Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

25 pages, 8851 KiB  
Article
Newborns with Favourable Outcomes after Perinatal Asphyxia Have Upregulated Glucose Metabolism-Related Proteins in Plasma
by Ping K. Yip, Michael Bremang, Ian Pike, Vennila Ponnusamy, Adina T. Michael-Titus and Divyen K. Shah
Biomolecules 2023, 13(10), 1471; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13101471 - 30 Sep 2023
Viewed by 1019
Abstract
Hypoxic-ischaemic encephalopathy (HIE) is an important cause of morbidity and mortality globally. Although mild therapeutic hypothermia (TH) may improve outcomes in selected babies, the mechanism of action is not fully understood. A proteomics discovery study was carried out to analyse proteins in the [...] Read more.
Hypoxic-ischaemic encephalopathy (HIE) is an important cause of morbidity and mortality globally. Although mild therapeutic hypothermia (TH) may improve outcomes in selected babies, the mechanism of action is not fully understood. A proteomics discovery study was carried out to analyse proteins in the plasma of newborns with HIE. Proteomic analysis of plasma from 22 newborns with moderate-severe HIE that had initially undergone TH, and relative controls including 10 newborns with mild HIE who did not warrant TH and also cord blood from 10 normal births (non-HIE) were carried out using the isobaric Tandem Mass Tag (TMT®) 10plexTM labelling with tandem mass spectrometry. A total of 7818 unique peptides were identified in all TMT10plexTM samples, translating to 3457 peptides representing 405 proteins, after applying stringent filter criteria. Apart from the unique protein signature from normal cord blood, unsupervised analysis revealed several significantly regulated proteins in the TH-treated moderate-severe HIE group. GO annotation and functional clustering revealed various proteins associated with glucose metabolism: the enzymes fructose-bisphosphate aldolase A, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase 1, phosphoglycerate kinase 1, and pyruvate kinase PKM were upregulated in newborns with favourable (sHIE+) outcomes compared to newborns with unfavourable (sHIE−) outcomes. Those with favourable outcomes had normal MR imaging or mild abnormalities not predictive of adverse outcomes. However, in comparison to mild HIE and the sHIE− groups, the sHIE+ group had the additional glucose metabolism-related enzymes upregulated, including triosephosphate isomerase, α-enolase, 6-phosphogluconate dehydrogenase, transaldolase, and mitochondrial glutathione reductase. In conclusion, our plasma proteomic study demonstrates that TH-treated newborns with favourable outcomes have an upregulation in glucose metabolism. These findings may open new avenues for more effective neuroprotective therapy. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

14 pages, 1609 KiB  
Article
Circulating Small Extracellular Vesicles Reflect the Severity of Myocardial Damage in STEMI Patients
by Marta Zarà, Andrea Baggiano, Patrizia Amadio, Jeness Campodonico, Sebastiano Gili, Andrea Annoni, Gianluca De Dona, Maria Ludovica Carerj, Francesco Cilia, Alberto Formenti, Laura Fusini, Cristina Banfi, Paola Gripari, Calogero Claudio Tedesco, Maria Elisabetta Mancini, Mattia Chiesa, Riccardo Maragna, Francesca Marchetti, Marco Penso, Luigi Tassetti, Alessandra Volpe, Alice Bonomi, Giancarlo Marenzi, Gianluca Pontone and Silvia Stella Barbieriadd Show full author list remove Hide full author list
Biomolecules 2023, 13(10), 1470; https://doi.org/10.3390/biom13101470 - 29 Sep 2023
Cited by 1 | Viewed by 945
Abstract
Circulating small extracellular vesicles (sEVs) contribute to inflammation, coagulation and vascular injury, and have great potential as diagnostic markers of disease. The ability of sEVs to reflect myocardial damage assessed by Cardiac Magnetic Resonance (CMR) in ST-segment elevation myocardial infarction (STEMI) is unknown. [...] Read more.
Circulating small extracellular vesicles (sEVs) contribute to inflammation, coagulation and vascular injury, and have great potential as diagnostic markers of disease. The ability of sEVs to reflect myocardial damage assessed by Cardiac Magnetic Resonance (CMR) in ST-segment elevation myocardial infarction (STEMI) is unknown. To fill this gap, plasma sEVs were isolated from 42 STEMI patients treated by primary percutaneous coronary intervention (pPCI) and evaluated by CMR between days 3 and 6. Nanoparticle tracking analysis showed that sEVs were greater in patients with anterior STEMI (p = 0.0001), with the culprit lesion located in LAD (p = 0.045), and in those who underwent late revascularization (p = 0.038). A smaller sEV size was observed in patients with a low myocardial salvage index (MSI, p = 0.014). Patients with microvascular obstruction (MVO) had smaller sEVs (p < 0.002) and lower expression of the platelet marker CD41–CD61 (p = 0.039). sEV size and CD41–CD61 expression were independent predictors of MVO/MSI (OR [95% CI]: 0.93 [0.87–0.98] and 0.04 [0–0.61], respectively). In conclusion, we provide evidence that the CD41–CD61 expression in sEVs reflects the CMR-assessed ischemic damage after STEMI. This finding paves the way for the development of a new strategy for the timely identification of high-risk patients and their treatment optimization. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers of Diseases)
Show Figures

Figure 1

21 pages, 5889 KiB  
Article
Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants
by Sherifdeen Onigbinde, Cristian D. Gutierrez Reyes, Mojibola Fowowe, Oluwatosin Daramola, Mojgan Atashi, Andrew I. Bennett and Yehia Mechref
Biomolecules 2023, 13(10), 1467; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13101467 - 29 Sep 2023
Cited by 1 | Viewed by 1848
Abstract
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, [...] Read more.
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern. Full article
Show Figures

