Advances in Thermal, Electrical and Mechanical Properties of Polymer Composites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 11532

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial and Environmental Chemical Engineering, E.T.S.I. Industriales, Technical University of Madrid, Madrid, Spain
Interests: materials science; polymer composites; electrical properties; applied chemistry; science education; STEM education; history of science

E-Mail Website
Guest Editor
Department of Industrial and Environmental Chemical Engineering, E.T.S.I. Industriales, Technical University of Madrid, Madrid, Spain
Interests: materials science; biobased polymers; molecular recognition; catalysis

E-Mail Website
Guest Editor
Department of Industrial and Environmental Chemical Engineering, E.T.S.I. Industriales, Technical University of Madrid, Madrid, Spain
Interests: food packaging; biobased and/or biodegradable polymers; nanocomposites; active materials; waste valorization; mechanical recycling; compostability.
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent decades, the role played by new polymer composites is unquestionable. They have important applications in uses as diverse as construction, electronic devices, packaging, agricultural mulch films, biomedical engineering and sports, to give just a few examples of their implications in everyday life. The great versatility of polymers allows access to materials with very different properties, simply by changing the nature of the monomers, the degree of polymerization or the architecture of the chains; in addition, their properties can be modified and improved by incorporating reinforcing fillers. In the search for specific properties, the characterisation of these composite materials, with emphasis on thermal, electrical and mechanical properties, is essential. This characterisation can be approached from different perspectives, such as theoretical, modelling and experimental studies. Knowledge of these properties, in addition to contributing to a better understanding of the relationship among structure, properties and the manufacture of new materials, plays an essential role in the analysis of the useful life and recycling of these materials. At the same time, detailed knowledge of the properties will allow the exploration of more environmentally friendly materials with a similar performance.

Prof. Dr. Gabriel Pinto
Prof. Dr. Victoria Alcázar Montero
Dr. Marina Patricia Arrieta Dillon
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mechanical properties
  • thermal properties
  • electrical properties
  • processing and characterization of polymer composites
  • computer modeling
  • structure-property study
  • testing methods
  • biobased polymers
  • food packaging
  • materials for sports
  • recycling of materials

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 4157 KiB  
Article
A Novel Method to Enhance the Mechanical Properties of Polyacrylonitrile Nanofiber Mats: An Experimental and Numerical Investigation
by Jaymin Vrajlal Sanchaniya, Inga Lasenko, Vishnu Vijayan, Hilary Smogor, Valters Gobins, Alaa Kobeissi and Dmitri Goljandin
Polymers 2024, 16(7), 992; https://0-doi-org.brum.beds.ac.uk/10.3390/polym16070992 - 04 Apr 2024
Viewed by 533
Abstract
This study addresses the challenge of enhancing the transverse mechanical properties of oriented polyacrylonitrile (PAN) nanofibers, which are known for their excellent longitudinal tensile strength, without significantly compromising their inherent porosity, which is essential for effective filtration. This study explores the effects of [...] Read more.
This study addresses the challenge of enhancing the transverse mechanical properties of oriented polyacrylonitrile (PAN) nanofibers, which are known for their excellent longitudinal tensile strength, without significantly compromising their inherent porosity, which is essential for effective filtration. This study explores the effects of doping PAN nanofiber composites with varying concentrations of polyvinyl alcohol (PVA) (0.5%, 1%, and 2%), introduced into the PAN matrix via a dip-coating method. This approach ensured a random distribution of PVA within the nanofiber mat, aiming to leverage the synergistic interactions between PAN fibers and PVA to improve the composite’s overall performance. This synergy is primarily manifested in the structural and functional augmentation of the PAN nanofiber mats through localized PVA agglomerations, thin films between fibers, and coatings on the fibers themselves. Comprehensive evaluation techniques were employed, including scanning electron microscopy (SEM) for morphological insights; transverse and longitudinal mechanical testing; a thermogravimetric analysis (TGA) for thermal stability; and differential scanning calorimetry (DSC) for thermal behavior analyses. Additionally, a finite element method (FEM) analysis was conducted on a numerical simulation of the composite. Using our novel method, the results demonstrated that a minimal concentration of the PVA solution effectively preserved the porosity of the PAN matrix while significantly enhancing its mechanical strength. Moreover, the numerical simulations showed strong agreement with the experimental results, validating the effectiveness of PVA doping in enhancing the mechanical properties of PAN nanofiber mats without sacrificing their functional porosity. Full article
Show Figures

