Anti-inflammatory and Antioxidant Effects of Exercise and Training with the Mechanisms and Modulations

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: closed (20 June 2022) | Viewed by 43773

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
Interests: immunology; inflammation; muscle damage; cytokine; leukocyte; oxidative stress
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Lecturer of Human Physiology, School of Allied Health Sciences & Menzies Health Institute, Griffith University, Queensland, Australia
Interests: exercise; adaptation; metabolism; inflammation; hormesis; adaptive-based redox control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Exercise-induced inflammation is a complex and multi-faceted response lasting from hours to days after exercise. The paradoxical view of inflammation, and its application to the hormesis model, is intriguing and complex. Different exercise modalities, exercise volumes and exercise intensities contribute an added layer of complexity in understanding the dose–response relationship between exercise, the resulting (anti)inflammatory response, and ultimately, the desired consequence of the exercise bout(s). For example, minimizing exercise-induced inflammation may be more important when restoring homeostasis and muscle function to the basal state. However, when promoting adaptation to exercise, e.g., within a training environment, allowing a higher dose of inflammation to potentially aid adaptation may be a valuable strategy. Understanding more about the interplay between exercise and the resulting inflammatory response, as well as the underlying mechanism(s), is crucial.

After the success of the previous Special Issue "Exercise and Inflammation" and "Anti-inflammatory and Antioxidant Effects of Dietary Supplementation and Lifestyle Factors", this Special Issue aims to publish original research papers and reviews on aspects of the exercise-induced inflammatory response in animal and human models. Aspects include the interplay between oxidative stress and inflammation and potential strategies to combat such responses. Suitable topics include, but are not limited to, the following: the role of post-exercise inflammation in governing muscular regeneration and adaption; the paradoxical role of inflammation for post-exercise recovery; inflammation’s role in exercise-induced muscle damage; neutraceutical and applied strategies to combat inflammation.

Prof. Dr. Katsuhiko Suzuki
Dr. Llion Roberts
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 3358 KiB  
Article
Exercise Improves Redox Homeostasis and Mitochondrial Function in White Adipose Tissue
by Leonardo Matta, Caroline Coelho de Faria, Dahienne F. De Oliveira, Iris Soares Andrade, Niedson Correia Lima-Junior, Bianca Martins Gregório, Cristina Maeda Takiya, Andrea Claudia Freitas Ferreira, José Hamilton M. Nascimento, Denise Pires de Carvalho, Alexander Bartelt, Leonardo Maciel and Rodrigo Soares Fortunato
Antioxidants 2022, 11(9), 1689; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11091689 - 29 Aug 2022
Cited by 5 | Viewed by 2482
Abstract
Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously [...] Read more.
Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously shown that one aerobic exercise session was associated with increased expression of antioxidant and cytoprotective genes in white adipose tissue (WAT). In the present study, we evaluate the chronic effects of physical exercise on WAT redox homeostasis and mitochondrial function. Adult male Wistar rats were separated into two groups: a control group that did not exercise and a group that performed running exercise sessions on a treadmill for 30 min, 5 days per week for 9 weeks. Reactive oxygen species (ROS) generation, antioxidant enzyme activities, mitochondrial function, markers of oxidative stress and inflammation, and proteins related to DNA damage response were analyzed. In WAT from the exercise group, we found higher mitochondrial respiration in states I, II, and III of Complex I and Complex II, followed by an increase in ATP production, and the ROS/ATP ratio when compared to tissues from control rats. Regarding redox homeostasis, NADPH oxidase activity, protein carbonylation, and lipid peroxidation levels were lower in WAT from the exercise group when compared to control tissues. Moreover, antioxidant enzymatic activity, reduced glutathione/oxidized glutathione ratio, and total nuclear factor erythroid-2, like-2 (NFE2L2/NRF2) protein levels were higher in the exercise group compared to control. Finally, we found that exercise reduced the phosphorylation levels of H2AX histone (γH2AX), a central protein that contributes to genome stability through the signaling of DNA damage. In conclusion, our results show that chronic exercise modulates redox homeostasis in WAT, improving antioxidant capacity, and mitochondrial function. This hormetic remodeling of adipocyte redox balance points to improved adipocyte health and seems to be directly associated with the beneficial effects of exercise. Full article
Show Figures

