication method. Furthermore, the prepared formulation was evaluated in vitro. Moreover, the efficacy was tested in vivo in a bleomycin-induced acute lung injury mice model. Intriguingly, nanoformulations were given by the intratracheal route for 6 days. HCQ-NLCs showed a mean particle size of 277 nm and a good drug release profile. Remarkably, acute lung injury induced by bleomycin was associated with a marked elevation of inflammatory markers and histological alterations in lung tissues. Astoundingly, all these changes were significantly attenuated with HCQ-NLCs. The pulmonary delivery of HCQ-NLCs likely provided adequate targeting to lung tissues. Nevertheless, there is hope that this novel strategy will eventually lead to the improved effectiveness and diminished probability of alarming adverse drug reactions. Full article
Show Figures

Figure 1

24 pages, 6476 KiB  
Article
Characteristic and Chondrogenic Differentiation Analysis of Hybrid Hydrogels Comprised of Hyaluronic Acid Methacryloyl (HAMA), Gelatin Methacryloyl (GelMA), and the Acrylate-Functionalized Nano-Silica Crosslinker
by Swathi Nedunchezian, Che-Wei Wu, Shung-Cheng Wu, Chung-Hwan Chen, Je-Ken Chang and Chih-Kuang Wang
Polymers 2022, 14(10), 2003; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102003 - 13 May 2022
Cited by 11 | Viewed by 4258
Abstract
Developing a biomaterial suitable for adipose-derived stem cell (ADSCs)-laden scaffolds that can directly bond to cartilage tissue surfaces in tissue engineering has still been a significant challenge. The bioinspired hybrid hydrogel approaches based on hyaluronic acid methacryloyl (HAMA) and gelatin methacryloyl (GelMA) appear [...] Read more.
Developing a biomaterial suitable for adipose-derived stem cell (ADSCs)-laden scaffolds that can directly bond to cartilage tissue surfaces in tissue engineering has still been a significant challenge. The bioinspired hybrid hydrogel approaches based on hyaluronic acid methacryloyl (HAMA) and gelatin methacryloyl (GelMA) appear to have more promise. Herein, we report the cartilage tissue engineering application of a novel photocured hybrid hydrogel system comprising HAMA, GelMA, and 0~1.0% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker, in addition to describing the preparation of related HAMA, GelMA, and AFnSi materials and confirming their related chemical evidence. The study also examines the physicochemical characteristics of these hybrid hydrogels, including swelling behavior, morphological conformation, mechanical properties, and biodegradation. To further investigate cell viability and chondrogenic differentiation, the hADSCs were loaded with a two-to-one ratio of the HAMA-GelMA (HG) hybrid hydrogel with 0~1.0% (w/v) AFnSi crosslinker to examine the process of optimal chondrogenic development. Results showed that the morphological microstructure, mechanical properties, and longer degradation time of the HG+0.5% (w/v) AFnSi hydrogel demonstrated the acellular novel matrix was optimal to support hADSCs differentiation. In other words, the in vitro experimental results showed that hADSCs laden in the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi not only significantly increased chondrogenic marker gene expressions such as SOX-9, aggrecan, and type II collagen expression compared to the HA and HG groups, but also enhanced the expression of sulfated glycosaminoglycan (sGAG) and type II collagen formation. We have concluded that the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi will provide a suitable environment for articular cartilage tissue engineering applications. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

