Application of Polymeric Materials in the Building Industry II

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: closed (29 February 2024) | Viewed by 12052

Special Issue Editors


E-Mail Website
Guest Editor
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 160 00 Prague, Czech Republic
Interests: plaster; relative humidity; superabsorbent polymer; moisture moderation; computational modeling
Special Issues, Collections and Topics in MDPI journals
Department of Materials Engineering and Chemistry, Czech Technical University in Prague, 166 07 Prague, Czech Republic
Interests: materials design; geopolymer; alkali activation; life cycle assessment; environmental engineering; concrete modification; circular economy; waste utilizatio
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Based on the very successful first volume of the Special Issue entitled “Application of Polymeric Materials in the Building Industry”, we would like to build on this previous success and continue this great mission in the second edition.  

Since modern construction requires more advanced performance, including environmental and economic efficiency, a significant level of traditional material modification is demanded. In these terms, the replacement of various traditional materials takes place toward the production of novel high-quality materials for the building industry, meeting sustainable measures. The customization of building materials by polymers represents an important step for the production of new high-quality materials that may find utilization in the building industry. Considering new trends in the design of building materials, substantial attention should be paid to the utilization of polymers for the extension of functional properties, e.g., as effective admixtures for the design of self-healing, energy-efficient management of buildings using polymer-based phase change materials, reinforced high-performance composites, or even inorganic polymers (often called as geopolymers) with high-temperature resistance and a substantially reduced environmental footprint.

This Special Issue invites research papers as well as critical reviews aimed at advances in the field of innovative building material design, the development of new characterization techniques, and environmentally related issues.

Dr. Robert Černý
Dr. Jan Fořt
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 11367 KiB  
Article
Microbially Mediated Rubber Recycling to Facilitate the Valorization of Scrap Tires
by Sk Faisal Kabir, Skanda Vishnu Sundar, Aide Robles, Evelyn M. Miranda, Anca G. Delgado and Elham H. Fini
Polymers 2024, 16(7), 1017; https://0-doi-org.brum.beds.ac.uk/10.3390/polym16071017 - 08 Apr 2024
Viewed by 428
Abstract
The recycling of scrap tire rubber requires high levels of energy, which poses challenges to its proper valorization. The application of rubber in construction requires significant mechanical and/or chemical treatment of scrap rubber to compatiblize it with the surrounding matrix. These methods are [...] Read more.
The recycling of scrap tire rubber requires high levels of energy, which poses challenges to its proper valorization. The application of rubber in construction requires significant mechanical and/or chemical treatment of scrap rubber to compatiblize it with the surrounding matrix. These methods are energy-consuming and costly and may lead to environmental concerns associated with chemical leachates. Furthermore, recent methods usually call for single-size rubber particles or a narrow rubber particle size distribution; this, in turn, adds to the pre-processing cost. Here, we used microbial etching (e.g., microbial metabolism) to modify the surface of rubber particles of varying sizes. Specifically, we subjected rubber particles with diameters of 1.18 mm and 0.6 mm to incubation in flask bioreactors containing a mineral medium with thiosulfate and acetate and inoculated them with a microbial culture from waste-activated sludge. The near-stoichiometric oxidation of thiosulfate to sulfate was observed in the bioreactors. Most notably, two of the most potent rubber-degrading bacteria (Gordonia and Nocardia) were found to be significantly enriched in the medium. In the absence of added thiosulfate in the medium, sulfate production, likely from the desulfurization of the rubber, was also observed. Microbial etching increased the surface polarity of rubber particles, enhancing their interactions with bitumen. This was evidenced by an 82% reduction in rubber–bitumen separation when 1.18 mm microbially etched rubber was used. The study outcomes provide supporting evidence for a rubber recycling method that is environmentally friendly and has a low cost, promoting pavement sustainability and resource conservation. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

