Previous Issue
Volume 17, June-2
 
 
materials-logo

Journal Browser

Journal Browser

Materials, Volume 17, Issue 13 (July-1 2024) – 52 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 7724 KiB  
Article
Effects of Surface-Etching Systems on the Shear Bond Strength of Dual-Polymerized Resin Cement and Zirconia
by Sang-Hyun Kim, Kyung Chul Oh and Hong-Seok Moon
Materials 2024, 17(13), 3096; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133096 - 24 Jun 2024
Abstract
Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using [...] Read more.
Adhesion of zirconia is difficult; thus, etching agents using several different methods are being developed. We investigated the effects of surface treatment with commercially available etching agents on the bond strength between zirconia and resin cement and compared them with those achieved using air abrasion alone. We used 100 zirconia blocks, of which 20 blocks remained untreated, 20 blocks were sandblasted, and 60 blocks were acid-etched using three different zirconia-etching systems: Zircos-E etching (strong-acid etching), smart etching (acid etching after air abrasion), and cloud etching (acid etching under a hot stream). Each group was subjected to a bonding procedure with dual-polymerized resin cement, and then 50 specimens were thermocycled. The shear bond strengths between the resin cement and zirconia before and after the thermocycling were evaluated. We observed that in the groups that did not undergo thermocycling, specimens surface-treated with solution did not show a significant increase in shear bond strength compared to the sandblasted specimens (p > 0.05). Among the thermocycled groups, the smart-etched specimens showed the highest shear bond strength. In the short term, various etching agents did not show a significant increase in bond strength compared to sandblasting alone, but in the long term, smart etching showed stability in bond strength (p < 0.05). Full article
(This article belongs to the Special Issue Ceramic Dental Restorations: From Materials Sciences to Applications)
16 pages, 1241 KiB  
Article
Thermo-Mechanical Numerical Simulation of Friction Stir Rotation-Assisted Single Point Incremental Forming of Commercially Pure Titanium Sheets
by Marcin Szpunar, Tomasz Trzepieciński, Robert Ostrowski, Krzysztof Żaba, Waldemar Ziaja and Maciej Motyka
Materials 2024, 17(13), 3095; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133095 - 24 Jun 2024
Viewed by 22
Abstract
Single point incremental forming (SPIF) is becoming more and more widely used in the metal industry due to its high production flexibility and the possibility of obtaining larger material deformations than during conventional sheet metal forming processes. This paper presents the results of [...] Read more.
Single point incremental forming (SPIF) is becoming more and more widely used in the metal industry due to its high production flexibility and the possibility of obtaining larger material deformations than during conventional sheet metal forming processes. This paper presents the results of the numerical modeling of friction stir rotation-assisted SPIF of commercially pure 0.4 mm-thick titanium sheets. The aim of this research was to build a reliable finite element-based thermo-mechanical model of the warm forming process of titanium sheets. Finite element-based simulations were conducted in Abaqus/Explicit software (version 2019). The formability of sheet metal when forming conical cones with a slope angle of 45° was analyzed. The numerical model assumes complex thermal interactions between the forming tool, the sheet metal and the surroundings. The heat generation capability was used to heat generation caused by frictional sliding. Mesh sensitivity analysis showed that a 1 mm mesh provides the best agreement with the experimental results of total forming force (prediction error 3%). It was observed that the higher the size of finite elements (2 mm and 4 mm), the greater the fluctuation of the total forming force. The maximum temperature recorded in the contact zone using the FLIR T400 infrared camera was 157 °C, while the FE-based model predicted this value with an error of 1.3%. The thinning detected by measuring the drawpiece with the ARGUS non-contact strain measuring system and predicted by the FEM model showed a uniform thickness in the drawpiece wall zone. The FE-based model overestimated the minimum and maximum wall thicknesses by 3.7 and 5.9%, respectively. Full article
12 pages, 2769 KiB  
Article
Application of Li6.4La3Zr1.45Ta0.5Mo0.05O12/PEO Composite Solid Electrolyte in High-Performance Lithium Batteries
by Chengjun Lin, Yaoyi Huang, Dingrong Deng, Haiji Xiong, Bin Lu, Jianchun Weng, Xiaohong Fan, Guifang Li, Ye Zeng, Yi Li and Qihui Wu
Materials 2024, 17(13), 3094; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133094 - 24 Jun 2024
Viewed by 23
Abstract
Replacing the flammable liquid electrolytes with solid ones has been considered to be the most effective way to improve the safety of the lithium batteries. However, the solid electrolytes often suffer from low ionic conductivity and poor rate capability due to their relatively [...] Read more.
Replacing the flammable liquid electrolytes with solid ones has been considered to be the most effective way to improve the safety of the lithium batteries. However, the solid electrolytes often suffer from low ionic conductivity and poor rate capability due to their relatively stable molecular/atomic architectures. In this study, we report a composite solid electrolyte, in which polyethylene oxide (PEO) is the matrix and Li6.4La3Zr1.45Ta0.5Mo0.05O12 (LLZTMO) and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) are the fillers. Ta/Mo co-doping can further promote the ion transport capacity in the electrolyte. The synthesized composite electrolytes exhibit high thermal stability (up to 413 °C) and good ionic conductivity (LLZTMO–PEO 2.00 × 10−4 S·cm−1, LLZTO–PEO 1.53 × 10−4 S·cm−1) at 35 °C. Compared with a pure PEO electrolyte, whose ionic conductivity is in the range of 10−7~10−6 S·cm−1, the ionic conductivity of composite solid electrolytes is greatly improved. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries. Full article
Show Figures