Figure 1

30 pages, 4569 KiB  
Article
New Insights on Sperm Function in Male Infertility of Unknown Origin: A Multimodal Approach
by Rita I. Pacheco, Maria I. Cristo, Sandra I. Anjo, Andreia F. Silva, Maria Inês Sousa, Renata S. Tavares, Ana Paula Sousa, Teresa Almeida Santos, Mariana Moura-Ramos, Francisco Caramelo, Bruno Manadas, João Ramalho-Santos and Sandra Gomes Amaral
Biomolecules 2023, 13(10), 1462; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13101462 - 27 Sep 2023
Viewed by 1973
Abstract
The global trend of rising (male) infertility is concerning, and the unidentifiable causes in half of the cases, the so-called unknown origin male infertility (UOMI), demands a better understanding and assessment of both external/internal factors and mechanisms potentially involved. In this work, it [...] Read more.
The global trend of rising (male) infertility is concerning, and the unidentifiable causes in half of the cases, the so-called unknown origin male infertility (UOMI), demands a better understanding and assessment of both external/internal factors and mechanisms potentially involved. In this work, it was our aim to obtain new insight on UOMI, specifically on idiopathic (ID) and Unexplained male infertility (UMI), relying on a detailed evaluation of the male gamete, including functional, metabolic and proteomic aspects. For this purpose, 1114 semen samples, from males in couples seeking infertility treatment, were collected at the Reproductive Medicine Unit from the Centro Hospitalar e Universitário de Coimbra (CHUC), from July 2018–July 2022. Based on the couples’ clinical data, seminal/hormonal analysis, and strict eligibility criteria, samples were categorized in 3 groups, control (CTRL), ID and UMI. Lifestyle factors and anxiety/depression symptoms were assessed via survey. Sperm samples were evaluated functionally, mitochondrially and using proteomics. The results of Assisted Reproduction Techniques were assessed whenever available. According to our results, ID patients presented the worst sperm functional profile, while UMI patients were similar to controls. The proteomic analysis revealed 145 differentially expressed proteins, 8 of which were specifically altered in ID and UMI samples. Acrosin (ACRO) and sperm acrosome membrane-associated protein 4 (SACA4) were downregulated in ID patients while laminin subunit beta-2 (LAMB2), mannose 6-phosphate isomerase (MPI), ATP-dependent 6-phosphofructokinase liver type (PFKAL), STAR domain-containing protein 10 (STA10), serotransferrin (TRFE) and exportin-2 (XPO2) were downregulated in UMI patients. Using random forest analysis, SACA4 and LAMB2 were identified as the sperm proteins with a higher chance of distinguishing ID and UMI patients, and their function and expression variation were in accordance with the functional results. No alterations were observed in terms of lifestyle and psychological factors among the 3 groups. These findings obtained in an experimental setting based on 3 well-defined groups of subjects, might help to validate new biomarkers for unknown origin male infertility (ID and UMI) that, in the future, can be used to improve diagnostics and treatments. Full article
(This article belongs to the Collection Feature Papers in Molecular Reproduction)
Show Figures

Figure 1

25 pages, 3209 KiB  
Article
Decanoic Acid Rescues Differences in AMPA-Mediated Calcium Rises in Hippocampal CA1 Astrocytes and Neurons in the 5xFAD Mouse Model of Alzheimer’s Disease
by Mina Abghari, Jenny Thythy Cecilia Mai Vu, Ninna Eckberg, Blanca I. Aldana and Kristi A. Kohlmeier
Biomolecules 2023, 13(10), 1461; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13101461 - 27 Sep 2023
Cited by 1 | Viewed by 1142
Abstract
Alzheimer’s disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aβ42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown [...] Read more.
Alzheimer’s disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aβ42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aβ42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells. Full article
(This article belongs to the Special Issue Role of Amyloid Protein in Neurological Diseases)
Show Figures

Figure 1

17 pages, 1085 KiB  
Article
Neonatal Maternal Separation Induces Sexual Dimorphism in Brain Development: The Influence on Amino Acid Levels and Cognitive Disorders
by Jolanta H. Kotlinska, Pawel Grochecki, Agnieszka Michalak, Anna Pankowska, Katarzyna Kochalska, Piotr Suder, Joanna Ner-Kluza, Dariusz Matosiuk and Marta Marszalek-Grabska
Biomolecules 2023, 13(10), 1449; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13101449 - 26 Sep 2023
Cited by 2 | Viewed by 1271
Abstract
Repeated maternal separation (MS) is a useful experimental model in rodents for studying the long-term influence of early-life stress on brain neurophysiology. In our work, we assessed the effect of repeated MS (postnatal day (PND)1–21, 180 min/day) on the postnatal development of rat [...] Read more.
Repeated maternal separation (MS) is a useful experimental model in rodents for studying the long-term influence of early-life stress on brain neurophysiology. In our work, we assessed the effect of repeated MS (postnatal day (PND)1–21, 180 min/day) on the postnatal development of rat brain regions involved in memory using proton magnetic resonance spectroscopy (1HMRS) for tissue volume and the level of amino acids such as glutamate, aspartate, glutamine, glycine and gamma-aminobutyric acid (GABA) in the hippocampus. We assessed whether these effects are sex dependent. We also use novel object recognition (NOR) task to examine the effect of MS on memory and the effect of ethanol on it. Finally, we attempted to ameliorate postnatal stress-induced memory deficits by using VU-29, a positive allosteric modulator (PAM) of the metabotropic glutamate type 5 (mGlu5) receptor. In males, we noted deficits in the levels of glutamate, glycine and glutamine and increases in GABA in the hippocampus. In addition, the values of perirhinal cortex, prefrontal cortex and insular cortex and CA3 were decreased in these animals. MS females, in contrast, demonstrated significant increase in glutamate levels and decrease in GABA levels in the hippocampus. Here, the CA1 values alone were increased. VU-29 administration ameliorated these cognitive deficits. Thus, MS stress disturbs amino acids levels mainly in the hippocampus of adult male rats, and enhancement of glutamate neurotransmission reversed recognition memory deficits in these animals. Full article
(This article belongs to the Special Issue Glutamate and Glutamate Receptors in Health and Diseases)
Show Figures

Figure 1

18 pages, 7637 KiB  
Article
A Structural Model for the Core Nup358-BicD2 Interface
by James M. Gibson, Xiaoxin Zhao, M. Yusuf Ali, Sozanne R. Solmaz and Chunyu Wang
Biomolecules 2023, 13(10), 1445; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13101445 - 26 Sep 2023
Viewed by 1261
Abstract
Dynein motors facilitate the majority of minus-end-directed transport events on microtubules. The dynein adaptor Bicaudal D2 (BicD2) recruits the dynein machinery to several cellular cargo for transport, including Nup358, which facilitates a nuclear positioning pathway that is essential for the differentiation of distinct [...] Read more.
Dynein motors facilitate the majority of minus-end-directed transport events on microtubules. The dynein adaptor Bicaudal D2 (BicD2) recruits the dynein machinery to several cellular cargo for transport, including Nup358, which facilitates a nuclear positioning pathway that is essential for the differentiation of distinct brain progenitor cells. Previously, we showed that Nup358 forms a “cargo recognition α-helix” upon binding to BicD2; however, the specifics of the BicD2-Nup358 interface are still not well understood. Here, we used AlphaFold2, complemented by two additional docking programs (HADDOCK and ClusPro) as well as mutagenesis, to show that the Nup358 cargo-recognition α-helix binds to BicD2 between residues 747 and 774 in an anti-parallel manner, forming a helical bundle. We identified two intermolecular salt bridges that are important to stabilize the interface. In addition, we uncovered a secondary interface mediated by an intrinsically disordered region of Nup358 that is directly N-terminal to the cargo-recognition α-helix and binds to BicD2 between residues 774 and 800. This is the same BicD2 domain that binds to the competing cargo adapter Rab6, which is important for the transport of Golgi-derived and secretory vesicles. Our results establish a structural basis for cargo recognition and selection by the dynein adapter BicD2, which facilitates transport pathways that are important for brain development. Full article
(This article belongs to the Collection Molecular Biology: Feature Papers)
Show Figures