34 pages, 2495 KiB  
Review
Insights on Development Aspects of Polymeric Nanocarriers: The Translation from Bench to Clinic
by Akhilesh Kumar Tewari, Satish Chandra Upadhyay, Manish Kumar, Kamla Pathak, Deepak Kaushik, Ravinder Verma, Shailendra Bhatt, Ehab El Sayed Massoud, Md. Habibur Rahman and Simona Cavalu
Polymers 2022, 14(17), 3545; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14173545 - 29 Aug 2022
Cited by 19 | Viewed by 3377
Abstract
Scientists are focusing immense attention on polymeric nanocarriers as a prominent delivery vehicle for several biomedical applications including diagnosis of diseases, delivery of therapeutic agents, peptides, proteins, genes, siRNA, and vaccines due to their exciting physicochemical characteristics which circumvent degradation of unstable drugs, [...] Read more.
Scientists are focusing immense attention on polymeric nanocarriers as a prominent delivery vehicle for several biomedical applications including diagnosis of diseases, delivery of therapeutic agents, peptides, proteins, genes, siRNA, and vaccines due to their exciting physicochemical characteristics which circumvent degradation of unstable drugs, reduce toxic side effects through controlled release, and improve bioavailability. Polymers-based nanocarriers offer numerous benefits for in vivo drug delivery such as biocompatibility, biodegradability, non-immunogenicity, active drug targeting via surface modification, and controlled release due to their pH—and thermosensitive characteristics. Despite their potential for medicinal use, regulatory approval has been achieved for just a few. In this review, we discuss the historical development of polymers starting from their initial design to their evolution as nanocarriers for therapeutic delivery of drugs, peptides, and genes. The review article also expresses the applications of polymeric nanocarriers in the pharmaceutical and medical industry with a special emphasis on oral, ocular, parenteral, and topical application of drugs, peptides, and genes over the last two decades. The review further examines the practical, regulatory, and clinical considerations of the polymeric nanocarriers, their safety issues, and directinos for future research. Full article
Show Figures

Graphical abstract

26 pages, 4844 KiB  
Review
Novel Nanotechnology-Based Approaches for Targeting HIV Reservoirs
by Leila Fotooh Abadi, Fouad Damiri, Mehrukh Zehravi, Rohit Joshi, Rohan Pai, Mohammed Berrada, Ehab El Sayed Massoud, Md. Habibur Rahman, Satish Rojekar and Simona Cavalu
Polymers 2022, 14(15), 3090; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14153090 - 29 Jul 2022
Cited by 11 | Viewed by 5309
Abstract
Highly active anti-retroviral therapy (HAART) is prescribed for HIV infection and, to a certain extent, limits the infection’s spread. However, it cannot completely eradicate the latent virus in remote and cellular reservoir areas, and due to the complex nature of the infection, the [...] Read more.
Highly active anti-retroviral therapy (HAART) is prescribed for HIV infection and, to a certain extent, limits the infection’s spread. However, it cannot completely eradicate the latent virus in remote and cellular reservoir areas, and due to the complex nature of the infection, the total eradication of HIV is difficult to achieve. Furthermore, monotherapy and multiple therapies are not of much help. Hence, there is a dire need for novel drug delivery strategies that may improve efficacy, decrease side effects, reduce dosing frequency, and improve patient adherence to therapy. Such a novel strategy could help to target the reservoir sites and eradicate HIV from different biological sanctuaries. In the current review, we have described HIV pathogenesis, the mechanism of HIV replication, and different biological reservoir sites to better understand the underlying mechanisms of HIV spread. Further, the review deliberates on the challenges faced by the current conventional drug delivery systems and introduces some novel drug delivery strategies that have been explored to overcome conventional drug delivery limitations. In addition, the review also summarizes several nanotechnology-based approaches that are being explored to resolve the challenges of HIV treatment by the virtue of delivering a variety of anti-HIV agents, either as combination therapies or by actively targeting HIV reservoir sites. Full article
Show Figures

Graphical abstract

25 pages, 3335 KiB  
Review
Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review
by Gamal Abdel Nasser Atia, Hany K. Shalaby, Mehrukh Zehravi, Mohamed Mohamady Ghobashy, Zubair Ahmad, Farhat S. Khan, Abhijit Dey, Md. Habibur Rahman, Sang Woo Joo, Hasi Rani Barai and Simona Cavalu
Polymers 2022, 14(14), 2964; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14142964 - 21 Jul 2022
Cited by 4 | Viewed by 2806
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating [...] Read more.
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering. Full article
Show Figures

Graphical abstract

22 pages, 4028 KiB  
Review
Bone Mineralization in Electrospun-Based Bone Tissue Engineering
by Dong-Jin Lim
Polymers 2022, 14(10), 2123; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14102123 - 23 May 2022
Cited by 7 | Viewed by 4784
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, [...] Read more.
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds. Full article
Show Figures

Figure 1

Back to TopTop