Figure 1

13 pages, 1407 KiB  
Article
Development of an Alternative Manufacturing Technology for Niobium Components
by Anna Kawalek, Kirill Ozhmegov, Dariusz Garbiec, Henryk Dyja and Alexandr Arbuz
Materials 2024, 17(13), 3093; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133093 - 24 Jun 2024
Viewed by 37
Abstract
Due to their physical and mechanical properties, niobium products are used in the nuclear power industry, chemical industry, electronics, medicine and in the defence industry. Traditional manufacturing technology for these products is characterized by long production cycles and significant material losses during their [...] Read more.
Due to their physical and mechanical properties, niobium products are used in the nuclear power industry, chemical industry, electronics, medicine and in the defence industry. Traditional manufacturing technology for these products is characterized by long production cycles and significant material losses during their surface machining. This paper presents the results of a study on the fabrication of niobium products by Spark Plasma Sintering (SPS). Structural and mechanical tests were conducted on the products obtained, as well as a comparative analysis with the properties of products obtained using traditional technology. Based on the analysis of the test results obtained, recommendations were made for the sintering of Nb powders. It was found that the optimum temperature for sintering the powder is 2000 °C as the density of the material obtained is close to the theoretical density. The microstructure obtained is comparable to samples obtained by the traditional method after recrystallization annealing. Samples obtained according to the new technology are characterized by higher mechanical properties Rp0.2 and Rm and the highest hardness. Full article
17 pages, 4018 KiB  
Article
Investigation of Materials for Enhanced Vibrational Insulation in Ground Structures Using Concrete Mixtures: A Case Study of Rubber Aggregate Addition
by Maciej Gruszczyński, Alicja Kowalska-Koczwara and Tadeusz Tatara
Materials 2024, 17(13), 3092; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133092 - 24 Jun 2024
Viewed by 80
Abstract
The reduction of vibrations in concrete has been a topic of discussion among scientists. This article presents research on designing concrete mixes for constructing ground barriers with enhanced vibration isolation using waste materials. This study discusses the design of concrete mixes for the [...] Read more.
The reduction of vibrations in concrete has been a topic of discussion among scientists. This article presents research on designing concrete mixes for constructing ground barriers with enhanced vibration isolation using waste materials. This study discusses the design of concrete mixes for the construction of concrete partitions with increased vibration isolation, using the polish standards. The experiments were conducted at the Laboratory of Building Materials Engineering at the Cracow University of Technology as part of the project entitled “Innovative construction of vibration-insulating barriers to protect the environment from transport vibrations and similar sources”. The concrete composition utilized blast furnace cement CEM III/A 42.5 N, with mineral and chemical additives. Recycled rubber aggregate from used tires was employed to enhance vibration isolation. Measurement results demonstrated the effectiveness of the concrete in dampening vibrations, confirming its suitability for practical use. Full article
10 pages, 3230 KiB  
Article
Pecan Shell-Derived Activated Carbon for High-Electrochemical Performance Supercapacitor Electrode
by Sarah J. Zou, Mumukshu D. Patel, Lee M. Smith, Eunho Cha, Sheldon Q. Shi and Wonbong Choi
Materials 2024, 17(13), 3091; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133091 - 24 Jun 2024
Viewed by 122
Abstract
Carbon nanomaterials-based electric double-layer capacitors (EDLCs) are reliable and appealing energy-storage systems offering high power density and long cycling stability. However, these energy storage devices are plagued with critical shortcomings, such as low specific capacitance, inefficient physical/chemical activation process, and self-discharge of electrode [...] Read more.
Carbon nanomaterials-based electric double-layer capacitors (EDLCs) are reliable and appealing energy-storage systems offering high power density and long cycling stability. However, these energy storage devices are plagued with critical shortcomings, such as low specific capacitance, inefficient physical/chemical activation process, and self-discharge of electrode materials, hindering their future application. In this work, we use a self-activation process, an environmentally benign and low-cost process, to produce high-performance activated carbon (AC). Novel activated carbon from pecan shells (PS) was successfully synthesized through a single-step self-activation process, which combines the carbonization and activation processes. The as-synthesized pecan shell-derived activated carbon (PSAC) provides a high-porosity, low-resistance, and ordered pore structure with a specific pore volume of 0.744 cm3/g and BET surface area of 1554 m2/g. The supercapacitors fabricated from PSAC demonstrate a specific capacitance of 269 F/g at 2 A/g, excellent cycling stability over 15,000 cycles, and energy and power density of 37.4 Wh/kg and of 2.1 kW/kg, respectively. It is believed that the high-efficiency PSAC synthesized from the novel self-activation method could provide a practical route to environmentally friendly and easily scalable supercapacitors. Full article
Show Figures

Figure 1

14 pages, 612 KiB  
Article
Shear Bond Strength of Orthodontic Brackets Bonded with Thermo-Cured Glass-Based Materials—An In Vitro Study
by Stipo Cvitanović, Ružica Zovko, Mirela Mabić, Sanja Jurišić, Nevenka Jelić-Knezović, Domagoj Glavina and Kristina Goršeta
Materials 2024, 17(13), 3090; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133090 - 24 Jun 2024
Viewed by 118
Abstract
The results of orthodontic therapy largely depend, among other factors, on the preparation of the tooth enamel itself and the choice of material used to bond orthodontic brackets. The aim of this in vitro study was to determine the shear bond strength (SBS) [...] Read more.
The results of orthodontic therapy largely depend, among other factors, on the preparation of the tooth enamel itself and the choice of material used to bond orthodontic brackets. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of thermo-cured glass–ionomers on different pretreated enamel, in comparison with the commonly used composite cement. Three commercially available nano-ionomer or highly viscous glass–ionomer cements (EQUIA Forte® Fil, EQUIA Fil, Ketac Universal) and two types of compo-sites (Heliosit Orthodontic, ConTec Go!) were investigated in this study. The research involved two hundred human premolars. The teeth were cleaned and polished, then randomly divided into five groups according to the enamel preparation method and the type of material. The enamel was treated in three different ways: polyacrylic acid, phosphoric acid, 5% NaOCl + etching with phosphoric acid, and a control group without treatment. Glass–ionomer cement was thermo-cured with heat from a polymerization unit during setting. Statistical analysis was performed using a Chi-square test and one-way ANOVA for independent samples. Spearman’s Rho correlation coefficient was used to examine the relationship. Regardless of the material type, the results indicated that the weakest bond between the bracket and tooth enamel was found in samples without enamel pretreatment. The majority of the materials stayed on the brackets in samples without enamel preparation, according to ARI scores. The study’s findings demonstrated that the strength of the adhesion between the bracket and enamel is greatly influenced by enamel etching and glass–ionomer thermo-curing. Clinical investigations would be required to validate the outcomes. Full article
(This article belongs to the Special Issue Biocompatibility of Restorative Dental Materials)
Show Figures