Figure 1

20 pages, 5133 KiB  
Article
Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss
by Vasiliki Georgia Paplou, Nick M. A. Schubert, Marcel van Tuinen, Sarath Vijayakumar and Sonja J. Pyott
Biomolecules 2023, 13(9), 1429; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091429 - 21 Sep 2023
Viewed by 1367
Abstract
Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study [...] Read more.
Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study examined young (1.5-month-old) and old (24-month-old) C57BL/6 mice, utilizing physiological, histological, and transcriptomic methods. Vestibular sensory-evoked potentials revealed that older mice had reduced wave I amplitudes and delayed wave I latencies, indicating reduced vestibular function. Immunofluorescence and image analysis revealed that older mice exhibited a significant decline in type I sensory hair cell density, particularly in hair cells connected to dimorphic vestibular afferents. An analysis of gene expression in the isolated vestibule revealed the upregulation of immune-related genes and the downregulation of genes associated with ossification and nervous system development. A comparison with the isolated cochlear sensorineural structures showed similar changes in genes related to immune response, chondrocyte differentiation, and myelin formation. These findings suggest that age-related vestibular hypofunction is linked to diminished peripheral vestibular responses, likely due to the loss of a specific subpopulation of hair cells and calyceal afferents. The upregulation of immune- and inflammation-related genes implies that inflammation contributes to these functional and structural changes. Furthermore, the comparison of gene expression between the vestibule and cochlea indicates both shared and distinct mechanisms contributing to age-related vestibular and hearing impairments. Further research is necessary to understand the mechanistic connection between inflammation and age-related balance and hearing disorders and to translate these findings into clinical treatment strategies. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Vestibular Disorders)
Show Figures

Figure 1

16 pages, 750 KiB  
Article
Plasma Brain-Derived Neurotrophic Factor Levels in First-Episode and Recurrent Major Depression and before and after Bright Light Therapy in Treatment-Resistant Depression
by Biljana Kosanovic Rajacic, Marina Sagud, Drazen Begic, Matea Nikolac Perkovic, Anja Dvojkovic, Lana Ganoci and Nela Pivac
Biomolecules 2023, 13(9), 1425; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091425 - 20 Sep 2023
Cited by 1 | Viewed by 1089
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the etiology and treatment response in major depressive disorder (MDD). However, peripheral BDNF concentrations have not been compared across different MDD stages. Bright light therapy (BLT) offers some potential in treatment-resistant depression (TRD), but its effects [...] Read more.
Brain-derived neurotrophic factor (BDNF) is implicated in the etiology and treatment response in major depressive disorder (MDD). However, peripheral BDNF concentrations have not been compared across different MDD stages. Bright light therapy (BLT) offers some potential in treatment-resistant depression (TRD), but its effects on BDNF levels are unknown. This study included a cross-sectional analysis of plasma BDNF concentration in females with TRD, unmedicated MDD patients, and healthy controls (HC), and measurements of longitudinal BLT effects on plasma BDNF levels in TRD patients. The present study included 55 drug-naïve, first-episode patients, 25 drug-free recurrent-episode MDD patients, 71 HC participants, and 54 TRD patients. Patients were rated by Hamilton Depression Rating Scale (HAMD)-17 and the Montgomery–Åsberg Depression Rating Scale (MADRS). Patients with TRD received BLT during 4 weeks. The total HAMD-17 and MADRS scores decreased following BLT. All patient groups had lower plasma BDNF than HC, but BDNF levels did not differ between first- and recurrent-episode BDNF patients and TRD patients before or after BLT. However, responders and remitters to BLT had higher post-treatment plasma BDNF concentrations than patients who did not achieve response or remission. The changes in plasma BDNF levels may be candidates for biomarkers of treatment response to BLT in TRD patients. Full article
(This article belongs to the Special Issue Brain-Derived Neurotrophic Factor in Health and Diseases)
Show Figures

Figure 1

15 pages, 2277 KiB  
Article
Conservation of Glutathione Transferase mRNA and Protein Sequences Similar to Human and Horse Alpha Class GST A3-3 across Dog, Goat, and Opossum Species
by Shawna M. Hubert, Paul B. Samollow, Helena Lindström, Bengt Mannervik and Nancy H. Ing
Biomolecules 2023, 13(9), 1420; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091420 - 20 Sep 2023
Cited by 2 | Viewed by 1026
Abstract
The glutathione transferase A3-3 (GST A3-3) homodimeric enzyme is the most efficient enzyme that catalyzes isomerization of the precursors of testosterone, estradiol, and progesterone in the gonads of humans and horses. However, the presence of GST A3-3 orthologs with equally high ketosteroid isomerase [...] Read more.
The glutathione transferase A3-3 (GST A3-3) homodimeric enzyme is the most efficient enzyme that catalyzes isomerization of the precursors of testosterone, estradiol, and progesterone in the gonads of humans and horses. However, the presence of GST A3-3 orthologs with equally high ketosteroid isomerase activity has not been verified in other mammalian species, even though pig and cattle homologs have been cloned and studied. Identifying GSTA3 genes is a challenge because of multiple GSTA gene duplications (e.g., 12 in the human genome); consequently, the GSTA3 gene is not annotated in most genomes. To improve our understanding of GSTA3 gene products and their functions across diverse mammalian species, we cloned homologs of the horse and human GSTA3 mRNAs from the testes of a dog, goat, and gray short-tailed opossum, the genomes of which all currently lack GSTA3 gene annotations. The resultant novel GSTA3 mRNA and inferred protein sequences had a high level of conservation with human GSTA3 mRNA and protein sequences (≥70% and ≥64% identities, respectively). Sequence conservation was also apparent for the 12 residues of the “H-site” in the 222 amino acid GSTA3 protein that is known to interact with the steroid substrates. Modeling predicted that the dog GSTA3-3 may be a more active ketosteroid isomerase than the corresponding goat or opossum enzymes. However, expression of the GSTA3 gene was higher in liver than in other dog tissue. Our results improve understanding of the active sites of mammalian GST A3-3 enzymes, inhibitors of which might be useful for reducing steroidogenesis for medical purposes, such as fertility control or treatment of steroid-dependent diseases. Full article
(This article belongs to the Special Issue Versatility of Glutathione Transferase Proteins)
Show Figures

