Bio-Inspired Approaches—a Leverage for Robotics

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Locomotion and Bioinspired Robotics".

Deadline for manuscript submissions: 15 June 2024 | Viewed by 5176

Special Issue Editors


E-Mail Website
Guest Editor
Leonardo de Vinci Engineering School (ESILV), De Vinci Research Center (DVRC), Courbevoie, France
Interests: parallel kinematic mechanisms; tensegrity; design optimization; bio-inspired locomotion; bio-mimetics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
École Centrale Nantes, Nantes Université, IMT Atlantique, CNRS, INRIA, LS2N, UMR 6004, 44300 Nantes, France
Interests: parallel robots; human faitgue analysis; bio-inspiration; ergonomics

E-Mail Website
Guest Editor
Embodied AI and Neurorobotics Laboratory, SDU Biorobotics, The Maersk Mc-Kinney Moller Institute, The University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
Interests: biomechanics; exoskeletons; human-machine interaction; service/inspection robots; embodied AI
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
The Institute of Mouvement Sciences – Etienne-Jules Marey, Aix Marseille University, ISM UMR7287, 13009 Marseille, France
Interests: biorobotics; bio-inspired robotics; optic flow; visual guidance; celestial compass; polarization-based localization; bio-inspired navigation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The field of bio-inspired approaches (also known as biomimetics or biomimicry) is a design approach whereby a product or process is inspired by elements of nature, such as plants or animals. Bio-inspired approaches serve as inspiration and motivation for many engineers and designers in terms of efforts to identify unexpected solutions to problems. These approaches have made great inroads in the aerospace, marine and automotive industries. The domains of bio-inspiration and bio-mimetics have also been the focus of a number of studies in the domain of robotics. There are several examples of their use in the literature, including their implementation in snake-type robots for underwater inspection or in the worm-type systems for industrial pipeline inspections. The objective of this Special Issue is to compile and present the recent advancements in the domain of bio-inspired robotics and their potential applications in industry. This will help researchers from all communities to understand the relevance of bio-inspiration in robotics and serve as a platform for the application of these cutting-edge approaches to other fields.

Topics of interest include (but are not limited to):

  • Bio-inspired robots;
  • Bio-robotics;
  • Bio-mimetics;
  • Soft robotics;
  • Parallel robots;
  • Bio-inspired control;
  • Embodied artificial intelligence;
  • Bio-inspired locomotion;
  • Bio-inspired actuators;
  • Sensors in mechanics;;
  • Legged robotics
  • Stiffness-on-demand structure.

Dr. Swaminath Venkateswaran
Prof. Dr. Damien Chablat
Prof. Dr. Poramate Manoonpong
Dr. Julien R Serres
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioinspiration
  • biomimetics
  • robotics
  • control
  • soft robots

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

35 pages, 9527 KiB  
Article
Bio-Inspired Space Robotic Control Compared to Alternatives
by Timothy Sands
Biomimetics 2024, 9(2), 108; https://0-doi-org.brum.beds.ac.uk/10.3390/biomimetics9020108 - 12 Feb 2024
Viewed by 1083
Abstract
Controlling robots in space with necessarily low material and structural stiffness is quite challenging at least in part due to the resulting very low structural resonant frequencies or natural vibration. The frequencies are sometimes so low that the very act of controlling the [...] Read more.
Controlling robots in space with necessarily low material and structural stiffness is quite challenging at least in part due to the resulting very low structural resonant frequencies or natural vibration. The frequencies are sometimes so low that the very act of controlling the robot with medium or high bandwidth controllers leads to excitation of resonant vibrations in the robot appendages. Biomimetics or biomimicry emulates models, systems, and elements of nature for solving such complex problems. Recent seminal publications have re-introduced the viability of optimal command shaping, and one recent instantiation mimics baseball pitching to propose control of highly flexible space robots. The readership will find a perhaps dizzying array of thirteen decently performing alternatives in the literature but could be left bereft selecting a method(s) deemed to be best suited for a particular application. Bio-inspired control of space robotics is presented in a quite substantial (perhaps not comprehensive) comparison, and the conclusions of this study indicate the three top performing methods based on minimizing control effort (i.e., fuel) usage, tracking error mean, and tracking error deviation, where 96%, 119%, and 80% performance improvement, respectively, are achieved. Full article
(This article belongs to the Special Issue Bio-Inspired Approaches—a Leverage for Robotics)
Show Figures