Figure 1

17 pages, 6937 KiB  
Review
Nanocones: A Compressive Review of Their Electrochemical Synthesis and Applications
by Katarzyna Skibińska and Piotr Żabiński
Materials 2024, 17(13), 3089; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133089 - 24 Jun 2024
Viewed by 110
Abstract
The development in the field of nanomaterials has resulted in the synthesis of various structures. Depending on their final applications, the desired composition and therefore alternate properties can be achieved. In electrochemistry, the fabrication of bulk films characterized by high catalytic performance is [...] Read more.
The development in the field of nanomaterials has resulted in the synthesis of various structures. Depending on their final applications, the desired composition and therefore alternate properties can be achieved. In electrochemistry, the fabrication of bulk films characterized by high catalytic performance is well-studied in the literature. However, decreasing the scale of materials to the nanoscale significantly increases the active surface area, which is crucial in electrocatalysis. In this work, a special focus is placed on the electrodeposition of nanocones and their application as catalysts in hydrogen evolution reactions. The main paths for their synthesis concern deposition into the templates and from electrolytes containing an addition of crystal modifier that are directly deposited on the substrate. Additionally, the fabrication of cones using other methods and their applications are briefly reviewed. Full article
(This article belongs to the Section Metals and Alloys)
23 pages, 9451 KiB  
Article
Odors Adsorption in Zeolites Including Natural Clinoptilolite: Theoretical and Experimental Studies
by Izabela Czekaj and Natalia Sobuś
Materials 2024, 17(13), 3088; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133088 - 24 Jun 2024
Viewed by 173
Abstract
This publication presents the results of combined theoretical and experimental research for the potential use of natural clinoptilolite zeolite (CLI) as an odor-adsorbing material. In this study of adsorption capacity, CLI of various granulation was used and its modifications were made by ion [...] Read more.
This publication presents the results of combined theoretical and experimental research for the potential use of natural clinoptilolite zeolite (CLI) as an odor-adsorbing material. In this study of adsorption capacity, CLI of various granulation was used and its modifications were made by ion exchange using Sn and Fe metals to check whether the presence of metals as potential active centers does not lead to catalytic processes and may lead to enhanced absorption of odorous substances through their adsorption on the created metallic forms. Additionally, in order to increase the specific surface area, modifications were made in the form of hierarchization in an acidic environment using hydrochloric acid to also create the hydrogen form of zeolite and thus also check how the material behaves as an adsorbent. To compare the effect of CLI as a sorption material, synthetic zeolite MFI was also used—as a sodium form and after the introduction of metals (Sn, Fe). The above materials were subjected to adsorption measurements using odorous substances (including acetaldehyde, dimethylamine, pentanoic acid and octanoic acid). Based on the measurements performed, the most advantageous material that traps odorants is a natural material—clinoptilolite. Depending on the faction, its ability varies for different compounds. In the case of acetaldehyde, an effective material is clinoptilolite with a grain size of up to 2 mm. In the case of carboxylic acids, it is material after hierarchization with a fraction of 3–4 mm. In the case of theoretical calculations, information was obtained to show that metallic centers are more stable above oxygen, which is associated with the skeletal aluminum in clinoptilolite. Full article
Show Figures

Figure 1

20 pages, 4483 KiB  
Article
Modern Rare Earth Imprinted Membranes for the Recovery of Rare Earth Metal Ions from Coal Fly Ash Extracts
by Aleksandra Rybak, Aurelia Rybak, Sławomir Boncel, Anna Kolanowska, Agata Jakóbik-Kolon, Joanna Bok-Badura and Waldemar Kaszuwara
Materials 2024, 17(13), 3087; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133087 - 24 Jun 2024
Viewed by 205
Abstract
The need to identify secondary sources of REEs and their recovery has led to the search for new methods and materials. In this study, a novel type of ion-imprinted adsorption membranes based on modified chitosan was synthesized. Their application for the recovery of [...] Read more.
The need to identify secondary sources of REEs and their recovery has led to the search for new methods and materials. In this study, a novel type of ion-imprinted adsorption membranes based on modified chitosan was synthesized. Their application for the recovery of chosen REEs from synthetic coal fly ash extracts was analyzed. The examined membranes were analyzed in terms of adsorption kinetics, isotherms, selectivity, reuse, and their separation abilities. The experimental data obtained were analyzed with two applications, namely, REE 2.0 and REE_isotherm. It was found that the adsorption of Nd3+ and Y3+ ions in the obtained membranes took place according to the chemisorption mechanism and was significantly controlled by film diffusion. The binding sites on the adsorbent surface were uniformly distributed; the examined ions showed the features of regular monolayer adsorption; and the adsorbents showed a strong affinity to the REE ions. The high values of Kd (900–1472.8 mL/g) demonstrate their high efficiency in the recovery of REEs. After five subsequent adsorption–desorption processes, approximately 85% of the value of one cycle was reached. The synthesized membranes showed a high rejection of the matrix components (Na, Mg, Ca, Al, Fe, and Si) in the extracts of the coal fly ashes, and the retention ratio for these Nd and Y ions was 90.11% and 80.95%, respectively. Full article
Show Figures

Figure 1

13 pages, 1612 KiB  
Article
The Influence of Using Steel Tapes and Composite Materials on Reinforcing Hot-Rolled Steel Profiles
by Ilona Szewczak and Patryk Rozylo
Materials 2024, 17(13), 3086; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133086 - 23 Jun 2024
Viewed by 241
Abstract
Steel structure designers frequently encounter the need to reinforce hot-rolled compressed steel elements. This is particularly common in the case of compressed truss bars in steel truss girders. Typically, reinforcement is designed using bars or flat bars welded to the compressed element. However, [...] Read more.
Steel structure designers frequently encounter the need to reinforce hot-rolled compressed steel elements. This is particularly common in the case of compressed truss bars in steel truss girders. Typically, reinforcement is designed using bars or flat bars welded to the compressed element. However, welding technology is not always feasible in existing and operational steel halls due to fire safety concerns. To address this challenge, researchers investigated alternative reinforcement methods using bonded steel and CFRPs (carbon fiber-reinforced polymers/plastics) tapes. Laboratory tests and numerical analyses were conducted. Eleven 1.5 m long specimens made of 50 × 50 × 4 angle iron from S235 steel were subjected to axial compression testing. The test samples included three unreinforced samples, three samples reinforced with steel tape bonded using SikaDur-30 adhesive, and five samples reinforced with CFRP tape (SikaDur-30 adhesive was used for bonding in three cases, and 3M VHB GPH-160GF tape in two cases). The research conducted indicates that reinforcement using bonded steel tapes is the most effective method for limiting vertical displacements and deformations, as well as increasing the load-bearing capacity of the tested angles by 28.6% compared to the reference elements. Considering the high cost of composite tapes, this is valuable information from an economic analysis perspective. The absence of steel tape delamination suggests that the bonding technique can be successfully employed in this reinforcement method and can replace welding, for example in facilities where there is a high fire hazard. Full article
(This article belongs to the Special Issue Crashworthiness Analysis and Design of Thin-Walled Structures)
16 pages, 8473 KiB  
Article
Finite Element Analysis of Densification Process in High Velocity Compaction of Iron-Based Powder
by Miao Liu, Yan Cao, Chaorui Nie, Zhen Wang and Yinhuan Zhang
Materials 2024, 17(13), 3085; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133085 - 23 Jun 2024
Viewed by 235
Abstract
A finite element model based on elastic–plastic theory was conducted to study the densification process of iron-based powder metallurgy during high velocity compaction (HVC). The densification process of HVC at different heights was simulated using MSC Marc 2020 software with the Shima–Oyane model, [...] Read more.
A finite element model based on elastic–plastic theory was conducted to study the densification process of iron-based powder metallurgy during high velocity compaction (HVC). The densification process of HVC at different heights was simulated using MSC Marc 2020 software with the Shima–Oyane model, and compared with the experimental results. The numerical simulation results were consistent with the experimental results, proving the reliability of the finite element model. Through finite element analysis and theoretical calculation, the high-speed impact molding process of metal powder was analyzed, and the optimal empirical compaction equation for iron-based powder high-speed impact molding was obtained. At the same time, the influence of impact velocity and impact energy on the relative density distribution cloud map and numerical values of the compact was analyzed. Full article
Show Figures