Figure 1

17 pages, 6318 KiB  
Article
N-Glycome Profile of the Spike Protein S1: Systemic and Comparative Analysis from Eleven Variants of SARS-CoV-2
by Cristian D. Gutierrez Reyes, Sherifdeen Onigbinde, Akeem Sanni, Andrew I. Bennett, Peilin Jiang, Oluwatosin Daramola, Parisa Ahmadi, Mojibola Fowowe, Mojgan Atashi, Vishal Sandilya, Md Abdul Hakim and Yehia Mechref
Biomolecules 2023, 13(9), 1421; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091421 - 20 Sep 2023
Cited by 1 | Viewed by 1291
Abstract
The SARS-CoV-2 virus rapidly spread worldwide, threatening public health. Since it emerged, the scientific community has been engaged in the development of effective therapeutics and vaccines. The subunit S1 in the spike protein of SARS-CoV-2 mediates the viral entry into the host and [...] Read more.
The SARS-CoV-2 virus rapidly spread worldwide, threatening public health. Since it emerged, the scientific community has been engaged in the development of effective therapeutics and vaccines. The subunit S1 in the spike protein of SARS-CoV-2 mediates the viral entry into the host and is therefore one of the major research targets. The S1 protein is extensively glycosylated, and there is compelling evidence that glycans protect the virus’ active site from the human defense system. Therefore, investigation of the S1 protein glycome alterations in the different virus variants will provide a view of the glycan evolution and its relationship with the virus pathogenesis. In this study, we explored the N-glycosylation expression of the S1 protein for eleven SARS-CoV-2 variants: five variants of concern (VOC), including alpha, beta, gamma, delta, and omicron, and six variants of interest (VOI), including epsilon, eta, iota, lambda, kappa, and mu. The results showed significant differences in the N-glycome abundance of all variants. The N-glycome of the VOC showed a large increase in the abundance of sialofucosylated glycans, with the greatest abundance in the omicron variant. In contrast, the results showed a large abundance of fucosylated glycans for most of the VOI. Two glycan compositions, GlcNAc4,Hex5,Fuc,NeuAc (4-5-1-1) and GlcNAc6,Hex8,Fuc,NeuAc (6-8-1-1), were the most abundant structures across all variants. We believe that our data will contribute to understanding the S1 protein’s structural differences between SARS-CoV-2 mutations. Full article
(This article belongs to the Section Biomacromolecules: Carbohydrates)
Show Figures

Figure 1

15 pages, 6689 KiB  
Article
The Effects of an Osteoarthritic Joint Environment on ACL Damage and Degeneration: A Yucatan Miniature Pig Model
by Elias Schwartz, Kenny Chang, Changqi Sun, Fei Zhang, Guoxuan Peng, Brett Owens and Lei Wei
Biomolecules 2023, 13(9), 1416; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091416 - 20 Sep 2023
Viewed by 904
Abstract
Posttraumatic osteoarthritis (PTOA) arises secondary to joint injuries and is characteristically driven by inflammatory mediators. PTOA is often studied in the setting of ACL tears. However, a wide range of other injuries also lead to PTOA pathogenesis. The purpose of this study was [...] Read more.
Posttraumatic osteoarthritis (PTOA) arises secondary to joint injuries and is characteristically driven by inflammatory mediators. PTOA is often studied in the setting of ACL tears. However, a wide range of other injuries also lead to PTOA pathogenesis. The purpose of this study was to characterize the morphological changes in the uninjured ACL in a PTOA inflammatory environment. We retrospectively reviewed 14 ACLs from 13 Yucatan minipigs, 7 of which had undergone our modified intra-articular drilling (mIAD) procedure, which induced PTOA through inflammatory mediators. Seven ACLs were harvested from mIAD minipigs (PTOA) and seven ACLs from control minipigs with no cartilage degeneration (non-PTOA). ACL degeneration was evaluated using histological scoring systems. IL-1β, NF-κB, and TNF-α mRNA expression in the synovium was measured using qRT-PCR. PTOA minipigs demonstrated significant ACL degeneration, marked by a disorganized extracellular matrix, increased vascularity, and changes in cellular shape, density, and alignment. Furthermore, IL-1β, NF-κB, and TNF-α expression was elevated in the synovium of PTOA minipigs. These findings demonstrate the potential for ACL degeneration in a PTOA environment and emphasize the need for anti-inflammatory disease-modifying therapies following joint injury. Full article
(This article belongs to the Special Issue Regulation of Cytokine Signaling in Health and Disease)
Show Figures

Figure 1

16 pages, 2055 KiB  
Article
Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells
by Sophie Morin, Andréa Tremblay, Elizabeth Dumais, Pierre Julien, Nicolas Flamand and Roxane Pouliot
Biomolecules 2023, 13(9), 1413; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091413 - 19 Sep 2023
Cited by 1 | Viewed by 1366
Abstract
Psoriasis is a skin disease characterized by epidermal hyperplasia and an inappropriate activation of the adaptive immunity. A dysregulation of the skin’s lipid mediators is reported in the disease with a predominance of the inflammatory cascade derived from n-6 polyunsaturated fatty acids (n-6 [...] Read more.
Psoriasis is a skin disease characterized by epidermal hyperplasia and an inappropriate activation of the adaptive immunity. A dysregulation of the skin’s lipid mediators is reported in the disease with a predominance of the inflammatory cascade derived from n-6 polyunsaturated fatty acids (n-6 PUFAs). Bioactive lipid mediators derived from arachidonic acid (AA) are involved in the inflammatory functions of T cells in psoriasis, whereas n-3 PUFAs’ derivatives are anti-inflammatory metabolites. Here, we sought to evaluate the influence of a supplementation of the culture media with eicosapentaenoic acid (EPA) on the lipid profile of a psoriatic skin model produced with polarized T cells. Healthy and psoriatic skin substitutes were produced following the auto-assembly technique. Psoriatic skin substitutes produced with or without T cells presented increased epidermal and dermal linolenic acid (LA) and AA levels. N-6 PUFA lipid mediators were strongly measured in psoriatic substitutes, namely, 13-hydroxyoctadecadienoic acid (13-HODE), prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). The added EPA elevated the amounts of EPA, n-3 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in the epidermal and dermal phospholipids. The EPA supplementation balanced the production of epidermal lipid mediators, with an increase in prostaglandin E3 (PGE3), 12-hydroxyeicosapentaenoic acid (12-HEPE) and N-eicosapentaenoyl-ethanolamine (EPEA) levels. These findings show that EPA modulates the lipid composition of psoriatic skin substitutes by encouraging the return to a cutaneous homeostatic state. Full article
(This article belongs to the Special Issue Lipid Metabolism in Health and Disease 2023)
Show Figures