Figure 1

14 pages, 9480 KiB  
Article
Bioinspired Whisker Sensor for 3D Mapping of Underground Mining Environments
by Virgilio Gomez, Walid Remmas, Miguel Hernando, Asko Ristolainen and Claudio Rossi
Biomimetics 2024, 9(2), 83; https://0-doi-org.brum.beds.ac.uk/10.3390/biomimetics9020083 - 31 Jan 2024
Viewed by 1319
Abstract
Traversing through challenging, unstructured environments, particularly in mining scenarios characterized by dust concentration, darkness, and lack of communication presents formidable obstacles for traditional sensing technologies. Drawing inspiration from naked mole rats, characterized as being skilled subterranean navigators that depend heavily on touch to [...] Read more.
Traversing through challenging, unstructured environments, particularly in mining scenarios characterized by dust concentration, darkness, and lack of communication presents formidable obstacles for traditional sensing technologies. Drawing inspiration from naked mole rats, characterized as being skilled subterranean navigators that depend heavily on touch to navigate their environment, this study introduces a new whisker-sensing disk designed for 3D mapping in unstructured environments. The disk comprises a circular array of 32 whisker sensors, each featuring a slender flexible plastic rod attached to a compliant base housing a 3D Hall-effect sensor. The whisker sensor is modeled using both analytical and data-driven approaches to predict rotation angles based on magnetic field measurements. The validation and comparison of both models are performed by evaluating data from other whisker sensors. Additionally, a series of experiments demonstrates the whisker disk’s capability in performing 3D-mapping tasks, along with successful implementation on diverse robotic platforms, highlighting its future potential for effective 3D mapping in complex and unstructured subterranean environments. Full article
(This article belongs to the Special Issue Bio-Inspired Approaches—a Leverage for Robotics)
Show Figures

Figure 1

16 pages, 10359 KiB  
Article
Low-Cost Angle Sensor for Robotics Applications Using Plastic Optical Fiber Based on Optical Loss Mechanism
by Hyun-Woo Lee, Dae-Hyun Kim and Sangwoo Shin
Biomimetics 2023, 8(8), 567; https://0-doi-org.brum.beds.ac.uk/10.3390/biomimetics8080567 - 25 Nov 2023
Viewed by 1095
Abstract
Robotic systems and the human body consist of numerous joint structures, all of which require precise angle adjustments. At present, encoder, strain gauge, and electrical resistance-based sensors are commonly used for angle measurement. However, these sensors have limitations when used in underwater or [...] Read more.
Robotic systems and the human body consist of numerous joint structures, all of which require precise angle adjustments. At present, encoder, strain gauge, and electrical resistance-based sensors are commonly used for angle measurement. However, these sensors have limitations when used in underwater or in environments with strong electromagnetic waves. Therefore, we have developed an angle sensor based on step-index profile plastic optical fiber (SI-POF), which is cost-effective and highly durable, in this study in order to overcome the limitations of existing angle measurement sensors. To this end, the amount of light loss according to the gab and angle changes that occur when the POF angle sensor is applied to the robot arm was experimentally measured, and based on the results, a simulation of the amount of light loss when the two losses occurred at the same time was conducted. In addition, the performance of the POF angle sensor was evaluated by measuring sensitivity and resolution, and comparative verification with a commonly used encoder was conducted to verify the reliability of sensors in extreme environments, such as those with electromagnetic fields and those that are underwater. Through this, the reliability and practicality of the POF angle sensor were confirmed. The results obtained in this study suggest that POF-based angle sensors can contribute to the development of the biomimetic robot industry as well as ordinary robots, especially in environments where existing sensors are difficult to apply, such as areas with underwater or electromagnetic interference (EMI). Full article
(This article belongs to the Special Issue Bio-Inspired Approaches—a Leverage for Robotics)
Show Figures

Figure 1

29 pages, 18868 KiB  
Article
Multi-Locomotion Design and Implementation of Transverse Ledge Brachiation Robot Inspired by Sport Climbing
by Chi-Ying Lin and Jhe-Ming Lee
Biomimetics 2023, 8(2), 204; https://0-doi-org.brum.beds.ac.uk/10.3390/biomimetics8020204 - 16 May 2023
Viewed by 1360
Abstract
Brachiation robots mimic the locomotion of bio-primates, including continuous brachiation and ricochetal brachiation. The hand-eye coordination involved in ricochetal brachiation is complex. Few studies have integrated both continuous and ricochetal brachiation within the same robot. This study seeks to fill this gap. The [...] Read more.
Brachiation robots mimic the locomotion of bio-primates, including continuous brachiation and ricochetal brachiation. The hand-eye coordination involved in ricochetal brachiation is complex. Few studies have integrated both continuous and ricochetal brachiation within the same robot. This study seeks to fill this gap. The proposed design mimics the transverse movements of sports climbers holding onto horizontal wall ledges. We analyzed the cause-and-effect relationship among the phases of a single locomotion cycle. This led us to apply a parallel four-link posture constraint in model-based simulation. To facilitate smooth coordination and efficient energy accumulation, we derived the required phase switching conditions as well as joint motion trajectories. Based on a two-hand-release design, we propose a new style of transverse ricochetal brachiation. This design better exploits inertial energy storage for enhanced moving distance. Experiments demonstrate the effectiveness of the proposed design. A simple evaluation method based on the final robot posture from the previous locomotion cycle is applied to predict the success of subsequent locomotion cycles. This evaluation method serves as a valuable reference for future research. Full article
(This article belongs to the Special Issue Bio-Inspired Approaches—a Leverage for Robotics)
Show Figures

Figure 1

Back to TopTop