Topic Editors

Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
Emerging Methods, Aquatic Contaminant Research Division, Environment Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada

Plastics, Water-Soluble Polymers and Rubberized Materials: Ecotoxicological Aspects in the Aquatic Environments

Abstract submission deadline
30 June 2024
Manuscript submission deadline
31 August 2024
Viewed by
3017

Topic Information

Dear Colleagues,

We propose a Topic about the impacts of conventional and non-conventional plastics in the aquatic ecosystems. This Topic will group scientific peer-review articles from Journal of Xenobiotics, Journal of Marine Science and Engineering, Water, Toxics and Microplastics.

In the last years a great attention has been posed by scientific community on the environmental impact of plastics on the aquatic environments. However, other investigations are needed in this field, especially in freshwater ecosystems, to better characterized both the presence and toxicity of these emerging pollutants in the continental areas, which represent the main plastic source toward Oceans.

On the other hand, despite the pollution of conventional plastics start to be well known, some controversial substances, represented by the so-called Water-Soluble Polymers (WSPs), need more attention from the ecotoxicological point of view. Indeed, being water-soluble, these polymers escape from the current legislations to contain (micro and nano)plastic pollution, and very few evidence is available in scientific literature about their environmental toxicity. In this context, also the tire particles are not grouped among conventional plastics, being rubber of natural origin, and they require more ecotoxicological investigation due to the plethora of toxic chemicals adsorb by these physical pollutants during the activity of transport means.

Based on these brief considerations, the aim of the proposed Topic is the grouping of articles that answer to the following key questions: (i) Monitoring of conventional plastics in the aquatic environments, with particular attention to fresh- and marine waters (ii) Identification of new suitable methods for the monitoring of non-conventional plastics, as WSPs and tire particles, whose detection is negatively affected by the lack of analytical methodologies (iii) Evaluation of adverse effects of both conventional and non-conventional plastics on aquatic species using biomarkers, “omics” techniques and standardized ecotoxicological tests.

Research papers, reviews and short communications will be accepted in this field.

Dr. Stefano Magni
Dr. François Gagné
Topic Editors

Keywords

  • aquatic ecosystems
  • emerging contaminants
  • plastics
  • (micro)plastics
  • (nano)plastics
  • water-soluble polymers
  • tire particles

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Journal of Marine Science and Engineering
jmse
2.9 3.7 2013 15.4 Days CHF 2600 Submit
Journal of Xenobiotics
jox
6.0 4.6 2011 21.7 Days CHF 1600 Submit
Microplastics
microplastics
- - 2022 27.4 Days CHF 1000 Submit
Toxics
toxics
4.6 3.4 2013 14.7 Days CHF 2600 Submit
Water
water
3.4 5.5 2009 16.5 Days CHF 2600 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (2 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
14 pages, 2145 KiB  
Article
Micro and Nanoplastic Contamination and Its Effects on Freshwater Mussels Caged in an Urban Area
by François Gagné, Eva Roubeau-Dumont, Chantale André and Joëlle Auclair
J. Xenobiot. 2023, 13(4), 761-774; https://0-doi-org.brum.beds.ac.uk/10.3390/jox13040048 - 05 Dec 2023
Cited by 2 | Viewed by 1032
Abstract
Plastic-based contamination has become a major cause of concern as it pervades many environments such as air, water, sediments, and soils. This study sought to examine the presence of microplastics (MPs) and nanoplastics (NPs) in freshwater mussels placed at rainfall/street runoff overflows, downstream [...] Read more.
Plastic-based contamination has become a major cause of concern as it pervades many environments such as air, water, sediments, and soils. This study sought to examine the presence of microplastics (MPs) and nanoplastics (NPs) in freshwater mussels placed at rainfall/street runoff overflows, downstream (15 km) of the city centre of Montréal, and 8 km downstream of a municipal effluent dispersion plume. MPs and NPs were determined using flow cytometry and size exclusion chromatography using fluorescence detection. Following 3 months of exposure during the summer season, mussels contained elevated amounts of both MPs and NPs. The rainfall overflow and downstream of the city centre were the most contaminated sites. Lipid peroxidation, metallothioneins, and protein aggregates (amyloids) were significantly increased at the most contaminated sites and were significantly correlated with NPs in tissues. Based on the levels of MPs and NPs in mussels exposed to municipal effluent, wastewater treatment plants appear to mitigate plastic contamination albeit not completely. In conclusion, the data support the hypothesis that mussels placed in urbanized areas are more contaminated by plastics, which are associated with oxidative damage. The highest responses observed at the overflow site suggest that tire wear and/or asphalt (road) erosion MPs/NPs represent important sources of contamination for the aquatic biota. Full article
Show Figures

Figure 1

16 pages, 927 KiB  
Article
Plastic Contamination in Seabass and Seabream from Off-Shore Aquaculture Facilities from the Mediterranean Sea
by Giacomo Mosconi, Sara Panseri, Stefano Magni, Renato Malandra, Alfonsina D’Amato, Marina Carini, Luca Chiesa and Camilla Della Torre
J. Xenobiot. 2023, 13(4), 625-640; https://0-doi-org.brum.beds.ac.uk/10.3390/jox13040040 - 25 Oct 2023
Viewed by 1438
Abstract
We characterized the presence of plastics in different organs of the gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) from some off-shore aquaculture facilities of the Mediterranean Sea. Plastics were detected in 38% of analyzed fish. Higher contamination [...] Read more.
We characterized the presence of plastics in different organs of the gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) from some off-shore aquaculture facilities of the Mediterranean Sea. Plastics were detected in 38% of analyzed fish. Higher contamination was observed in fish from Turkey and Greece with respect to Italy, without significant differences between the geographical areas. Plastics accumulated mostly in the gastrointestinal tract and, to a lower extent, in the muscle, which represents the edible part of fish. Based on the particle detected, a maximum amount of 0.01 plastic/g wet weight (w.w.) can occur in muscles, suggesting a low input for humans through consumption. A large portion of the particles identified was represented by man-made cellulose-based fibers. The characterization of the polymeric composition suggests that plastics taken up by fish can have land-based and pelagic origins, but plastics can be introduced also from different aquaculture practices. Full article
Show Figures

Figure 1

Back to TopTop