14 pages, 4286 KiB  
Article
Carboxymethyl Scleroglucan Synthesized via O-Alkylation Reaction with Different Degrees of Substitution: Rheology and Thermal Stability
by Rubén H. Castro, Isidro Burgos, Laura M. Corredor, Sebastián Llanos, Camilo A. Franco, Farid B. Cortés and Arnold R. Romero Bohórquez
Polymers 2024, 16(2), 207; https://0-doi-org.brum.beds.ac.uk/10.3390/polym16020207 - 10 Jan 2024
Cited by 2 | Viewed by 734
Abstract
This paper presents the methodology for synthesizing and characterizing two carboxymethyl EOR-grade Scleroglucans (CMS-A and CMS-B). An O-Alkylation reaction was used to insert a hydrophilic group (monochloroacetic acid—MCAA) into the biopolymer’s anhydroglucose subunits (AGUs). The effect of the degree of the carboxymethyl [...] Read more.
This paper presents the methodology for synthesizing and characterizing two carboxymethyl EOR-grade Scleroglucans (CMS-A and CMS-B). An O-Alkylation reaction was used to insert a hydrophilic group (monochloroacetic acid—MCAA) into the biopolymer’s anhydroglucose subunits (AGUs). The effect of the degree of the carboxymethyl substitution on the rheology and thermal stability of the Scleroglucan (SG) was also evaluated. Simultaneous thermal analysis (STA/TGA-DSC), differential scanning calorimetry (DSC), X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (SEM/EDS) were employed to characterize both CMS products. FTIR analysis revealed characteristic peaks corresponding to the carboxymethyl functional groups, confirming the modification. Also, SEM analysis provided insights into the structural changes in the polysaccharide after the O-Alkylation reaction. TGA results showed that the carboxymethylation of SG lowered its dehydroxylation temperature but increased its thermal stability above 300 °C. The CMS products and SG exhibited a pseudoplastic behavior; however, lower shear viscosities and relaxation times were observed for the CMS products due to the breakage of the SG triple helix for the chemical modification. Despite the viscosity results, the modified Scleroglucans are promising candidates for developing new engineering materials for EOR processes. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Graphical abstract

19 pages, 8172 KiB  
Article
Experimental and Environmental Analysis of High-Strength Geopolymer Based on Waste Bricks and Blast Furnace Slag
by Jan Fořt, Martin Mildner, Martin Keppert, Vojtěch Pommer and Robert Černý
Polymers 2023, 15(14), 3092; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15143092 - 19 Jul 2023
Cited by 5 | Viewed by 938
Abstract
The rationalization of material flows, together with the utilization of waste raw materials for the production of alternative binders, became a very attractive topic during the last decades. However, the majority of designed materials can be used as a replacement for low-performance products. [...] Read more.
The rationalization of material flows, together with the utilization of waste raw materials for the production of alternative binders, became a very attractive topic during the last decades. However, the majority of designed materials can be used as a replacement for low-performance products. In this work, the waste materials (brick powder and blast furnace slag) are valorized through geopolymerization to design high-performance material as an alternative to high-performance concrete. Designed mixtures activated by sodium silicate and waste-originated alkali solution are characterized by the meaning of the chemical and mineralogical composition, evolution of hydration heat, and mechanical strength test. To contribute to the understanding of the environmental consequences and potential benefits, the carbon footprint and embodied energy analysis are provided. Obtained results highlight the potential of end-of-life bricks for the design of high-performance composites if mixed together with more reactive precursors. Here, even values over 60 MPa in compressive strength can be achieved with the dominant share of low-amorphous brick powder. The higher crystalline portion of brick powder may lead to the reduction of drying shrinkage and preservation of flexural strength to a greater extent compared to used slag. Performed environmental analysis confirmed the CO2 emission savings; however, the embodied energy analysis revealed a huge impact of using alkaline activators. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

26 pages, 12527 KiB  
Article
Evaluation of the Polymer Modified Tack Coat on Aged Concrete Pavement: An Experimental Study on Adhesion Properties
by Kyungnam Kim and Tri Ho Minh Le
Polymers 2023, 15(13), 2830; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15132830 - 27 Jun 2023
Cited by 1 | Viewed by 1050
Abstract
This study addresses the challenges of overlaying old concrete pavement with asphalt by introducing a new trackless tack coat material containing polymer. The aim is to enhance the durability of asphalt concrete overlay pavement on old cement concrete pavement. It contributes to the [...] Read more.
This study addresses the challenges of overlaying old concrete pavement with asphalt by introducing a new trackless tack coat material containing polymer. The aim is to enhance the durability of asphalt concrete overlay pavement on old cement concrete pavement. It contributes to the development of improved construction techniques for pavement rehabilitation and highlights the need for reliable adhesion performance evaluation based on different spray amounts and surface conditions. Additionally, to evaluate the effect of the adhesion performance based on the spraying amount, a tensile adhesion test was conducted by applying spray amounts of 0.30, 0.45, and 0.60 l/m2 on different surface conditions. The basic and adhesion performances of the polymer-modified tack coat material are evaluated through direct tensile and shear bond strength tests. The test outcomes demonstrated that the newly developed polymer-modified tack coat material had considerably greater adhesion strength compared to the traditional rapid-setting products. Its adhesive strength was 1.68 times higher on concrete and 1.78 times higher on asphalt. The new trackless tack coat material exhibited an adhesion performance of 1.05 MPa in direct tensile strength at 0.45 l/m2, which was 1.21 times higher than the rapid-setting tack coat. Results also confirmed that the new tack coat material exhibits values 1.90 times greater than the conventional rapid-setting tack coat material in shear bond strength, respectively. By simulating the process of separation and re-adhesion of pavement layers caused, the new tack coat material shows a tensile adhesion strength of 63% of the original state, which is advantageous for securing the durability of the pavement. Overall, the newly developed polymer-modified trackless tack coat has been shown to effectively enhance the adhesion performance between pavement layers without process delay, highlighting the potential of the new tack coat material to enhance the durability of asphalt concrete overlay pavement on old cement concrete pavement. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