Figure 1

17 pages, 10616 KiB  
Article
Ethylene Scavenging Films Based on Ecofriendly Plastic Materials and Nano-TiO2: Preparation, Characterization, and In Vivo Evaluation
by Alba Maldonado, Tomas Aguilar, Carolin Hauser, Gerd Wehnert, Dominik Söthje, Herbert Schlachter, Alejandra Torres, Julio Bruna, Ximena Valenzuela and Francisco Rodríguez-Mercado
Polymers 2024, 16(6), 853; https://0-doi-org.brum.beds.ac.uk/10.3390/polym16060853 - 20 Mar 2024
Viewed by 739
Abstract
It is known that ethylene plays an important role in the quality characteristics of fruits, especially in storage. To avoid the deterioration of fruits caused by ethylene, titanium dioxide (TiO2) has been used due to its photocatalytic capacity. The aim of [...] Read more.
It is known that ethylene plays an important role in the quality characteristics of fruits, especially in storage. To avoid the deterioration of fruits caused by ethylene, titanium dioxide (TiO2) has been used due to its photocatalytic capacity. The aim of this study was to develop films based on two types of biopolymers, Mater-Bi (MB) and poly-lactic acid (PLA), with nanoparticles of TiO2 and to determine their ethylene removal capacity and its application in bananas. First, the films were fabricated through an extrusion process with two different concentrations of TiO2 (5 and 10% w/w). Then, the films were characterized by their structural (FTIR), morphological (SEM), thermal (DSC and TGA), dynamic (DMA), barrier, and mechanical properties. The ethylene removal capacities of the samples were determined via gas chromatography and an in vivo study was also conducted with bananas for 10 days of storage. Regarding the characterization of the films, it was possible to determine that there was a higher interaction between PLA with nano-TiO2 than MB; moreover, TiO2 does not agglomerate and has a larger contact surface in PLA films. Because of this, a higher ethylene removal was also shown by PLA, especially with 5% TiO2. The in vivo study also showed that the 5% TiO2 films maintained their quality characteristics during the days in storage. For these reasons, it is possible to conclude that the films have the capacity to remove ethylene. Therefore, the development of TiO2 films is an excellent alternative for the preservation of fresh fruits. Full article
Show Figures

Graphical abstract

18 pages, 10322 KiB  
Article
Foaming of 3D-Printed PLA/CaCO3 Composites by Supercritical CO2 Process for Sustainable Food Contact Materials
by Simón Faba, Ángel Agüero, Marina P. Arrieta, Sara Martínez, Julio Romero, Alejandra Torres and María José Galotto
Polymers 2024, 16(6), 798; https://0-doi-org.brum.beds.ac.uk/10.3390/polym16060798 - 13 Mar 2024
Cited by 2 | Viewed by 928
Abstract
In the last decade, among the emerging technologies in the area of bioplastics, additive manufacturing (AM), commonly referred to as 3D printing, stands out. This technology has gained great interest in the development of new products, mainly due to its capability to easily [...] Read more.
In the last decade, among the emerging technologies in the area of bioplastics, additive manufacturing (AM), commonly referred to as 3D printing, stands out. This technology has gained great interest in the development of new products, mainly due to its capability to easily produce customized and low-cost plastic products. This work aims to evaluate the effect of supercritical foaming of 3D-printed parts based on a commercial PLA matrix loaded with calcium carbonate, for single-use sustainable food contact materials. 3D-printed PLA/CaCO3 parts were obtained by 3D printing with a 20% and 80% infill, and two infill patterns, rectilinear and triangular, were set for each of the infill percentages selected. Supercritical fluid foaming of PLA/CaCO3 composite printed parts was performed using a pressure of 25 MPa, a temperature of 130 °C for 23 min, with a fast depressurization rate (1 s). Closed-cell foams were achieved and the presence of CaCO3 did not influence the surface of the foams or the cell walls, and no agglomerations were observed. Foam samples with 80% infill showed subtle temperature fluctuations, and thermogravimetric analysis showed that samples were thermally stable up to ~300 °C, while the maximum degradation temperature was around 365 °C. Finally, tensile test analysis showed that for lower infill contents, the foams showed lower mechanical performance, while the 80% infill and triangular pattern produced foams with good mechanical performance. These results emphasize the interest in using the supercritical CO2 process to easily produce foams from 3D-printed parts. These materials represent a sustainable alternative for replacing non-biodegradable materials such as Expanded Polystyrene, and they are a promising option for use in many industrial applications, such as contact materials. Full article
Show Figures