Graphical abstract

18 pages, 1640 KiB  
Article
Flavanol-Rich Cocoa Supplementation Inhibits Mitochondrial Biogenesis Triggered by Exercise
by Jose Angel García-Merino, Beatriz de Lucas, Karen Herrera-Rocha, Diego Moreno-Pérez, Maria Gregoria Montalvo-Lominchar, Arantxa Fernández-Romero, Catalina Santiago, Margarita Pérez-Ruiz and Mar Larrosa
Antioxidants 2022, 11(8), 1522; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11081522 - 04 Aug 2022
Cited by 3 | Viewed by 3341
Abstract
The potential role of cocoa supplementation in an exercise context remains unclear. We describe the effects of flavanol-rich cocoa supplementation during training on exercise performance and mitochondrial biogenesis. Forty-two male endurance athletes at the beginning of the training season received either 5 g [...] Read more.
The potential role of cocoa supplementation in an exercise context remains unclear. We describe the effects of flavanol-rich cocoa supplementation during training on exercise performance and mitochondrial biogenesis. Forty-two male endurance athletes at the beginning of the training season received either 5 g of cocoa (425 mg of flavanols) or maltodextrin (control) daily for 10 weeks. Two different doses of cocoa (equivalent to 5 g and 15 g per day of cocoa for a 70 kg person) were tested in a mouse exercise training study. In the athletes, while both groups had improved exercise performance, the maximal aerobic speed increased only in the control group. A mitochondrial DNA analysis revealed that the control group responded to training by increasing the mitochondrial load whereas the cocoa group showed no increase. Oxidative stress was lower in the cocoa group than in the control group, together with lower interleukin-6 levels. In the muscle of mice receiving cocoa, we corroborated an inhibition of mitochondrial biogenesis, which might be mediated by the decrease in the expression of nuclear factor erythroid-2-related factor 2. Our study shows that supplementation with flavanol-rich cocoa during the training period inhibits mitochondrial biogenesis adaptation through the inhibition of reactive oxygen species generation without impacting exercise performance. Full article
Show Figures

Figure 1

16 pages, 1368 KiB  
Article
The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys
by Babak Hooshmand Moghadam, Reza Bagheri, Matin Ghanavati, Fatemeh Khodadadi, Neda Cheraghloo, Alexei Wong, Michael Nordvall, Katsuhiko Suzuki and Fatemeh Shabkhiz
Antioxidants 2021, 10(11), 1675; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox10111675 - 24 Oct 2021
Cited by 4 | Viewed by 2542
Abstract
Research has shown that both dark chocolate and exercise training may have favorable effects on antioxidant function in obese cohorts. However, their combined effect has not been established. We assessed the influences of six weeks of dark chocolate consumption combined with jump rope [...] Read more.
Research has shown that both dark chocolate and exercise training may have favorable effects on antioxidant function in obese cohorts. However, their combined effect has not been established. We assessed the influences of six weeks of dark chocolate consumption combined with jump rope exercise on antioxidant markers in adolescent boys with obesity. Fifty adolescent boys with obesity (age = 15 ± 1 years) were randomly assigned into one of four groups; jump rope exercise + white chocolate consumption (JW; n = 13), jump rope exercise + dark chocolate consumption (JD; n = 13), dark chocolate consumption (DC; n = 12), or control (C; n = 12). Two participants dropped out of the study. Participants in JW and JD groups performed jump rope exercise three times per week for six weeks. Participants in the DC and JD groups consumed 30 g of dark chocolate containing 83% of cocoa during the same period. Serum concentrations of superoxide dismutase (SOD), total antioxidant capacity (TAC), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) were evaluated prior to and after the interventions. All 3 intervention groups noted significant (p < 0.01) increases in serum concentrations of TAC, SOD, and GPx from baseline to post-test. In contrast, all intervention groups showed significantly reduced serum concentrations of TBARS from pre- to post-test (p ≤ 0.01). Bonferroni post hoc analysis revealed that post-test serum concentrations of TAC in the JD group were significantly greater than C (p < 0.001), DC (p = 0.010), and JW (p < 0.001) groups. In addition, post-test serum concentrations of SOD in the JD group were significantly greater than C group (p = 0.001). Post-test serum concentrations of GPx in the JD group were significantly greater than C (p < 0.001), DC (p = 0.021), and JW (p = 0.032) groups. The post-test serum concentrations of TBARS in the JD group was significantly lower than C (p < 0.001). No other significant between-group differences were observed. The current study provides evidence that dark chocolate consumption in combination with jump rope exercise is more efficient in improving antioxidant capacity than dark chocolate consumption or jump rope exercise alone among obese adolescent boys. Full article
Show Figures