19 pages, 4967 KiB  
Article
Durability of Polymer-Modified Asphalt Mixture with Wasted Tire Powder and Epoxy Resin under Tropical Climate Curing Conditions
by Kyung-Nam Kim and Tri Ho Minh Le
Polymers 2023, 15(11), 2504; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15112504 - 29 May 2023
Cited by 10 | Viewed by 1505
Abstract
The quality of pavements in tropical climates is negatively affected by the frequent wet and dry cycles during the rainy season, as well as by issues related to overloading from heavy trucks and traffic congestion. Contributing to this deterioration are factors such as [...] Read more.
The quality of pavements in tropical climates is negatively affected by the frequent wet and dry cycles during the rainy season, as well as by issues related to overloading from heavy trucks and traffic congestion. Contributing to this deterioration are factors such as acid rainwater, heavy traffic oils, and municipal debris. In light of these challenges, this study aims to assess the viability of a polymer-modified asphalt concrete mixture. This study investigates the feasibility of a polymer-modified asphalt concrete mixture with the addition of 6% crumb rubber powder from waste car tires and 3% epoxy resin to counter the harsh conditions of tropical climate weather. The study involved subjecting test specimens to five to 10 cycles of contaminated water (100% rainwater + 10% used oil from trucks), curing for 12 h, and air drying in a chamber of 50 °C for 12 h to simulate critical curing conditions. The specimens underwent fundamental laboratory performance tests such as the indirect tensile strength test, dynamic modulus test, four points bending test, and Cantabro test, as well as the double load condition in the Hamburg wheel tracking test to determine the effectiveness of the proposed polymer-modified material in actual conditions. The test results confirmed that the simulated curing cycles had a critical impact on the durability of the specimens, with the greater curing cycles leading to a significant drop in the strength of the material. For example, the TSR ratio of the control mixture dropped from 90% to 83% and 76% after five and 10 curing cycles, respectively. Meanwhile, the modified mixture showed a decrease from 93% to 88% and 85% under the same conditions. The test results revealed that the effectiveness of the modified mixture outperformed the conventional condition in all tests, with a more prominent impact observed under overload conditions. Under double conditions in the Hamburg wheel tracking test and a curing condition of 10 cycles, the maximum deformation of the control mixture sharply increased from 6.91 to 22.7 mm, whereas the modified mixture increased from 5.21 to 12.4 mm. Overall, the test results confirm the durability of the polymer-modified asphalt concrete mixture under harsh tropical climate conditions, promoting its application for sustainable pavements, especially in Southeast Asian countries. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