Graphical abstract

16 pages, 5436 KiB  
Article
Nanocomposites Based on Thermoplastic Acrylic Resin with the Addition of Chemically Modified Multi-Walled Carbon Nanotubes
by Szymon Demski, Dariusz Brząkalski, Maciej Gubernat, Kamil Dydek, Paweł Czaja, Konrad Żochowski, Paulina Kozera, Zuzanna Krawczyk, Bogna Sztorch, Robert Edward Przekop, Michał Marczak, Hermann Ehrlich and Anna Boczkowska
Polymers 2024, 16(3), 422; https://0-doi-org.brum.beds.ac.uk/10.3390/polym16030422 - 02 Feb 2024
Cited by 1 | Viewed by 866
Abstract
The main goal of this work was an improvement in the mechanical and electrical properties of acrylic resin-based nanocomposites filled with chemically modified carbon nanotubes. For this purpose, the surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out by means of aryl [...] Read more.
The main goal of this work was an improvement in the mechanical and electrical properties of acrylic resin-based nanocomposites filled with chemically modified carbon nanotubes. For this purpose, the surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out by means of aryl groups grafting via the diazotization reaction with selected aniline derivatives, and then nanocomposites based on ELIUM® resin were fabricated. FT-IR analysis confirmed the effectiveness of the carried-out chemical surface modification of MWCNTs as new bands on FT-IR spectra appeared in the measurements. TEM observations showed that carbon nanotube fragmentation did not occur during the modifications. According to the results from Raman spectroscopy, the least defective carbon nanotube structure was obtained for aniline modification. Transmission light microscopy analysis showed that the neat MWCNTs agglomerate strongly, while the proposed modifications improved their dispersion significantly. Viscosity tests confirmed, that as the nanofiller concentration increases, the viscosity of the mixture increases. The mixture with the highest dispersion of nanoparticles exhibited the most viscous behaviour. Finally, an enhancement in impact resistance and electrical conductivity was obtained for nanocomposites containing modified MWCNTs. Full article
Show Figures

Figure 1

12 pages, 3346 KiB  
Article
UV Radiation Effect in New Materials Developed for the Construction of Beehives
by Andrés Rubiano-Navarrete, Camilo Lesmes Fabian, Yolanda Torres-Pérez and Edwin Gómez-Pachón
Polymers 2023, 15(21), 4249; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15214249 - 28 Oct 2023
Viewed by 755
Abstract
In recent decades, there has been an increasing focus on the alarming decline in global bee populations, given their critical ecological contributions to natural pollination and biodiversity. This decline, marked by a substantial reduction in bee colonies in forested areas, has serious implications [...] Read more.
In recent decades, there has been an increasing focus on the alarming decline in global bee populations, given their critical ecological contributions to natural pollination and biodiversity. This decline, marked by a substantial reduction in bee colonies in forested areas, has serious implications for sustainable beekeeping practices and poses a broader risk to ecological well-being. Addressing these pressing issues requires innovative solutions, one of which involves the development and fabrication of beehives crafted from composite materials that are ecologically compatible with bee biology. Importantly, these materials should also exhibit a high resistance to environmental factors, such as ultraviolet (UV) radiation, in order to maintain their mechanical integrity and longevity. To investigate this, we conducted accelerated UV degradation tests on a variety of composite materials to rapidly assess their susceptibility to UV-induced changes. High-density polyethylene (HDPE) served as the matrix material and was reinforced with natural fibers, specifically fique fibers (Furcraea bedinghausii), banana fibers, and goose feathers. Our findings indicate that UV radiation exposure results in a noticeable reduction in the tensile strength of these materials. For example, wood composites experienced a 48% decline in tensile strength over a 60-day period, a rate of deterioration notably higher than that of other tested composite materials. Conversely, HDPE composites fortified with banana fibers initially demonstrated tensile strengths exceeding 9 MPa and 10 MPa. Although these values gradually decreased over the observation period, the composites still displayed favorable stress–strain characteristics. This research underscores the substantial influence of UV radiation on the longevity and efficacy of beehive materials, which in turn affects the durability of natural wood hives exposed to these environmental factors. The resultant increased maintenance and replacement costs for beekeepers further emphasize the need for judicious material selection in beehive construction and point to the viability of the composite materials examined in this study. Full article
Show Figures

