Special Issue "Sustainable (Bio)Chemical Processes for Lignocellulosic and Lipid Waste Biomass Valorization to Fuels, Chemicals and Materials"

A special issue of Sustainable Chemistry (ISSN 2673-4079).

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editors

Prof. Dr. Konstantinos S. Triantafyllidis
E-Mail Website
Guest Editor
1. Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2. Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
Interests: synthesis and characterization of (nano)materials; heterogeneous catalysis; adsorption processes (environmental applications); thermochemical & (bio)catalytic processes for biomass valorization; green chemistry
Special Issues and Collections in MDPI journals
Dr. Carol Sze Ki Lin
E-Mail Website
Guest Editor
School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Interests: circular economy; green and sustainable chemistry; metabolic engineering of microorganisms for fermentative production of biobased products; waste and biomass valorisation

Special Issue Information

Dear Colleague,

The projected depletion of fossil resources (petroleum and coal) and the environmental pollution caused by their intensive use, in the form of fuels/energy, toxic chemicals and nonbiodegradable polymers, have spurred the generation of the “bioeconomy” and “circular economy” concepts, which will comprise the main pillars of our society in the years to come. To this end, the utilization of natural renewable resources, such as lignocellulosic and lipid biomass, preferably in the form of wastes, residues and byproducts (e.g., forestry and agricultural wastes, food waste, low quality lipids, vegetable oils used in cooking, industrial organic byproducts, municipal wastes, etc.) toward the production of chemicals, fuels and materials has become an emerging area of basic and applied multidisciplinary research. Despite the significant advances already achieved in the last 20 years, more sustainable technologies and zero-waste integrated biorefinery approaches still need to be developed. Within this context, we invite the submission of original research papers and review articles presenting the latest achievements and trends in sustainable (bio)chemical processes for lignocellulosic and lipid biomass valorization to fuels, chemicals and materials, including the important topics of technoeconomic analysis and life-cycle assessment.

Prof. Konstantinos S. Triantafyllidis
Prof. Rafael Luque
Dr. Carol Sze Ki Lin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainable Chemistry is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Lignocellulosic biomass
  • Lipid biomass
  • Agricultural and forestry wastes
  • Industrial residues and byproducts
  • Food waste
  • Hazardous wastes
  • Biobased platform chemicals
  • Biobased polymers and composites,
  • Biofuels
  • Biochar
  • Biobased food additives
  • Thermochemical and (bio)catalytic conversion
  • Advanced analytical methods
  • Scale-up of biomass valorization processes
  • Technoeconomic analysis
  • LCA
  • Green chemistry and chemical technology
  • Circular (bio)economy

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Food Waste Digestate-Based Biorefinery Approach for Rhamnolipids Production: A Techno-Economic Analysis
Sustain. Chem. 2021, 2(2), 237-253; https://0-doi-org.brum.beds.ac.uk/10.3390/suschem2020014 - 08 Apr 2021
Viewed by 663
Abstract
The present work evaluates the techno-economic feasibility of a rhamnolipids production process that utilizes digestate from anaerobic digestion (AD) of food waste. Technical feasibility, profitability and extent of investment risks between fermenter scale and its operating strategy for rhamnolipids production was investigated in [...] Read more.
The present work evaluates the techno-economic feasibility of a rhamnolipids production process that utilizes digestate from anaerobic digestion (AD) of food waste. Technical feasibility, profitability and extent of investment risks between fermenter scale and its operating strategy for rhamnolipids production was investigated in the present study. Three scenarios were generated and compared: production using a single large fermenter (Scenario I), using two small fermenters operated alternately (Scenario II) or simultaneously (Scenario III). It was found that all the scenarios were economically feasible, and Scenario III was the most profitable since it allowed the most optimum fermenter operation with utilization of multiple small-scale equipment to reduce the downtime of each equipment and increase the production capacity and overall productivity. It had the highest net present value, internal rate of return and shortest payback time at a discount rate of 7%. Finally, a sensitivity analysis was conducted to indicate how the variation in factors such as feedstock (digestate) cost, rhamnolipids selling price, extractant recyclability and process capacity influenced the process economics. The work provides important insights on techno-economic performance of a food waste digestate valorization process which would be useful to guide its sustainable scale-up. Full article
Show Figures

Figure 1

Article
5-Hydroxymethylfurfural Hydrodeoxygenation to 2,5-Dimethylfuran in Continuous-Flow System over Ni on Nitrogen-Doped Carbon
Sustain. Chem. 2020, 1(2), 106-115; https://0-doi-org.brum.beds.ac.uk/10.3390/suschem1020009 - 19 Aug 2020
Cited by 6 | Viewed by 1129
Abstract
Waste lignocellulosic biomass is sustainable and an alternative feedstock to fossil resources. Among the lignocellulosic derived compounds, 2,5-dimethylfuran (DMF) is a promising building block for chemicals, e.g., p-xylene, and a valuable biofuel. DMF can be obtained from 5-hydroxymethylfurfural (HMF) via catalytic deoxygenation [...] Read more.
Waste lignocellulosic biomass is sustainable and an alternative feedstock to fossil resources. Among the lignocellulosic derived compounds, 2,5-dimethylfuran (DMF) is a promising building block for chemicals, e.g., p-xylene, and a valuable biofuel. DMF can be obtained from 5-hydroxymethylfurfural (HMF) via catalytic deoxygenation using non-noble metals such as Ni in the presence of H2. Herein, we present the synthesis of DMF from HMF using 35 wt.% Ni on nitrogen-doped carbon pellets (35Ni/NDC) as a catalyst in a continuous flow system. The conversion of HMF to DMF was studied at different hydrogen pressures, reaction temperatures, and space times. At the best reaction conditions, i.e., 423 K, 8.0 MPa, and space time 6.4 kgNi h kgHMF−1, the 35Ni/NDC catalyst exhibited high catalytic activity with HMF conversion of 99 mol% and 80 mol% of DMF. These findings can potentially contribute to the transition toward the production of sustainable fine chemicals and liquid transportation fuels. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Dr. Parameswaran Binod

Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India

Dr. Shicheng Zhang

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental
Sciences and Engineering, Fudan University, Shanghai 200438, China

Dr. Wei-Hsin Chen

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan

Dr. Vinod Kumar1 and Dr. Deepti Agrawal2,3

1 Centre for Climate and Environmental Protection, Cranfield University, UK

2 Biochemistry and Biotechnology Area, Materials Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India

3 Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, 201002, India

Dr. Guneet Kaur

Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Title: Food waste digestate-based biorefinery approach for rhamnolipids production: A techno-economic analysis

Abstract: The present work evaluates the techno-economic feasibility of a rhamnolipids production process that utilizes digestate from anaerobic digestion (AD) of food waste. Technical feasibility, profitability and extent of investment risks between fermenter scale and its operating strategy for rhamnolipids production was investigated in the present study. Three scenarios were generated and compared: production using a single large fermenter (Scenario I), using two small fermenters operated alternately (Scenario II) or simultaneously (Scenario III). It was found that all the scenarios were economically feasible and Scenario III was the most profitable since it allowed the most optimum fermenter operation with utilization of multiple small-scale equipment to reduce the downtime of each equipment and increase the production capacity and overall productivity. It had the highest net present value, internal rate of return and shortest payback time at a discount rate of 7%. Finally, a sensitivity analysis was conducted to indicate how the variation in factors such as feedstock (digestate) cost, rhamnolipids selling price, extractant recyclability and process capacity influenced the process economics. The work provides important insights on techno-economic performance of a food waste digestate valorization process which would be useful to guide its sustainable scale-up.

Back to TopTop