Figure 1

18 pages, 7705 KiB  
Article
Experimental Measurement of Emissivity of Polished Steel Strips from a Continuous Annealing Line
by Šimon Staško, Gustáv Jablonský, Augustín Varga, Róbert Dzurňák and Jan Kizek
Materials 2024, 17(13), 3084; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133084 - 23 Jun 2024
Viewed by 224
Abstract
The long-term use of steel strip in various industries makes it an important semi-finished product, which makes it necessary to improve its chemical composition and mechanical properties, reduce its thickness and weight, expand the range of new types of steel strip and increase [...] Read more.
The long-term use of steel strip in various industries makes it an important semi-finished product, which makes it necessary to improve its chemical composition and mechanical properties, reduce its thickness and weight, expand the range of new types of steel strip and increase its production. This entails a large number of technological operations dependent on precise temperature measurement and control. In some industrial plants, the steel strip is in continuous motion, which makes the use of contact measuring devices impossible. When using non-contact measuring devices such as pyrometers or thermal imaging cameras, the emissivity of the materials being measured is a problematic parameter, as setting an incorrect emissivity value to the measuring device results in inaccurate temperature readings. The essence of this research was to establish a measurement method and to perform experimental measurements of the emissivity of a polished steel strip used in a continuous annealing line, the subsequent processing of the data from these measurements and their evaluation. The emissivity measurements were carried out for 5 types of steel strip of different parameters, while the measurement itself was carried out in the long wavelength range of 7.5–14 µm and at strip temperatures of 100–300 °C. Depending on the type of steel strip, the mean emissivity values ranged from 0.0835– to 0.1143. The emissivity of the steel strip increased with increasing strip temperature, and it was not a linear dependence. The emissivity values determined in this research could be applied to measuring equipment in actual production, which could improve the accuracy of temperature measurement in the heat treatment of polished steel strip. Thermal camera measurements in the long wavelength range, taking thermal images and their processing and determining the emissivity value of polished steel strips are the parts of this research that make it different from other already published research. Full article
Show Figures

Figure 1

16 pages, 1564 KiB  
Review
Piezoelectric Charge Coefficient of Halide Perovskites
by Raja Sekhar Muddam, Joseph Sinclair and Lethy Krishnan Jagadamma
Materials 2024, 17(13), 3083; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133083 - 23 Jun 2024
Viewed by 232
Abstract
Halide perovskites are an emerging family of piezoelectric and ferroelectric materials. These materials can exist in bulk, single-crystal, and thin-film forms. In this article, we review the piezoelectric charge coefficient (dij) of single crystals, thin films, and dimension-tuned halide perovskites based [...] Read more.
Halide perovskites are an emerging family of piezoelectric and ferroelectric materials. These materials can exist in bulk, single-crystal, and thin-film forms. In this article, we review the piezoelectric charge coefficient (dij) of single crystals, thin films, and dimension-tuned halide perovskites based on different measurement methods. Our study finds that the (dij) coefficient of the bulk and single-crystal samples is mainly measured using the quasi-static (Berlincourt) method, though the piezoforce microscopy (PFM) method is also heavily used. In the case of thin-film samples, the (dij) coefficient is dominantly measured by the PFM technique. The reported values of dij coefficients of halide perovskites are comparable and even better in some cases compared to existing materials such as PZT and PVDF. Finally, we discuss the promising emergence of quasi-static methods for thin-film samples as well. Full article
(This article belongs to the Special Issue Piezoelectrics and Ferroelectrics for End Users)
Show Figures