Figure 1

18 pages, 12962 KiB  
Article
Investigating Aging Characteristics of Oil-Immersed Power Transformers’ Insulation in Electrical–Thermal–Mechanical Combined Conditions
by Zonghui Yuan, Qian Wang, Zhigang Ren, Fangcheng Lv, Qin Xie, Jianghai Geng, Jianhao Zhu and Fuyun Teng
Polymers 2023, 15(21), 4239; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15214239 - 27 Oct 2023
Viewed by 1106
Abstract
The condition and health of large oil-immersed power transformers’ insulation have a direct impact on the safety and stability of the power grid. Therefore, it is crucial to investigate the aging characteristics of oil–paper insulation in power transformers. In this study, we developed [...] Read more.
The condition and health of large oil-immersed power transformers’ insulation have a direct impact on the safety and stability of the power grid. Therefore, it is crucial to investigate the aging characteristics of oil–paper insulation in power transformers. In this study, we developed a computational model for reclosing current calculation and multiphysics coupling models for magnetic-circuit-force, electrostatic field, and temperature field simulations. The calculated aging resulted in a mechanical stress of 8.71 MPa, an electric field strength of 2.26 × 106 V/m, and a temperature of 113.7 °C. We conducted combined electrical–thermal–mechanical aging tests on the oil–paper insulation and measured various insulating paper performance parameters at different aging stages. Our study revealed that both the mechanical and electrical properties of the insulating paper deteriorated in both aging groups. However, the changes were more pronounced in the electrical–thermal–mechanical aging group compared to the electrical–thermal aging group, indicating that mechanical stress accelerated the aging process of the insulating paper. In the early stages of aging, the rate of performance changes in the electrical–thermal aging group was similar to that in the electrical–thermal–mechanical aging group. However, as the aging time increased, the degradation of performance induced by mechanical aging became more significant. This suggests that the insulating paper’s resistance to mechanical damage, specifically short-circuit resistance, noticeably decreased after prolonged aging. Full article
Show Figures

Figure 1

23 pages, 26819 KiB  
Article
Improving the Anti-washout Property of Acrylate Grouting Material by Bentonite: Its Characterization, Improving Mechanism, and Practical Application
by Zuochun Li, Feng Huang, Yuyou Yang, Yifan Xiong, Fei Su, Yajian Wang and Xiao Tian
Polymers 2023, 15(19), 3865; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15193865 - 23 Sep 2023
Cited by 1 | Viewed by 834
Abstract
Acrylate is a popular polymer grouting material that has been widely used to control groundwater seepage. However, the vulnerability of acrylate slurry to dynamic water washout restricts its application in groundwater environments characterized by high flow velocity and water pressures. In this paper, [...] Read more.
Acrylate is a popular polymer grouting material that has been widely used to control groundwater seepage. However, the vulnerability of acrylate slurry to dynamic water washout restricts its application in groundwater environments characterized by high flow velocity and water pressures. In this paper, lithium bentonite (Li-B) was used to modify the traditional magnesium acrylate (AC) grouting material. The influence of Li-B to AC ratios on the modified materials’ washout resistance was explored, and the modification mechanism was analyzed using X-ray diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). Finally, the anti-washout ability of the modified slurry was verified through engineering applications. Results revealed that LiB-AC grout had adjustable setting times (10.5 to 395.6 s), minimal bleeding (0.1%), higher viscosity (65 mPa·s) and expansibility (350%), stronger anti-water dispersibility (24 times that of pure AC slurry), higher mechanical strength (compressive strength is 0.386 MPa, tensile strength is 0.088 MPa), and better impermeability (2.23 × 10−8 m/s). The lithium bentonite was beneficial to the setting time, bleeding, viscosity, slurry retention rate, impermeability, and mechanical strength of the acrylate grout. However, it diminished the expansibility of the acrylate grout. At the optimal acrylate content (20%), the mechanical strength and impermeability of the LiB-AC grout were the highest. The better performance of LiB-AC grout was attributed to the formation of a more stable and dense interlaced spatial network structure after the modification by Li-B. The LiB-AC grout was used in the dynamic water grouting project of a metro shield tunnel segment and achieved better anti-washout performance than cement-water glass and pure AC slurry. Full article
Show Figures