Figure 1

14 pages, 2356 KiB  
Article
Phytocannabinoids Reduce Seizures in Larval Zebrafish and Affect Endocannabinoid Gene Expression
by Roshni Kollipara, Evan Langille, Cameron Tobin and Curtis R. French
Biomolecules 2023, 13(9), 1398; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091398 - 16 Sep 2023
Cited by 1 | Viewed by 1083
Abstract
Cannabis has demonstrated anticonvulsant properties, and about thirty percent of epileptic patients do not have satisfactory seizure management with standard treatment and could potentially benefit from cannabis-based intervention. Here, we report the use of cannabinoids to treat pentylenetetrazol (PTZ)-induced convulsions in a zebrafish [...] Read more.
Cannabis has demonstrated anticonvulsant properties, and about thirty percent of epileptic patients do not have satisfactory seizure management with standard treatment and could potentially benefit from cannabis-based intervention. Here, we report the use of cannabinoids to treat pentylenetetrazol (PTZ)-induced convulsions in a zebrafish model, their effect on gene expression, and a simple assay for assessing their uptake in zebrafish tissues. Using an optimized behavioral assay, we show that cannabidiol (CBD) and cannabichromene (CBC) and cannabinol (CBN) are effective at reducing seizures at low doses, with little evidence of sedation, and our novel HPLC assay indicates that CBC is effective with the lowest accumulation in larval tissues. All cannabinoids tested were effective at higher concentrations. Pharmacological manipulation of potential receptors demonstrates that Gpr55 partially mediates the anticonvulsant effects of CBD. Treatment of zebrafish larvae with endocannabinoids, such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA), altered larvae movement, and the expression of genes that regulate their metabolism was affected by phytocannabinoid treatment, highlighting the possibility that changes to endocannabinoid levels may represent one facet of the anticonvulsant effect of phytocannabinoids. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

17 pages, 2847 KiB  
Article
Patients with Systemic Juvenile Idiopathic Arthritis (SJIA) Show Differences in Autoantibody Signatures Based on Disease Activity
by Julie Krainer, Michaela Hendling, Sandra Siebenhandl, Sabrina Fuehner, Christoph Kessel, Emely Verweyen, Klemens Vierlinger, Dirk Foell, Silvia Schönthaler and Andreas Weinhäusel
Biomolecules 2023, 13(9), 1392; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091392 - 15 Sep 2023
Viewed by 2927
Abstract
Systemic juvenile idiopathic arthritis (SJIA) is a severe rheumatic disease in children. It is a subgroup of juvenile idiopathic arthritis (JIA; MIM #604302), which is the most common rheumatic disease in children. The diagnosis of SJIA often comes with a significant delay, and [...] Read more.
Systemic juvenile idiopathic arthritis (SJIA) is a severe rheumatic disease in children. It is a subgroup of juvenile idiopathic arthritis (JIA; MIM #604302), which is the most common rheumatic disease in children. The diagnosis of SJIA often comes with a significant delay, and the classification between autoinflammatory and autoimmune disease is still discussed. In this study, we analyzed the immunological responses of patients with SJIA, using human proteome arrays presenting immobilized recombinantly expressed human proteins, to analyze the involvement of autoantibodies in SJIA. Results from group comparisons show several differentially reactive antigens involved in inflammatory processes. Intriguingly, many of the identified antigens had a high reactivity against proteins involved in the NF-κB pathway, and it is also notable that many of the detected DIRAGs are described as dysregulated in rheumatoid arthritis. Our data highlight novel proteins and pathways potentially dysregulated in SJIA and offer a unique approach to unraveling the underlying disease pathogenesis in this chronic arthropathy. Full article
(This article belongs to the Special Issue Novel Insights into the Role of Autoantibodies in Diseases)
Show Figures

Figure 1

14 pages, 1815 KiB  
Article
Changes in Expression in BMP2 and Two Closely Related Genes in Guinea Pig Retinal Pigment Epithelium during Induction and Recovery from Myopia
by So Goto, Yan Zhang, Sonal Aswin Vyas, Qiurong Zhu and Christine F. Wildsoet
Biomolecules 2023, 13(9), 1373; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091373 - 11 Sep 2023
Viewed by 1057
Abstract
Purpose: We previously reported differential gene expression of the bone morphogenetic protein 2 (Bmp2) in guinea pig retinal pigment epithelium (RPE) after 1 day of hyperopic defocus, imposed with a negative contact lens (CLs). The study reported here sought to obtain [...] Read more.
Purpose: We previously reported differential gene expression of the bone morphogenetic protein 2 (Bmp2) in guinea pig retinal pigment epithelium (RPE) after 1 day of hyperopic defocus, imposed with a negative contact lens (CLs). The study reported here sought to obtain insights into the temporal profiles of gene expression changes in Bmp2, as well as those of two closely related genes, the inhibitor of DNA binding 3 (Id3) and Noggin (Nog), both during myopia induction and when the CL treatment was terminated to allow recovery from induced myopia. Methods: To induce myopia, 2-week-old pigmented guinea pigs (New Zealand strain, n = 8) wore monocular −10 diopter (D) rigid gas-permeable (RGP) CLs for one week, while the other eye served as a control. Ocular measurements were made at baseline, 3 days, and 7 days after the initiation of CL wear, with treatment then being terminated and additional measurements being made after a further 3 days, 1 week, and 2 weeks. Spherical equivalent refractive errors (SERs), axial length (AL), choroidal thickness (ChT), and scleral thickness (ScT) data were collected using retinoscopy, optical biometry (Lenstar), and spectral domain optical coherence tomography (SD-OCT), respectively. RPE samples were collected from both eyes of the guinea pigs after either 1 day or 1 week of CL wear or 1 day or 2 weeks after its termination, and RNA was subsequently isolated and subjected to quantitative real-time PCR (qRT-PCR) analyses, targeting the Bmp2, Id3, and Nog genes. Results: Mean interocular differences (treated—control) in AL and SER were significantly different from baseline after 3 and 7 days of CL wear, consistent with induced myopia (p < 0.001 for all cases). Termination of CL wear resulted in the normalization (i.e., recovery) of the ALs and SERs of the treated eyes within 7 days, and the earlier significant ChT thinning with CL wear (p = 0004, day 7) was replaced by rapid thickening, which remained significant on day 7 (p = 0.009) but had normalized by day 14. The ChT changes were much smaller in magnitude than the AL changes in both phases. Interocular differences in the ScT showed no significant changes. The Bmp2 and Id3 genes were both significantly downregulated with CL wear, after 1 day (p = 0.012 and 0.016) and 7 days (p = 0.002 and 0.005), while Bmp2 gene expression increased and Nog gene expression decreased after the termination of CL wear, albeit transiently, which was significant on 1 day (p = 0.004 and 0.04) but not 2 weeks later. No change in Id3 gene expression was observed over the latter period. Conclusions: The above patterns of myopia induction and recovery validate this negative RGP-CL model as an alternative to traditional spectacle lens models for guinea pigs. The defocus-driven, sign-dependent changes in the expression of the Bmp2 gene in guinea pig RPE are consistent with observations in chicks and demonstrate the important role of BMP2 in eye growth regulation. Full article
(This article belongs to the Special Issue New Insights into the Molecular Mechanisms of Myopia and Glaucoma)
Show Figures