Figure 1

15 pages, 3338 KiB  
Article
The Effects of Beverage Intake after Exhaustive Exercise on Organ Damage, Inflammation and Oxidative Stress in Healthy Males
by Takaki Tominaga, Tsukasa Ikemura, Koichi Yada, Kazue Kanda, Kaoru Sugama, Sihui Ma, Wonjun Choi, Mayu Araya, Jiapeng Huang, Nobuhiro Nakamura and Katsuhiko Suzuki
Antioxidants 2021, 10(6), 866; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox10060866 - 28 May 2021
Cited by 4 | Viewed by 2277
Abstract
Strenuous exercise induces organ damage, inflammation and oxidative stress. To prevent exercise-induced organ damage, inflammation and oxidative stress, rehydrating may be an effective strategy. In the present study, we aimed to examine whether beverage intake after exhaustive exercise to recover from dehydration prevents [...] Read more.
Strenuous exercise induces organ damage, inflammation and oxidative stress. To prevent exercise-induced organ damage, inflammation and oxidative stress, rehydrating may be an effective strategy. In the present study, we aimed to examine whether beverage intake after exhaustive exercise to recover from dehydration prevents such disorders. Thirteen male volunteers performed incremental cycling exercise until exhaustion. Immediately after exercise, the subjects drank an electrolyte containing water (rehydrate trial: REH) or did not drink any beverage (control trial: CON). Blood samples were collected before (Pre), immediately (Post), 1 h and 2 h after exercise. Urine samples were also collected before (Pre) and 2 h after exercise. We measured biomarkers of organ damage, inflammation and oxidative stress in blood and urine. Biomarkers of muscle, renal and intestinal damage and inflammation increased in the blood and urine after exercise. However, changes in biomarkers of organ damage and inflammation did not differ between trials (p > 0.05). The biomarker of oxidative stress, thiobarbituric acid reactive substances (TBARS), in plasma, showed different changes between trials (p = 0.027). One hour after exercise, plasma TBARS concentration in REH had a higher trend than that in CON (p = 0.052), but there were no significant differences between Pre and the other time points in each trial. These results suggest that beverage intake after exercise does not attenuate exercise-induced organ damage, inflammation or oxidative stress in healthy males. However, rehydration restores exercise-induced oxidative stress more quickly. Full article
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 1226 KiB  
Review
Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects
by Matei Daniela, Luca Catalina, Onu Ilie, Matei Paula, Iordan Daniel-Andrei and Buculei Ioana
Antioxidants 2022, 11(2), 350; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox11020350 - 10 Feb 2022
Cited by 57 | Viewed by 11804
Abstract
Studies show that the autonomic nervous system (ANS) has an important impact on health in general. In response to environmental demands, homeostatic processes are often compromised, therefore determining an increase in the sympathetic nervous system (SNS)’s functions and a decrease in the parasympathetic [...] Read more.
Studies show that the autonomic nervous system (ANS) has an important impact on health in general. In response to environmental demands, homeostatic processes are often compromised, therefore determining an increase in the sympathetic nervous system (SNS)’s functions and a decrease in the parasympathetic nervous system (PNS)’s functions. In modern societies, chronic stress associated with an unhealthy lifestyle contributes to ANS dysfunction. In this review, we provide a brief introduction to the ANS network, its connections to the HPA axis and its stress responses and give an overview of the critical implications of ANS in health and disease—focused specifically on the immune system, cardiovascular, oxidative stress and metabolic dysregulation. The hypothalamic–pituitary–adrenal axis (HPA), the SNS and more recently the PNS have been identified as regulating the immune system. The HPA axis and PNS have anti-inflammatory effects and the SNS has been shown to have both pro- and anti-inflammatory effects. The positive impact of physical exercise (PE) is well known and has been studied by many researchers, but its negative impact has been less studied. Depending on the type, duration and individual characteristics of the person doing the exercise (age, gender, disease status, etc.), PE can be considered a physiological stressor. The negative impact of PE seems to be connected with the oxidative stress induced by effort. Full article
Show Figures