Figure 1

31 pages, 1400 KiB  
Article
Strain-Dependent Effects on Confinement of Folded Acoustic and Optical Phonons in Short-Period (XC)m/(YC)n with X,Y (≡Si, Ge, Sn) Superlattices
by Devki N. Talwar, Sky Semone and Piotr Becla
Materials 2024, 17(13), 3082; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133082 - 23 Jun 2024
Viewed by 187
Abstract
Carbon-based novel low-dimensional XC/YC (with X, Y ≡ Si, Ge, and Sn) heterostructures have recently gained considerable scientific and technological interest in the design of electronic devices for energy transport use in extreme environments. Despite many efforts made to understand the structural, electronic, [...] Read more.
Carbon-based novel low-dimensional XC/YC (with X, Y ≡ Si, Ge, and Sn) heterostructures have recently gained considerable scientific and technological interest in the design of electronic devices for energy transport use in extreme environments. Despite many efforts made to understand the structural, electronic, and vibrational properties of XC and XxY1−xC alloys, no measurements exist for identifying the phonon characteristics of superlattices (SLs) by employing either an infrared and/or Raman scattering spectroscopy. In this work, we report the results of a systematic study to investigate the lattice dynamics of the ideal / as well as graded SLs by meticulously including the interfacial layer thickness (≡1–3 monolayers). While the folded acoustic phonons (FAPs) are calculated using a Rytov model, the confined optical modes (COMs) and FAPs are described by adopting a modified linear-chain model. Although the simulations of low-energy dispersions for the FAPs indicated no significant changes by increasing , the results revealed, however, considerable “downward” shifts of high frequency COMs and “upward” shifts for the low energy optical modes. In the framework of a bond polarizability model, the calculated results of Raman scattering spectra for graded SLs are presented as a function of Special attention is paid to those modes in the middle of the frequency region, which offer strong contributions for enhancing the Raman intensity profiles. These simulated changes are linked to the localization of atomic displacements constrained either by the XC/YC or YC/XC unabrupt interfaces. We strongly feel that this study will encourage spectroscopists to perform Raman scattering measurements to check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
24 pages, 4937 KiB  
Article
Evaluation of Bio-Rejuvenator and Compaction Conditions on Stiffness Modulus and Indirect Tensile Strength of Recycled Hot Mix Asphalt
by Andrei Forton, Adrian Ciutina, Adelin Stirb, Paul Marc, Ciprian Costescu and Alexandra Ciopec
Materials 2024, 17(13), 3081; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133081 - 22 Jun 2024
Viewed by 531
Abstract
This study focuses on the investigation of the effect of a reclaimed asphalt material (RAP) and a bio-rejuvenator (mix of vegetable oils) on the stiffness modulus and indirect tensile strength (ITS) values of eight bituminous mixtures produced by using three types of compaction, [...] Read more.
This study focuses on the investigation of the effect of a reclaimed asphalt material (RAP) and a bio-rejuvenator (mix of vegetable oils) on the stiffness modulus and indirect tensile strength (ITS) values of eight bituminous mixtures produced by using three types of compaction, with different RAP amounts (25% and 50%) and rejuvenator (0%, 0.20%, 0.40% and 0.60% by mass of RAP). A conventional hot mix asphalt was considered as the reference mix. All tests were performed on cylindrical samples produced using: Marshall compaction with 50 blows/side, cored cylindrical specimens from slabs compacted using a roller compactor (39 passes), and, respectively, gyratory compaction on 80 gyrations. Stiffness modulus and ITS values showed strong linear variation with the increase in rejuvenator content, independently of test temperature and type of compaction. The rejuvenating effect of the bio-rejuvenator was observed to counterbalance the impact of RAP. The results at 20 °C for gyratory specimens for the mix with 50% RAP and 0.40% bio-rejuvenator were comparable/closer (under 5% relative difference) to those obtained for the reference mix. A strong correlation between stiffness modulus values of mixes and penetration values of the corresponding binder blends was obtained (R20.977). Full article
Show Figures

Figure 1

21 pages, 3610 KiB  
Article
Examination of Beam Theories for Buckling and Free Vibration of Functionally Graded Porous Beams
by Shuaishuai Wu, Yilin Li, Yumei Bao, Jun Zhu and Helong Wu
Materials 2024, 17(13), 3080; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133080 - 22 Jun 2024
Viewed by 338
Abstract
This paper examines the accuracy and effectiveness of various beam theories in predicting the critical buckling loads and fundamental frequencies of functionally graded porous (FGP) beams whose material properties change continuously across the thickness. The beam theories considered are classical beam theory (CBT), [...] Read more.
This paper examines the accuracy and effectiveness of various beam theories in predicting the critical buckling loads and fundamental frequencies of functionally graded porous (FGP) beams whose material properties change continuously across the thickness. The beam theories considered are classical beam theory (CBT), first-order shear deformation beam theory (FSDBT), third-order shear deformation beam theory (TSDBT), and the broken-line hypothesis-based shear deformation beam theory (BSDBT). Governing equations for those beam theories are formulated by using the Hamilton’s principle and are then solved by means of the generalised differential quadrature method. Finite element simulation solutions are provided as reference results to assess the predictions of those beam theories. Comprehensive numerical results are presented to evaluate the influences of the porosity distribution and coefficient, slenderness ratio, and boundary condition on the difference between theoretical predictions and simulation results. It is found that the differences significantly increase as the porosity coefficient rises, and this effect becomes more noticeable for the rigid beam with a smaller slenderness ratio. Nonetheless, the results produced by the BSDBT are always the closest to simulation ones. The findings in this paper will contribute to the establishment of more refined theories for the mechanical analysis of FGP structures. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

10 pages, 5070 KiB  
Article
Enhanced Optical Limiting of Gold Nanoparticles/Porous Carbon Nanocomposites
by Bo Gao, Xuhui Zhao, Lijiao Yang, Lihe Yan, Tao Lin and Jinhai Si
Materials 2024, 17(13), 3079; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133079 - 22 Jun 2024
Viewed by 339
Abstract
With the wide application of laser weapons, the requirements of laser protection technology are becoming more and more strict. Therefore, it is important to find ideal optical limiting (OL) materials to protect human eyes and detectors. In this work, the nonlinear optical responses [...] Read more.
With the wide application of laser weapons, the requirements of laser protection technology are becoming more and more strict. Therefore, it is important to find ideal optical limiting (OL) materials to protect human eyes and detectors. In this work, the nonlinear optical responses of gold nanoparticles/porous carbon (Au NPs/PC) nanocomposites prepared by the reduction method were studied using the nanosecond Z-scan technique. Compared with porous carbon, the Au NPs/PC nanocomposites show a lower damage threshold, a bigger optical limiting index and a wider absorption spectrum. The interaction between gold nanoparticles and porous carbon enhances the nonlinear scattering effect of suspended bubbles. These results indicate that Au NPs composites have potential applications in the protection of human eyes and detectors. Full article
Show Figures

Figure 1

20 pages, 5290 KiB  
Article
Activated Carbon Prepared from Waste Coffee Grounds: Characterization and Adsorption Properties of Dyes
by Feryelle Aouay, Afef Attia, Lasâad Dammak, Raja Ben Amar and Andre Deratani
Materials 2024, 17(13), 3078; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133078 - 22 Jun 2024
Viewed by 428
Abstract
Spent coffee grounds (SCGs) have great potential as a useful, value-added biological material. In this context, activated carbon (AC) was prepared from SCGs by an activation process using H3PO4 at 600 °C in the air and used as an adsorbent [...] Read more.
Spent coffee grounds (SCGs) have great potential as a useful, value-added biological material. In this context, activated carbon (AC) was prepared from SCGs by an activation process using H3PO4 at 600 °C in the air and used as an adsorbent for the azo dye AO7, a model molecule for dye colorants found in textile industry effluents. X-ray diffraction, SEM and BET revealed that the AC was predominantly amorphous, consisting of a powder of 20–100 µm particles with mesopores averaging 5.5 nm in pore size. Adsorption kinetics followed a pseudo-second-order law, while the Langmuir model best fitted the experimental isotherm data (maximum capacity of 119.5 mg AO7 per AC g). The thermodynamic parameters revealed that adsorption was endothermic and spontaneous. All the characterizations indicated that adsorption occurred by physisorption via mainly π–π interactions. The best experimental removal efficiency optimized by means of a Box–Behnken design and response surface methodology was 98% for an initial AO7 concentration of 20 mg·L−1 at pH 7.5 with a dose of 0.285 g·L−1 of AC and a contact time of 40 min. These results clearly show that activated carbon prepared from SCGs can be a useful material for efficiently removing organic matter from aqueous solutions. Full article
(This article belongs to the Special Issue Adsorbents and Their Applications (Second Volume))
Show Figures