Figure 1

17 pages, 2229 KiB  
Article
The Properties and Domain Requirements for Phase Separation of the Sup35 Prion Protein In Vivo
by Bryan Grimes, Walter Jacob, Amanda R. Liberman, Nathan Kim, Xiaohong Zhao, Daniel C. Masison and Lois E. Greene
Biomolecules 2023, 13(9), 1370; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091370 - 10 Sep 2023
Cited by 1 | Viewed by 1422
Abstract
The Sup35 prion protein of budding yeast has been reported to undergo phase separation to form liquid droplets both at low pH in vitro and when energy depletion decreases the intracellular pH in vivo. It also has been shown using purified proteins that [...] Read more.
The Sup35 prion protein of budding yeast has been reported to undergo phase separation to form liquid droplets both at low pH in vitro and when energy depletion decreases the intracellular pH in vivo. It also has been shown using purified proteins that this phase separation is driven by the prion domain of Sup35 and does not re-quire its C-terminal domain. In contrast, we now find that a Sup35 fragment consisting of only the N-terminal prion domain and the M-domain does not phase separate in vivo; this phase separation of Sup35 requires the C-terminal domain, which binds Sup45 to form the translation termination complex. The phase-separated Sup35 not only colocalizes with Sup45 but also with Pub1, a stress granule marker protein. In addition, like stress granules, phase separation of Sup35 appears to require mRNA since cycloheximide treatment, which inhibits mRNA release from ribosomes, prevents phase separation of Sup35. Finally, unlike Sup35 in vitro, Sup35 condensates do not disassemble in vivo when the intracellular pH is increased. These results suggest that, in energy-depleted cells, Sup35 forms supramolecular assemblies that differ from the Sup35 liquid droplets that form in vitro. Full article
(This article belongs to the Section Molecular Structure and Dynamics)
Show Figures

Figure 1

17 pages, 2907 KiB  
Article
Structure–Activity Relationships of Low Molecular Weight Alginate Oligosaccharide Therapy against Pseudomonas aeruginosa
by Manon F. Pritchard, Lydia C. Powell, Jennifer Y. M. Adams, Georgina Menzies, Saira Khan, Anne Tøndervik, Håvard Sletta, Olav Aarstad, Gudmund Skjåk-Bræk, Stephen McKenna, Niklaas J. Buurma, Damian J. J. Farnell, Philip D. Rye, Katja E. Hill and David W. Thomas
Biomolecules 2023, 13(9), 1366; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091366 - 08 Sep 2023
Viewed by 1229
Abstract
Low molecular weight alginate oligosaccharides have been shown to exhibit anti-microbial activity against a range of multi-drug resistant bacteria, including Pseudomonas aeruginosa. Previous studies suggested that the disruption of calcium (Ca2+)–DNA binding within bacterial biofilms and dysregulation of quorum sensing [...] Read more.
Low molecular weight alginate oligosaccharides have been shown to exhibit anti-microbial activity against a range of multi-drug resistant bacteria, including Pseudomonas aeruginosa. Previous studies suggested that the disruption of calcium (Ca2+)–DNA binding within bacterial biofilms and dysregulation of quorum sensing (QS) were key factors in these observed effects. To further investigate the contribution of Ca2+ binding, G-block (OligoG) and M-block alginate oligosaccharides (OligoM) with comparable average size DPn 19 but contrasting Ca2+ binding properties were prepared. Fourier-transform infrared spectroscopy demonstrated prolonged binding of alginate oligosaccharides to the pseudomonal cell membrane even after hydrodynamic shear treatment. Molecular dynamics simulations and isothermal titration calorimetry revealed that OligoG exhibited stronger interactions with bacterial LPS than OligoM, although this difference was not mirrored by differential reductions in bacterial growth. While confocal laser scanning microscopy showed that both agents demonstrated similar dose-dependent reductions in biofilm formation, OligoG exhibited a stronger QS inhibitory effect and increased potentiation of the antibiotic azithromycin in minimum inhibitory concentration and biofilm assays. This study demonstrates that the anti-microbial effects of alginate oligosaccharides are not purely influenced by Ca2+-dependent processes but also by electrostatic interactions that are common to both G-block and M-block structures. Full article
Show Figures

Figure 1

17 pages, 3685 KiB  
Article
AAV-Mediated Targeting of the Activin A-ACVR1R206H Signaling in Fibrodysplasia Ossificans Progressiva
by Yeon-Suk Yang, Chujiao Lin, Hong Ma, Jun Xie, Frederick S. Kaplan, Guangping Gao and Jae-Hyuck Shim
Biomolecules 2023, 13(9), 1364; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091364 - 08 Sep 2023
Cited by 4 | Viewed by 1788
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by progressive disabling heterotopic ossification (HO) at extra-skeletal sites. Here, we developed adeno-associated virus (AAV)-based gene therapy that suppresses trauma-induced HO in FOP mice harboring a heterozygous allele of human ACVR1R206H ( [...] Read more.
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by progressive disabling heterotopic ossification (HO) at extra-skeletal sites. Here, we developed adeno-associated virus (AAV)-based gene therapy that suppresses trauma-induced HO in FOP mice harboring a heterozygous allele of human ACVR1R206H (Acvr1R206H/+) while limiting the expression in non-skeletal organs such as the brain, heart, lung, liver, and kidney. AAV gene therapy carrying the combination of codon-optimized human ACVR1 (ACVR1opt) and artificial miRNAs targeting Activin A and its receptor ACVR1R206H ablated the aberrant activation of BMP-Smad1/5 signaling and the osteogenic differentiation of Acvr1R206H/+ skeletal progenitors. The local delivery of AAV gene therapy to HO-causing cells in the skeletal muscle resulted in a significant decrease in endochondral bone formation in Acvr1R206H/+ mice. These mice showed little to no expression in a major AAV-targeted organ, the liver, due to liver-abundant miR-122-mediated repression. Thus, AAV gene therapy is a promising therapeutic strategy to explore in suppressing HO in FOP. Full article
Show Figures