Figure 1

16 pages, 1307 KiB  
Review
An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress
by Shima Taherkhani, Kosar Valaei, Hamid Arazi and Katsuhiko Suzuki
Antioxidants 2021, 10(10), 1528; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox10101528 - 27 Sep 2021
Cited by 19 | Viewed by 6007
Abstract
One of the essential injuries caused by moderate to high-intensity and short-duration physical activities is the overproduction of reactive oxygen species (ROS), damaging various body tissues such as skeletal muscle (SM). However, ROS is easily controlled by antioxidant defense systems during low to [...] Read more.
One of the essential injuries caused by moderate to high-intensity and short-duration physical activities is the overproduction of reactive oxygen species (ROS), damaging various body tissues such as skeletal muscle (SM). However, ROS is easily controlled by antioxidant defense systems during low to moderate intensity and long-term exercises. In stressful situations, antioxidant supplements are recommended to prevent ROS damage. We examined the response of SM to ROS generation during exercise using an antioxidant supplement treatment strategy in this study. The findings of this review research are paradoxical due to variances in antioxidant supplements dose and duration, intensity, length, frequency, types of exercise activities, and, in general, the lack of a regular exercise and nutrition strategy. As such, further research in this area is still being felt. Full article
Show Figures

Figure 1

26 pages, 1711 KiB  
Review
The Effects of Nano-Curcumin Supplementation on Risk Factors for Cardiovascular Disease: A GRADE-Assessed Systematic Review and Meta-Analysis of Clinical Trials
by Damoon Ashtary-Larky, Mahnaz Rezaei Kelishadi, Reza Bagheri, Seyedeh Parisa Moosavian, Alexei Wong, Sayed Hossein Davoodi, Pardis Khalili, Frédéric Dutheil, Katsuhiko Suzuki and Omid Asbaghi
Antioxidants 2021, 10(7), 1015; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox10071015 - 24 Jun 2021
Cited by 45 | Viewed by 6821
Abstract
Previous studies have indicated that curcumin supplementation may be beneficial for cardiometabolic health; however, current evidence regarding the effects of its nanorange formulations, popularly known as “nano-curcumin”, remains unclear. This systematic review and meta-analysis aimed to determine the impact of nano-curcumin supplementation on [...] Read more.
Previous studies have indicated that curcumin supplementation may be beneficial for cardiometabolic health; however, current evidence regarding the effects of its nanorange formulations, popularly known as “nano-curcumin”, remains unclear. This systematic review and meta-analysis aimed to determine the impact of nano-curcumin supplementation on risk factors for cardiovascular disease. PubMed, Scopus, Embase, and ISI web of science were systematically searched up to May 2021 using relevant keywords. All randomized controlled trials (RCTs) investigating the effects of nano-curcumin supplementation on cardiovascular disease risk factors were included. Meta-analysis was performed using random-effects models, and subgroup analysis was performed to explore variations by dose and baseline risk profiles. According to the results of this study, nano-curcumin supplementation was associated with improvements in the glycemic profile by decreasing fasting blood glucose (FBG) (WMD: −18.14 mg/dL; 95% CI: −29.31 to −6.97; p = 0.001), insulin (WMD: −1.21 mg/dL; 95% CI: −1.43 to −1.00; p < 0.001), and HOMA-IR (WMD: −0.28 mg/dL; 95% CI: −0.33 to −0.23; p < 0.001). Interestingly, nano-curcumin supplementation resulted in increases in high-density lipoprotein (HDL) (WMD: 5.77 mg/dL; 95% CI: 2.90 to 8.64; p < 0.001). In terms of other lipid profile markers (triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL)), subgroup analyses showed that nano-curcumin supplementation had more favorable effects on lipid profiles in individuals with dyslipidemia at baseline. Nano-curcumin supplementation also showed favorable anti-inflammatory effects by decreasing C-reactive protein (CRP) (WMD: −1.29 mg/L; 95% CI: −2.15 to −0.44; p = 0.003) and interleukin-6 (IL-6) (WMD: −2.78 mg/dL; 95% CI: −3.76 to −1.79; p < 0.001). Moreover, our results showed the hypotensive effect of nano-curcumin, evidenced by a decrease in systolic blood pressure (SBP). In conclusion, our meta-analysis suggests that nano-curcumin supplementation may decline cardiovascular disease risk by improving glycemic and lipid profiles, inflammation, and SBP. Future large-scale investigations with longer durations are needed to expand on our findings. Full article
Show Figures