Figure 1

14 pages, 3979 KiB  
Article
Multi-Scale Model for the Aging Performance of Particle-Filled Polymer Composites
by Congli Fang, Huizhen Wang, Yujiao Zhang, Minghua Zhang, Tao Shen and Jianke Du
Polymers 2023, 15(15), 3158; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15153158 - 25 Jul 2023
Cited by 1 | Viewed by 870
Abstract
In this study, we developed a novel multi-scale model to predict the aging performance of particle-filled polymer composites (PFPCs) under thermo-oxidative aging conditions. To investigate the aging behavior, high-temperature accelerated aging tests were conducted in combination with macroscopic and microscopic characterization. At the [...] Read more.
In this study, we developed a novel multi-scale model to predict the aging performance of particle-filled polymer composites (PFPCs) under thermo-oxidative aging conditions. To investigate the aging behavior, high-temperature accelerated aging tests were conducted in combination with macroscopic and microscopic characterization. At the microscopic level, the crosslinking density of the polymer matrix is calculated using the closed-loop chain reaction of polymer oxidation. In addition, the theory of polymer physics was used to determine the relationship between crosslinking density and elastic modulus. Relationships between elastic modulus and dewetting strain were analyzed at the macroscopic level. Based on the observations and analyses, a multi-scale model was developed to predict the aging performance of PFPCs. The predicted results show good agreement with the test results, which verifies the reliability of the model. Full article
Show Figures

Figure 1

24 pages, 14889 KiB  
Article
Synthesis and Characterization of Core–Double-Shell-Structured PVDF-grafted-BaTiO3/P(VDF-co-HFP) Nanocomposite Films
by Fatima Ezzahra Bouharras, Salima Atlas, Simone Capaccioli, Massimiliano Labardi, Abdelghani Hajlane, Bruno Ameduri and Mustapha Raihane
Polymers 2023, 15(14), 3126; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15143126 - 22 Jul 2023
Cited by 1 | Viewed by 1057
Abstract
Core–double-shell-structured nanocomposite films consisting of polyvinylidene fluoride-grafted-barium titanate (PVDF-g-BT) incorporated into a P(VDF-co-hexafluoropropylene (HFP)) copolymer matrix were produced via a solution mixing method for energy storage applications. The resulting films were thoroughly investigated via spectroscopic, thermal, and morphological analyses. [...] Read more.
Core–double-shell-structured nanocomposite films consisting of polyvinylidene fluoride-grafted-barium titanate (PVDF-g-BT) incorporated into a P(VDF-co-hexafluoropropylene (HFP)) copolymer matrix were produced via a solution mixing method for energy storage applications. The resulting films were thoroughly investigated via spectroscopic, thermal, and morphological analyses. Thermogravimetric data provided an enhancement of the thermal stability, while differential scanning calorimetry indicated an increase in the crystallinity of the films after the addition of PVDF-g-BT. Moreover, broadband dielectric spectroscopy revealed three dielectric processes, namely, glass–rubber relaxation (αa), relaxation associated with the polymer crystalline phase (αc), and slower relaxation in the nanocomposites resulting from the accumulation of charge on the interface between the PVDF-g-BT filler and the P(VDF-co-HFP) matrix. The dependence of the dielectric constant from the composition was analyzed, and we found that the highest permittivity enhancement was obtained by the highest concentration filler added to the largest concentration of P(VDF-co-HFP). Mechanical analysis revealed an improvement in Young’s modulus for all nanocomposites versus pristine P(VDF-co-HFP), confirming the uniformity of the distribution of the PVDF-g-BT nanocomposite with a strong interaction with the copolymer matrix, as also evidenced via scanning electron microscopy. The suggested system is promising for use in high-energy-density storage devices as supercapacitors. Full article
Show Figures