Figure 1

20 pages, 2953 KiB  
Article
The Potential Mechanisms behind Loperamide-Induced Cardiac Arrhythmias Associated with Human Abuse and Extreme Overdose
by Hua Rong Lu, Bruce P. Damiano, Mohamed Kreir, Jutta Rohrbacher, Henk van der Linde, Tamerlan Saidov, Ard Teisman and David J. Gallacher
Biomolecules 2023, 13(9), 1355; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091355 - 06 Sep 2023
Cited by 1 | Viewed by 2131
Abstract
Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the [...] Read more.
Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity. Loperamide slowed conduction (QRS-duration) starting at 0.3 µM [~1200-fold (×) its human Free Therapeutic Plasma Concentration; FTPC] and reduced the QT-interval and caused cardiac arrhythmias starting at 3 µM (~12,000× FTPC) in an isolated rabbit ventricular-wedge model. Loperamide also slowed conduction and elicited Type II/III A-V block in anesthetized guinea pigs at overdose exposures of 879× and 3802× FTPC. In ion-channel studies, loperamide inhibited hERG (IKr), INa, and ICa currents with IC50 values of 0.390 µM, 0.526 µM, and 4.091 µM, respectively (i.e., >1560× FTPC). Additionally, in silico trials in human ventricular action potential models based on these IC50s confirmed that loperamide has large safety margins at therapeutic exposures (≤600× FTPC) and confirmed repolarization abnormalities in the case of extreme doses of loperamide. The studies confirmed the large safety margin for the therapeutic use of loperamide but revealed that at the extreme exposure levels observed in human overdose, loperamide can cause a combination of conduction slowing and alterations in repolarization time, resulting in cardiac proarrhythmia. Loperamide’s inhibition of the INa channel and hERG-mediated IKr are the most likely basis for this cardiac electrophysiological toxicity at overdose exposures. The cardiac toxic effects of loperamide at the overdoses could be aggravated by co-medication with other drug(s) causing ion channel inhibition. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

22 pages, 26292 KiB  
Article
ABCD1 Transporter Deficiency Results in Altered Cholesterol Homeostasis
by Agnieszka Buda, Sonja Forss-Petter, Rong Hua, Yorrick Jaspers, Mark Lassnig, Petra Waidhofer-Söllner, Stephan Kemp, Peter Kim, Isabelle Weinhofer and Johannes Berger
Biomolecules 2023, 13(9), 1333; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091333 - 31 Aug 2023
Cited by 3 | Viewed by 1719
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, [...] Read more.
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD. Full article
Show Figures

Figure 1

21 pages, 3006 KiB  
Article
Neuroactive Steroid–Gut Microbiota Interaction in T2DM Diabetic Encephalopathy
by Silvia Diviccaro, Lucia Cioffi, Rocco Piazza, Donatella Caruso, Roberto Cosimo Melcangi and Silvia Giatti
Biomolecules 2023, 13(9), 1325; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091325 - 29 Aug 2023
Viewed by 1057
Abstract
The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia. Although several factors have been proposed as possible contributors, how neuroactive steroids [...] Read more.
The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia. Although several factors have been proposed as possible contributors, how neuroactive steroids and the gut microbiome impact brain pathophysiology in T2DM remain unexplored. On this basis, in male Zucker diabetic fatty (ZDF) rats, we studied whether T2DM alters memory abilities using the novel object recognition test, neuroactive steroid levels by liquid chromatography–tandem mass spectrometry, hippocampal parameters using molecular assessments, and gut microbiome composition using 16S next-generation sequencing. Results obtained reveal that T2DM worsens memory abilities and that these are correlated with increased levels of corticosterone in plasma and with a decrease in allopregnanolone in the hippocampus, where neuroinflammation, oxidative stress, and mitochondrial dysfunction were reported. Interestingly, our analysis highlighted a small group of taxa strictly related to both memory impairment and neuroactive steroid levels. Overall, the data underline an interesting role for allopregnanolone and microbiota that may represent candidates for the development of therapeutic strategies. Full article
(This article belongs to the Special Issue Role of Neuroactive Steroids in Health and Disease)
Show Figures

Figure 1

15 pages, 2820 KiB  
Article
Chronic Aripiprazole and Trazodone Polypharmacy Effects on Systemic and Brain Cholesterol Biosynthesis
by Zeljka Korade, Allison Anderson, Marta Balog, Keri A. Tallman, Ned A. Porter and Karoly Mirnics
Biomolecules 2023, 13(9), 1321; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091321 - 28 Aug 2023
Cited by 1 | Viewed by 2358
Abstract
The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both [...] Read more.
The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both of these compounds are inhibitors of the 7-dehydrocholesterol reductase (DHCR7) enzyme. To evaluate the systemic and nervous system distribution of ARI and TRZ and their effects on cholesterol biosynthesis, adult mice were treated with both ARI and TRZ for 21 days. The parent drugs, their metabolites, and sterols were analyzed in the brain and various organs of mice using LC-MS/MS. The analyses revealed that ARI, TRZ, and their metabolites were readily detectable in the brain and organs, leading to changes in the sterol profile. The levels of medications, their metabolites, and sterols differed across tissues with notable sex differences. Female mice showed higher turnover of ARI and more cholesterol clearance in the brain, with several post-lanosterol intermediates significantly altered. In addition to interfering with sterol biosynthesis, ARI and TRZ exposure led to decreased ionized calcium-binding adaptor molecule 1 (IBA1) and increased DHCR7 protein expression in the cortex. Changes in sterol profile have been also identified in the spleen, liver, and serum, underscoring the systemic effect of ARI and TRZ on sterol biosynthesis. Long-term use of concurrent ARI and TRZ warrants further studies to fully evaluate the lasting consequences of altered sterol biosynthesis on the whole body. Full article
(This article belongs to the Special Issue Brain Sterols: Biosynthesis and Physiology in Health and Disease)
Show Figures

Figure 1

18 pages, 4099 KiB  
Article
Pegylated Liposomal Alendronate Biodistribution, Immune Modulation, and Tumor Growth Inhibition in a Murine Melanoma Model
by Md. Rakibul Islam, Jalpa Patel, Patricia Ines Back, Hilary Shmeeda, Raja Reddy Kallem, Claire Shudde, Maciej Markiewski, William C. Putnam, Alberto A. Gabizon and Ninh M. La-Beck
Biomolecules 2023, 13(9), 1309; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091309 - 26 Aug 2023
Cited by 1 | Viewed by 1664
Abstract
While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in [...] Read more.
While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in vitro, with potential as an immunotherapy if its low systemic bioavailability can be addressed. We repurposed alendronate in a non-leaky and long-circulating liposomal carrier similar to that of the clinically approved pegylated liposomal doxorubicin to facilitate rapid clinical translation. Here, we tested liposomal alendronate (PLA) as an immunotherapeutic agent for cancer in comparison with a standard of care immunotherapy, a PD-1 immune checkpoint inhibitor. We showed that the PLA induced bone marrow-derived murine non-activated macrophages and M2-macrophages to polarize towards an M1-functionality, as evidenced by gene expression, cytokine secretion, and lipidomic profiles. Free alendronate had negligible effects, indicating that liposome encapsulation is necessary for the modulation of macrophage activity. In vivo, the PLA showed significant accumulation in tumor and tumor-draining lymph nodes, sites of tumor immunosuppression that are targets of immunotherapy. The PLA remodeled the tumor microenvironment towards a less immunosuppressive milieu, as indicated by a decrease in TAM and helper T cells, and inhibited the growth of established tumors in the B16-OVA melanoma model. The improved bioavailability and the beneficial effects of PLA on macrophages suggest its potential application as immunotherapy that could synergize with T-cell-targeted therapies and chemotherapies to induce immunogenic cell death. PLA warrants further clinical development, and these clinical trials should incorporate tumor and blood biomarkers or immunophenotyping studies to verify the anti-immunosuppressive effect of PLA in humans. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Figure 1