18 pages, 5199 KiB  
Article
Evaluating Self-Healing Behaviour of Asphalt Binders Modified with Phase-Change Materials, Polymers and Recycled Glass Powder
by Haya Almutairi and Hassan Baaj
Polymers 2023, 15(8), 1934; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15081934 - 19 Apr 2023
Cited by 2 | Viewed by 1039
Abstract
The objective of this paper is to evaluate the fatigue resistance and self-healing properties of asphalt binders modified with different types of additives (Styrene-Butadiene-Styrene (SBS), Glass Powder (GP) and Phase-Change Materials blended with Glass Powder (GPCM)). Two base binders were used in this [...] Read more.
The objective of this paper is to evaluate the fatigue resistance and self-healing properties of asphalt binders modified with different types of additives (Styrene-Butadiene-Styrene (SBS), Glass Powder (GP) and Phase-Change Materials blended with Glass Powder (GPCM)). Two base binders were used in this study: a PG 58-28 straight-run asphalt binder and a PG 70-28 Polymer modified with 3%SBS. Moreover, the GP was added to the two base binders at two different percentages of 3.5% and 5% by binder weight. However, the GPCM was added with two different percentages of 5% and 7% by binder weight. In this paper, the fatigue resistance and self-healing properties were evaluated using Linear Amplitude Sweep (LAS) test. Two different procedures were adopted. In the first procedure, the load was applied continuously until failure (without a rest period), whereas, in the second procedure, rest periods of 5 and 30 min were introduced. The obtained results of the experimental campaign were ranked based on three different categories: Linear Amplitude Sweep (LAS), Pure Linear Amplitude Sweep (PLAS) and modified Pure Linear Amplitude Sweep (PLASH). The addition of GPCM appears to positively impact the fatigue performance of both straight-run and polymer-modified asphalt binders. Furthermore, when a short rest period of 5 min was introduced, the use of GPCM did not appear to improve the healing potential. However, a better healing capacity was observed when the 30 min rest period was applied. Moreover, the addition of GP alone to the base binder was not beneficial in improving fatigue performance based on LAS and PLAS methods. However, there was a slight reduction in the fatigue performance based on the PLAS method. Finally, unlike the PG 58-28, the healing capacity of the GP 70-28 was negatively affected by the addition of the GP. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

15 pages, 8055 KiB  
Article
Polymeric Interlayer Strengthening with Boron Neutron Capture Radiation Treatment for Laminated Glass
by Joseph C. Philipps, John M. Gahl, Hani A. Salim, John D. Brockman and Michael C. Newberry
Polymers 2023, 15(7), 1672; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15071672 - 28 Mar 2023
Viewed by 1254
Abstract
Polymer interlayer materials are utilized in laminated glass systems to provide increased resilience from blast incidents. The polymer chains within the interlayer material can benefit from material modifications that increase the crosslinking between adjacent chains. One theorized method of targeted crosslinking is made [...] Read more.
Polymer interlayer materials are utilized in laminated glass systems to provide increased resilience from blast incidents. The polymer chains within the interlayer material can benefit from material modifications that increase the crosslinking between adjacent chains. One theorized method of targeted crosslinking is made possible through a boron neutron capture process. This process utilizes neutron radiation that bombards boron material, thus producing emissions of highly energetic particles into the polymer. The method has been experimentally utilized for bulk material processing as well as surface treatment. The surface treatment process has been extensively investigated in this study to manipulate polymers commonly used as interlayer material. Comparison evaluation tests have been completed to show the material behavior change through static tensile loading, dynamic tensile loading, indentation testing, and scratch resistance testing. Results present the specific material behavior changes, effects on different interlayer material, and optimizations for the treatment processes. Data resulting from these tests will expand the understanding of the material behavior changes from treatment techniques and show evidence of the expected crosslinking. This understanding will lead to a quantifiable application of system capacities to improve the future designs of the window and building systems and lead to a safer, more secure, and resilient infrastructure. Polymer treatment by boron neutron capture radiation has produced polymer interlayers with the potential of increased resilience to blast. The research to date has evaluated treated polymers and shown that the hardening and increased elasticity of the material can be initiated through treatment, thus indicating crosslinking behavior. These results show distinct changes in the material behavior, particularly with the EVA interlayer material. The harder surface of the interlayer may resist the cutting of the interlayer surface by glass shards. Scratch resistance was 30% higher and the measured hardness was 100% on treated surfaces. Treated EVA exhibited a 40% higher stress capacity, a 35% higher toughness, and a 40% increase in the elasticity of the material. The overall toughness increase of the treated polymer material allows for a higher energy absorption, and an overall improvement of window performance in blast conditions. The treatment technique can be applied to a variety of window interlayer products for optimal material performance in blast conditions. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