Figure 1

27 pages, 12886 KiB  
Review
Role of Facets and Morphologies of Different Bismuth-Based Materials for CO2 Reduction to Fuels
by Smritirekha Talukdar and Tiziano Montini
Materials 2024, 17(13), 3077; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133077 - 22 Jun 2024
Viewed by 195
Abstract
Carbon dioxide (CO2) emission has been a global concern over the past few decades due to the increase in the demand of energy, a major source of which is fossil fuels. To mitigate the emission issues, as well as to find [...] Read more.
Carbon dioxide (CO2) emission has been a global concern over the past few decades due to the increase in the demand of energy, a major source of which is fossil fuels. To mitigate the emission issues, as well as to find a solution for the energy needs, an ample load of research has been carried out over the past few years in CO2 reduction by catalysis. Bismuth, being an active catalyst both photocatalytically and electrocatalytically, is an interesting material that can be formed into oxides, sulphides, oxyhalides, etc. Numerous works have been published based on bismuth-based materials as active catalysts for the reduction of CO2. However, a proper understanding of the behavior of the active facets and the dependence of morphology of the different bismuth-based catalysts is an interesting notion. In this review, various bismuth-based materials will be discussed regarding their activity and charge transfer properties, based on the active facets present in them. With regard to the available literature, a summarization, including photocatalysis, electrocatalysis as well as photoelectrocatalysis, will be detailed, considering various materials with different facets and morphologies. Product selectivity, varying on morphological difference, will also be realized photoelectrochemically. Full article
Show Figures

Graphical abstract

22 pages, 2222 KiB  
Review
Recent Progress in Creep-Resistant Aluminum Alloys for Diesel Engine Applications: A Review
by Raul Irving Arriaga-Benitez and Mihriban Pekguleryuz
Materials 2024, 17(13), 3076; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133076 - 22 Jun 2024
Viewed by 204
Abstract
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at [...] Read more.
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at diesel engine conditions of elevated temperature and stress combinations to reduce vehicle weight and, consequently, CO2 emissions. Aluminum alloys need to provide adequate creep resistance at ~300 °C and room-temperature tensile properties better than the current commercial aluminum alloys used for powertrain applications. The studies for improving creep resistance for aluminum casting alloys indicate that their high-temperature stability depends on the formation of high-density uniform dispersoids with low solid solubility and low diffusivity in aluminum. This review summarizes three generations of diesel engine aluminum alloys and focuses on recent work on the third-generation dispersoid-strengthened alloys. Additionally, new trends in developing creep resistance through the development of alloy systems other than Al-Si-based alloys, the optimization of manufacturing processes, and the use of thermal barrier coatings and composites are discussed. New progress on concepts regarding the thermal stability of rapidly solidified and nano-structured alloys and on creep-resistant alloy design via machine learning-based algorithms is also presented. Full article
12 pages, 4816 KiB  
Article
Optimized Adsorption–Catalytic Conversion for Lithium Polysulfides by Constructing Bimetallic Compounds for Lithium–Sulfur Batteries
by Liping Chen, Runhua Wang, Nan Li, Yang Bai, Yimo Zhou and Juan Wang
Materials 2024, 17(13), 3075; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133075 - 22 Jun 2024
Viewed by 284
Abstract
Although lithium–sulfur batteries possess the advantage of high theoretical specific capacity, the inevitable shuttle effect of lithium polysulfides is still a difficult problem restricting its application. The design of highly active catalysts to promote the redox reaction during charge–discharge and thus reduce the [...] Read more.
Although lithium–sulfur batteries possess the advantage of high theoretical specific capacity, the inevitable shuttle effect of lithium polysulfides is still a difficult problem restricting its application. The design of highly active catalysts to promote the redox reaction during charge–discharge and thus reduce the existence time of lithium polysulfides in the electrolyte is the mainstream solution at present. In particular, bimetallic compounds can provide more active sites and exhibit better catalytic properties than single-component metal compounds by regulating the electronic structure of the catalysts. In this work, bimetallic compounds-nitrogen-doped carbon nanotubes (NiCo)Se2-NCNT and (CuCo)Se2-NCNT are designed by introducing Ni and Cu into CoSe2, respectively. The (CuCo)Se2-NCNT delivers an optimized adsorption–catalytic conversion for lithium polysulfide, benefitting from adjusted electron structure with downshifted d-band center and increased electron fill number of Co in (CuCo)Se2 compared with that of (NiCo)Se2. This endows (CuCo)Se2 moderate adsorption strength for lithium polysulfides and better catalytic properties for their conversion. As a result, the lithium–sulfur batteries with (CuCo)Se2-NCNT achieve a high specific capacity of 1051.06 mAh g−1 at 1C and an enhanced rate property with a specific capacity of 838.27 mAh g−1 at 4C. The work provides meaningful insights into the design of bimetallic compounds as catalysts for lithium–sulfur batteries. Full article
(This article belongs to the Topic Nanomaterials for Energy and Environmental Applications)
Show Figures

Graphical abstract

10 pages, 1324 KiB  
Article
Fire Properties of Paper Sheets Made of Cellulose Fibers Treated with Various Retardants
by Zuzanna Szubert, Bartłomiej Mazela, Karolina Tomkowiak and Wojciech Grześkowiak
Materials 2024, 17(13), 3074; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133074 - 22 Jun 2024
Viewed by 171
Abstract
This article presents the results of flame-retardancy tests conducted on cellulose sheets produced using a Rapid Köthen apparatus treated with retardants. The agents used were potassium carbonate (PC) K2CO3 (concentrations of 20; 33.3; and 50% wt/wt), monoammonium phosphate (MAP) NH [...] Read more.
This article presents the results of flame-retardancy tests conducted on cellulose sheets produced using a Rapid Köthen apparatus treated with retardants. The agents used were potassium carbonate (PC) K2CO3 (concentrations of 20; 33.3; and 50% wt/wt), monoammonium phosphate (MAP) NH4H2PO4 (concentrations of 35% wt/wt), diammonium phosphate (DAP) (NH4)2HPO4 (concentrations of 42.9% wt/wt), and bisguanidal phosphate (FOS) C2H10N6 (concentrations of 22.5% wt/wt). The agents were used to improve Kraft cellulose-based sheets’ flame-retardant properties and compare their performances. As part of the study, the flammability of the materials was determined by the following methods: an oxygen index (OI) test, a mass loss calorimeter (MLC) test, and a mini fire tube (MFT) test. All formulations showed an increase in flame retardancy compared to the control test. All protected samples were non-flammable for OI determinations, and DAP-protected samples showed the highest OI index. For the MLC test, DAP-protected and MAP-protected samples showed the best heat-release rate (HRR), total heat release (THR), and average heat-release rate (ARHE) (samples did not ignite for 600 s). In the MFT test, all treated samples had comparably reduced weight loss. The best parameter was achieved for MAP and DAP (15% weight loss). Full article
(This article belongs to the Special Issue Functional Cellulosic Materials)
Show Figures