Figure 1

17 pages, 8100 KiB  
Article
Optimization of Filler Compositions of Electrically Conductive Polypropylene Composites for the Manufacturing of Bipolar Plates
by Muhammad Tariq, Utkarsh, Nabeel Ahmed Syed, Amir Hossein Behravesh, Remon Pop-Iliev and Ghaus Rizvi
Polymers 2023, 15(14), 3076; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15143076 - 18 Jul 2023
Cited by 2 | Viewed by 1395
Abstract
In this research, polypropylene (PP)–graphite composites were prepared using the melt mixing technique in a twin-screw extruder. Graphite, multi-walled carbon nanotubes (MWCNT), carbon black (CB), and expanded graphite (EG) were added to the PP in binary, ternary, and quaternary formations. The graphite was [...] Read more.
In this research, polypropylene (PP)–graphite composites were prepared using the melt mixing technique in a twin-screw extruder. Graphite, multi-walled carbon nanotubes (MWCNT), carbon black (CB), and expanded graphite (EG) were added to the PP in binary, ternary, and quaternary formations. The graphite was used as a primary filler, and MWCNT, CB, and EG were added to the PP–graphite composites as secondary fillers at different compositions. The secondary filler compositions were considered the control input factors of the optimization study. A full factorial design of the L-27 Orthogonal Array (OA) was used as a Design of Experiment (DOE). The through-plane electrical conductivity and flexural strength were considered the output responses. The experimental data were interpreted via Analysis of Variance (ANOVA) to evaluate the significance of each secondary filler. Furthermore, statistical modeling was performed using response surface methodology (RSM) to predict the properties of the composites as a function of filler composition. The empirical model for the filler formulation demonstrated an average accuracy of 83.9% and 93.4% for predicting the values of electrical conductivity and flexural strength, respectively. This comprehensive experimental study offers potential guidelines for producing electrically conductive thermoplastic composites for the manufacturing of bipolar fuel cell plates. Full article
Show Figures

Graphical abstract

15 pages, 21941 KiB  
Article
Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite
by Dashan Mi, Zhongguo Zhao and Haiqing Bai
Polymers 2023, 15(10), 2370; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15102370 - 19 May 2023
Cited by 4 | Viewed by 1577
Abstract
The orientation and dispersion of nanoparticles can greatly influence the conductivity and mechanical properties of nanocomposites. In this study, the Polypropylene/ Carbon Nanotubes (PP/CNTs) nanocomposites were produced using three different molding methods, i.e., compression molding (CM), conventional injection molding (IM), and interval injection [...] Read more.
The orientation and dispersion of nanoparticles can greatly influence the conductivity and mechanical properties of nanocomposites. In this study, the Polypropylene/ Carbon Nanotubes (PP/CNTs) nanocomposites were produced using three different molding methods, i.e., compression molding (CM), conventional injection molding (IM), and interval injection molding (IntM). Various CNTs content and shear conditions give CNTs different dispersion and orientation states. Then, three electrical percolation thresholds (4 wt.% CM, 6 wt.% IM, and 9 wt.% IntM) were obtained by various CNTs dispersion and orientations. Agglomerate dispersion (Adis), agglomerate orientation (Aori), and molecular orientation (Mori) are used to quantify the CNTs dispersion and orientation degree. IntM uses high shear to break the agglomerates and promote the Aori, Mori, and Adis. Large Aori and Mori can create a path along the flow direction, which lead to an electrical anisotropy of nearly six orders of magnitude in the flow and transverse direction. On the other hand, when CM and IM samples already build the conductive network, IntM can triple the Adis and destroy the network. Moreover, mechanical properties are also been discussed, such as the increase in tensile strength with Aori and Mori but showing independence with Adis. This paper proves that the high dispersion of CNTs agglomerate goes against forming a conductivity network. At the same time, the increased orientation of CNTs causes the electric current to flow only in the orientation direction. It helps to prepare PP/CNTs nanocomposites on demand by understanding the influence of CNTs dispersion and orientation on mechanical and electrical properties. Full article
Show Figures

Figure 1

Back to TopTop