Figure 1

20 pages, 2793 KiB  
Review
Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Omid Asbaghi, Matin Ghanavati, Damoon Ashtary-Larky, Reza Bagheri, Mahnaz Rezaei Kelishadi, Behzad Nazarian, Michael Nordvall, Alexei Wong, Frédéric Dutheil, Katsuhiko Suzuki and Amirmansour Alavi Naeini
Antioxidants 2021, 10(6), 871; https://0-doi-org.brum.beds.ac.uk/10.3390/antiox10060871 - 28 May 2021
Cited by 49 | Viewed by 6833
Abstract
(1) Background: This systematic review and meta-analysis aimed to assess the effects of folic acid supplementation on oxidative stress markers. (2) Methods: Online database including PubMed, Scopus, Web of Science, and Cochrane were searched up to January 2021, to retrieve randomized controlled trials [...] Read more.
(1) Background: This systematic review and meta-analysis aimed to assess the effects of folic acid supplementation on oxidative stress markers. (2) Methods: Online database including PubMed, Scopus, Web of Science, and Cochrane were searched up to January 2021, to retrieve randomized controlled trials (RCTs) which examined the effect of folic acid supplementation on markers of oxidative stress. Meta-analyses were carried out using a random-effects model. I2 index was used to evaluate the heterogeneity of RCTs. (3) Results: Among the initial 2322 studies that were identified from electronic databases search, 13 studies involving 1013 participants were eligible. Pooled effect size from 13 studies indicated that folic acid supplementation elicits a significant rise in serum concentrations of glutathione (GSH) (WMD: 219.01 umol/L, 95% CI 59.30 to 378.71, p = 0.007) and total antioxidant capacity (TAC) (WMD: 91.70 umol/L, 95% CI 40.52 to 142.88, p < 0.001) but has no effect on serum concentrations of nitric oxide (NO) (WMD: 2.61 umol/L, 95% CI −3.48 to 8.72, p = 0.400). In addition, folic acid supplementation significantly reduced serum concentrations of malondialdehyde (MDA) (WMD: −0.13 umol/L, 95% CI −0.24 to −0.02, p = 0.020). (4) Conclusions: This meta-analysis study suggests that folic acid supplementation may significantly improve markers within the antioxidative defense system by increasing serum concentrations of GSH and TAC and decreasing serum concentrations of MDA. Full article
Show Figures

Figure 1

Back to TopTop