Figure 1

15 pages, 11307 KiB  
Article
The Evolution of Grain Microstructure in Friction Stir Welding of Dissimilar Al/Mg Alloys with Ultrasonic Assistance
by Junjie Zhao, Bo Zhao, Chuansong Wu and Sachin Kumar
Materials 2024, 17(13), 3073; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133073 - 22 Jun 2024
Viewed by 184
Abstract
The process of grain refinement during welding significantly influences both the final microstructure and performance of the weld joint. In the present work, merits of acoustic addition in the conventional Frictions Stir Welding (FSW) process were evaluated for joining dissimilar Al/Mg alloys. To [...] Read more.
The process of grain refinement during welding significantly influences both the final microstructure and performance of the weld joint. In the present work, merits of acoustic addition in the conventional Frictions Stir Welding (FSW) process were evaluated for joining dissimilar Al/Mg alloys. To capture the near “in situ” structure around the exit hole, an “emergency stop” followed by rapid cooling using liquid nitrogen was employed. Electron Backscatter Diffraction analysis was utilized to characterize and examine the evolution of grain microstructure within the aluminum matrix as the material flowed around the exit hole. The findings reveal that two mechanisms, continuous dynamic recrystallization (CDRX) and geometric dynamic recrystallization (GDRX), jointly or alternatively influence the grain evolution process. In conventional FSW, CDRX initially governs grain evolution, transitioning to GDRX as material deformation strain and temperature increase. Subsequently, as material deposition commences, CDRX reasserts dominance. Conversely, in acoustic addition, ultrasonic vibration accelerates GDRX, promoting its predominance by enhancing material flow and dislocation movements. Even during the material deposition, GDRX remains the dominant mechanism. Full article
Show Figures

Figure 1

26 pages, 3757 KiB  
Article
Environmentally Friendly o–Cresol–Furfural–Formaldehyde Resin as an Alternative to Traditional Phenol–Formaldehyde Resins for Paint Industry
by Marta Depta, Sławomir Napiórkowski, Katarzyna Zielińska, Katarzyna Gębura, Daria Niewolik and Katarzyna Jaszcz
Materials 2024, 17(13), 3072; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133072 - 22 Jun 2024
Viewed by 175
Abstract
This paper describes studies on the preparation of an o-cresol–furfural–formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. [...] Read more.
This paper describes studies on the preparation of an o-cresol–furfural–formaldehyde resin in the presence of an alkaline catalyst and its modification with n-butanol or 2-ethylhexanol. The novelty of this research is to obtain a furfural-based resin of the resole type and its etherification. Such resins are not described in the literature and also are not available on the market. The obtained resin based on furfural, which can be obtained from agricultural waste, had a low minimum content of free o-cresol<1 wt.%, furfural<0.1 wt.%, and formaldehyde<0.1 wt.%. The resin structure was characterized by mass spectrometry (ESI-MS), FT-IR, and NMR spectroscopy, which showed the presence of hydroxymethylene groups in the resin before modification and alkyl groups derived from n-butanol and 2-ethylhexanol after modification. The etherified resins had a lower viscosity and were more flexible (DSC) than the resin before modification and they can be used as an environmentally friendly, safe, and sustainable alternative to traditional phenol–formaldehyde resins in the paint industry. They demonstrate the ability to create a protective coating with good adherence to metal substrates and an excellent balance of flexibility and hardness. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Materials and Their Applications)
14 pages, 1159 KiB  
Article
Structure of Polaronic Centers in Proton-Intercalated AWO4 Scheelite-Type Tungstates
by Georgijs Bakradze, Edmund Welter and Alexei Kuzmin
Materials 2024, 17(13), 3071; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133071 - 22 Jun 2024
Viewed by 148
Abstract
The studies of polaronic centers in a homologous series of scheelite-type compounds AWO4 (A = Ca, Sr, Ba) were performed using the W L3-edge and Sr K-edge X-ray absorption spectroscopy combined with the reverse Monte Carlo simulations, X-ray photoelectron [...] Read more.
The studies of polaronic centers in a homologous series of scheelite-type compounds AWO4 (A = Ca, Sr, Ba) were performed using the W L3-edge and Sr K-edge X-ray absorption spectroscopy combined with the reverse Monte Carlo simulations, X-ray photoelectron spectroscopy (XPS), and first-principles calculations. Protonated scheelites HxA O4 were produced using acid electrolytes in a one-step route at ambient conditions. The underlying mechanism behind this phenomenon can be ascribed to the intercalation of H+ into the crystal structure of tungstate, effectively resulting in the reduction of W6+ to W5+, i.e., the formation of polaronic centers, and giving rise to a characteristic dark blue-purple color. The emergence of the W5+ was confirmed by XPS experiments. The relaxation of the local atomic structure around the W5+ polaronic center was determined from the analysis of the extended X-ray absorption fine structures using the reverse Monte Carlo method. The results obtained suggest the displacement of the W5+ ions from the center of [W5+O4] tetrahedra in the structure of AWO4 scheelite-type tungstates. This finding was also supported by the results of the first-principles calculations. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume V)
Show Figures