22 pages, 43588 KiB  
Article
Study of Blast Mitigation Performance and Fracture Mechanism of Polyurea under Contact Explosion
by Weibo Huang, Rui Zhang, Xu Wang, Ping Lyu, Jiahui Ju, Fuyin Gao and Shuai Yan
Polymers 2022, 14(17), 3458; https://0-doi-org.brum.beds.ac.uk/10.3390/polym14173458 - 24 Aug 2022
Cited by 4 | Viewed by 1900
Abstract
In order to further study the blast mitigation performance of polyurea and to investigate the protection mechanism and damage characteristics of polyurea-protected structures under contact explosion loads, based on earlier work, this paper investigated the response and energy absorption performance of polyurea under [...] Read more.
In order to further study the blast mitigation performance of polyurea and to investigate the protection mechanism and damage characteristics of polyurea-protected structures under contact explosion loads, based on earlier work, this paper investigated the response and energy absorption performance of polyurea under various frequency loads. Qtech T26 blast mitigation polyurea (T26 polyurea) was adopted to protect the reinforced concrete (RC) slab and damage analysis of the post-explosion specimens was carried out at micro and macro levels. The response and energy absorption capacity of the material towards different frequency loads were investigated by dynamic mechanical analysis (DMA). Protective performance of T26 polyurea on RC slab was examined with a 10 kg TNT contact explosion test. Scanning electron microscopy (SEM) was employed to analyze the microscopic fracture morphology of the typical areas of the coating after the explosion. The chemical structure changes of the blast-face coating before and after the explosion were compared by Fourier transform infrared spectroscopy (FTIR). The results show that the glass transition region of T26 polyurea is −40 °C to 10 °C, which is a large temperature range, and the microphase separation of T26 polyurea is low. It is significantly influenced by the ambient temperature and loading frequency. The energy absorption of T26 polyurea is realized through the interaction between the hard and soft segments. When the frequency is between 102 Hz and 106 Hz, the loss factor of T26 polyurea is between 0.20 and 0.31, which exhibits a good energy dissipation performance. In the contact explosion of 10 kg TNT, the fragmentation rate of the coated specimen decreased significantly compared with that of the unprotected specimen, realizing the zero fragmentation protection effect on the back-blast face. The maximum deformation area and the main energy absorption area of T26 polyurea under contact explosion is the ring area outside the longitudinal deformation area. The chemical structure of T26 polyurea changed significantly after the explosion; typically the N-H bonds, etc., were broken and the percentage of hydrogen bonding was reduced. T26 polyurea has realized the protection effect of zero fragmentation of large-equivalent contact explosion, which has a high application value for blast mitigation and blast-fragmentation prevention in actual engineering. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 2155 KiB  
Review
Effects of the Curing Regime, Acid Exposure, Alkaline Activator Dosage, and Precursor Content on the Strength Development of Mortar with Alkali-Activated Slag and Fly Ash Binder: A Critical Review
by Osama A. Mohamed
Polymers 2023, 15(5), 1248; https://0-doi-org.brum.beds.ac.uk/10.3390/polym15051248 - 28 Feb 2023
Cited by 9 | Viewed by 2199
Abstract
Reductions of green gas emissions and the reuse/recycling of industrial byproducts are important for the mitigation of the environmental impact of the construction industry. The replacement of ordinary Portland cement (OPC) is a concrete binder with industrial byproducts that possess sufficient cementitious and [...] Read more.
Reductions of green gas emissions and the reuse/recycling of industrial byproducts are important for the mitigation of the environmental impact of the construction industry. The replacement of ordinary Portland cement (OPC) is a concrete binder with industrial byproducts that possess sufficient cementitious and pozzolanic properties, such as ground granulated blast furnace slag (GBS) and fly ash. This critical review analyzes the effect of some of the most critical parameters on the development of the compressive strength of concrete or mortar that consists of combinations of alkali-activated GBS and fly ash as binders. The review includes the effects of the curing environment, the proportions of GBS and fly ash in the binder, and the concentration of the alkaline activator on strength development. The article also reviews the effect of exposure as well as the age of samples at the time of exposure to acidic media on the development of concrete strength. The effect of acidic media on mechanical properties was found to depend not only on the type of acid but also on the alkaline activator solution, proportions of GBS and fly ash in the binder, and the age of the sample at the time of exposure, among other factors. As a focused review, the article pinpoints important findings such as the change in compressive strength over time when mortar/concrete is cured in an environment that permits the loss of moisture versus curing in a system that retains the alkaline solution and keeps reactants available for hydration and the development of geopolymerization products. The relative contents of slag and fly ash in blended activators have a significant impact on strength development. Research methods used include a critical review of the literature, a comparison of reported research findings, and identifying reasons for agreement or disagreement of findings. Full article
(This article belongs to the Special Issue Application of Polymeric Materials in the Building Industry II)
Show Figures

Figure 1

Back to TopTop