Graphical abstract

24 pages, 3114 KiB  
Review
Designing Dual-Responsive Drug Delivery Systems: The Role of Phase Change Materials and Metal–Organic Frameworks
by Wanying Wei and Ping Lu
Materials 2024, 17(13), 3070; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133070 - 22 Jun 2024
Viewed by 179
Abstract
Abstract: Stimuli-responsive drug delivery systems (DDSs) offer precise control over drug release, enhancing therapeutic efficacy and minimizing side effects. This review focuses on DDSs that leverage the unique capabilities of phase change materials (PCMs) and metal–organic frameworks (MOFs) to achieve controlled drug [...] Read more.
Abstract: Stimuli-responsive drug delivery systems (DDSs) offer precise control over drug release, enhancing therapeutic efficacy and minimizing side effects. This review focuses on DDSs that leverage the unique capabilities of phase change materials (PCMs) and metal–organic frameworks (MOFs) to achieve controlled drug release in response to pH and temperature changes. Specifically, this review highlights the use of a combination of lauric and stearic acids as PCMs that melt slightly above body temperature, providing a thermally responsive mechanism for drug release. Additionally, this review delves into the properties of zeolitic imidazolate framework-8 (ZIF-8), a stable MOF under physiological conditions that decomposes in acidic environments, thus offering pH-sensitive drug release capabilities. The integration of these materials enables the fabrication of complex structures that encapsulate drugs within ZIF-8 or are enveloped by PCM layers, ensuring that drug release is tightly controlled by either temperature or pH levels, or both. This review provides comprehensive insights into the core design principles, material selections, and potential biomedical applications of dual-stimuli responsive DDSs, highlighting the future directions and challenges in this innovative field. Full article
15 pages, 1444 KiB  
Article
The Synthesis of Copper Nanoparticles for Printed Electronic Materials Using Liquid Phase Reduction Method
by Kai Li and Xue Jiang
Materials 2024, 17(13), 3069; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133069 - 21 Jun 2024
Viewed by 211
Abstract
This text discusses the synthesis of copper nanoparticles via a liquid phase reduction method, using ascorbic acid as a reducing agent and CuSO4·5H2O as the copper source. The synthesized copper nanoparticles are small in size, uniformly distributed, are mostly [...] Read more.
This text discusses the synthesis of copper nanoparticles via a liquid phase reduction method, using ascorbic acid as a reducing agent and CuSO4·5H2O as the copper source. The synthesized copper nanoparticles are small in size, uniformly distributed, are mostly between 100–200 nm with clear boundaries between particles, and exhibit excellent dispersibility, making them suitable for metal conductive inks. 1. The copper nanoparticles are analyzed for good antioxidation properties, because their surface is coated with PVP and ascorbic acid. This organic layer somewhat isolates the particle surface from contact with air, preventing oxidation, and accounts for about 9% of the total weight. 2. When the prepared copper nanoparticles are spread on a polyimide substrate and sintered at 250 °C for 120 min, the resistivity can be as low as 23.5 μΩ·cm, and at 350 °C for 30 min, the resistivity is only three times that of bulk copper. 3. The prepared conductive ink, printed on a polyimide substrate using a direct writing tool, shows good flexibility before and after sintering. After sintering at 300 °C for 30 min and connecting the pattern to a circuit with a diode lamp, the diode lamp is successfully lit. 4. This method produces copper nanoparticles with small size, good dispersion, and antioxidation capabilities, and the conductive ink prepared from them demonstrates good conductivity after sintering. Full article
19 pages, 2853 KiB  
Article
The Microstructural Reconstruction of Variously Sintered Ni-SDC Cermets Using Focused Ion Beam Scanning Electron Microscopy Nanotomography
by Gregor Kapun, Endre Majorovits, Sašo Šturm, Marjan Marinšek and Tina Skalar
Materials 2024, 17(13), 3068; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133068 - 21 Jun 2024
Viewed by 207
Abstract
This work focuses in-depth on the quantitative relationships between primary first-order microstructural parameters (i.e., volume fractions of various phases and particle size distribution) with the more complex second-order topological features (i.e., connectivity of phases, three-phase boundary length (TPBL), interfacial areas, or [...] Read more.
This work focuses in-depth on the quantitative relationships between primary first-order microstructural parameters (i.e., volume fractions of various phases and particle size distribution) with the more complex second-order topological features (i.e., connectivity of phases, three-phase boundary length (TPBL), interfacial areas, or tortuosity). As a suitable model material, a cermet nickel/samaria-doped ceria (Ni-SDC) is used as an anode in a solid oxide fuel cell (SOFC). A microstructure description of nano-sized Ni-SDC cermets, fabricated at various sintering conditions from 1100 °C to 1400 °C, was performed using FIB-SEM nanotomography. The samples were serially sectioned employing a fully automated slicing procedure with active drift correction algorithms and an auto-focusing routine to obtain a series of low-loss BSE images. Advanced image processing algorithms were developed and applied directly to image data volume. The microstructural–topological relationships are crucial for the microstructure optimisation and, thus, the improvement of the corresponding electrode performance. Since all grains of individual phases (Ni, SDC, or pores) did not percolate, special attention was given to the visualisation of the so-called active TPBL. Based on the determined microstructure characteristics of the prepared Ni-SDC cermets, including simulations of gas flow and pressure drop, thermal treatment at 1200 °C was recognised as the most appropriate sintering temperature. Full article
(This article belongs to the Special Issue Advances in the Characterization of Materials)
Show Figures

Figure 1

21 pages, 3952 KiB  
Article
Sub-Sharvin Conductance and Incoherent Shot-Noise in Graphene Disks at Magnetic Field
by Adam Rycerz, Katarzyna Rycerz and Piotr Witkowski
Materials 2024, 17(13), 3067; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17133067 (registering DOI) - 21 Jun 2024
Viewed by 204
Abstract
Highly doped graphene samples show reduced conductance and enhanced shot-noise power compared with standard ballistic systems in two-dimensional electron gas. These features can be understood within a model that assumes incoherent scattering of Dirac electrons between two interfaces separating the sample and the [...] Read more.
Highly doped graphene samples show reduced conductance and enhanced shot-noise power compared with standard ballistic systems in two-dimensional electron gas. These features can be understood within a model that assumes incoherent scattering of Dirac electrons between two interfaces separating the sample and the leads. Here we find, by adopting the above model for the edge-free (Corbino) geometry and by computer simulation of quantum transport, that another graphene-specific feature should be observable when the current flow through a doped disk is blocked by a strong magnetic field. When the conductance drops to zero, the Fano factor approaches the value of F0.56, with a very weak dependence on the ratio of the disk radii. The role of finite source-drain voltages and the system behavior when the electrostatic potential barrier is tuned from a rectangular to a parabolic shape are also discussed. Full article
(This article belongs to the Special Issue Nanodevices in 2D Materials: Theory and Simulations)
Show Figures

Figure 1

Previous Issue
Back to TopTop