17 pages, 2326 KiB  
Article
Peroxisomal NAD(H) Homeostasis in the Yeast Debaryomyces hansenii Depends on Two Redox Shuttles and the NAD+ Carrier, Pmp47
by Selva Turkolmez, Serhii Chornyi, Sondos Alhajouj, Lodewijk IJlst, Hans R. Waterham, Phil J. Mitchell, Ewald H. Hettema and Carlo W. T. van Roermund
Biomolecules 2023, 13(9), 1294; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13091294 - 24 Aug 2023
Cited by 2 | Viewed by 1420
Abstract
Debaryomyces hansenii is considered an unconventional yeast with a strong biotechnological potential, which can produce and store high amounts of lipids. However, relatively little is known about its lipid metabolism, and genetic tools for this yeast have been limited. The aim of this [...] Read more.
Debaryomyces hansenii is considered an unconventional yeast with a strong biotechnological potential, which can produce and store high amounts of lipids. However, relatively little is known about its lipid metabolism, and genetic tools for this yeast have been limited. The aim of this study was to explore the fatty acid β-oxidation pathway in D. hansenii. To this end, we employed recently developed methods to generate multiple gene deletions and tag open reading frames with GFP in their chromosomal context in this yeast. We found that, similar as in other yeasts, the β-oxidation of fatty acids in D. hansenii was restricted to peroxisomes. We report a series of experiments in D. hansenii and the well-studied yeast Saccharomyces cerevisiae that show that the homeostasis of NAD+ in D. hansenii peroxisomes is dependent upon the peroxisomal membrane protein Pmp47 and two peroxisomal dehydrogenases, Mdh3 and Gpd1, which both export reducing equivalents produced during β-oxidation to the cytosol. Pmp47 is the first identified NAD+ carrier in yeast peroxisomes. Full article
Show Figures

Figure 1

16 pages, 4982 KiB  
Article
Hybrid Material Based on Vaccinium myrtillus L. Extract and Gold Nanoparticles Reduces Oxidative Stress and Inflammation in Hepatic Stellate Cells Exposed to TGF-β
by Mara Filip, Ioana Baldea, Luminita David, Bianca Moldovan, Gabriel Cristian Flontas, Sergiu Macavei, Dana Maria Muntean, Nicoleta Decea, Adrian Bogdan Tigu and Simona Valeria Clichici
Biomolecules 2023, 13(8), 1271; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081271 - 20 Aug 2023
Cited by 2 | Viewed by 1063
Abstract
(1) Background: The study aimed to investigate the impact of gold nanoparticles capped with Cornus sanguinea (NPCS) and mixed with a fruit extract (Vaccinum myrtillus L.—VL) on human hepatic stellate cells (LX-2) exposed to TGF-β. (2) Methods: NPCS were characterized by UV-Vis, [...] Read more.
(1) Background: The study aimed to investigate the impact of gold nanoparticles capped with Cornus sanguinea (NPCS) and mixed with a fruit extract (Vaccinum myrtillus L.—VL) on human hepatic stellate cells (LX-2) exposed to TGF-β. (2) Methods: NPCS were characterized by UV-Vis, transmission electron microscopy (TEM), zeta potential measurement, X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX). The cytotoxic effects of VL, NPCS and of the hybrid compounds obtained by mixing the two components in variable proportions (NPCS-VL) were assessed. LDH activity, MDA levels, secretion of inflammation markers, the expression of fibrogenesis markers and collagen I synthesis were estimated after treating the cells with a mixture of 25:25 μg/mL NPCS and VL. (3) Results: TEM analysis showed that NPCS had spherical morphology and homogenous distribution, while their formation and elemental composition were confirmed by XRD and EDX analysis. TGF-β increased cell membrane damage as well as secretion of IL-1β, IL-1α and TLR4. It also amplified the expression of α-SMA and type III collagen and induced collagen I deposition. NPCS administration reduced the inflammation caused by TGF-β and downregulated α-SMA expression. VL diminished LDH activity and the secretion of proinflammatory cytokines. The NPCS-VL mixture maintained IL-1β, IL-1α, TLR4 and LDH at low levels after TGF-β exposure, but it enhanced collagen III expression. (4) Conclusions: The mixture of NPCS and VL improved cell membrane damage and inflammation triggered by TGF-β and mitigated collagen I deposition, but it increased the expression of collagen III, suggestive of a fibrogenetic effect of the hybrid material. Full article
Show Figures

Figure 1

32 pages, 16488 KiB  
Article
Local Control Model of a Human Ventricular Myocyte: An Exploration of Frequency-Dependent Changes and Calcium Sparks
by Jerome Anthony E. Alvarez, M. Saleet Jafri and Aman Ullah
Biomolecules 2023, 13(8), 1259; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081259 - 17 Aug 2023
Viewed by 1887
Abstract
Calcium (Ca2+) sparks are the elementary events of excitation–contraction coupling, yet they are not explicitly represented in human ventricular myocyte models. A stochastic ventricular cardiomyocyte human model that adapts to intracellular Ca2+ ([Ca2+]i) dynamics, spark regulation, [...] Read more.
Calcium (Ca2+) sparks are the elementary events of excitation–contraction coupling, yet they are not explicitly represented in human ventricular myocyte models. A stochastic ventricular cardiomyocyte human model that adapts to intracellular Ca2+ ([Ca2+]i) dynamics, spark regulation, and frequency-dependent changes in the form of locally controlled Ca2+ release was developed. The 20,000 CRUs in this model are composed of 9 individual LCCs and 49 RyRs that function as couplons. The simulated action potential duration at 1 Hz steady-state pacing is ~0.280 s similar to human ventricular cell recordings. Rate-dependence experiments reveal that APD shortening mechanisms are largely contributed by the L-type calcium channel inactivation, RyR open fraction, and [Ca2+]myo concentrations. The dynamic slow-rapid-slow pacing protocol shows that RyR open probability during high pacing frequency (2.5 Hz) switches to an adapted “nonconducting” form of Ca2+-dependent transition state. The predicted force was also observed to be increased in high pacing, but the SR Ca2+ fractional release was lower due to the smaller difference between diastolic and systolic [Ca2+]SR. Restitution analysis through the S1S2 protocol and increased LCC Ca2+-dependent activation rate show that the duration of LCC opening helps modulate its effects on the APD restitution at different diastolic intervals. Ultimately, a longer duration of calcium sparks was observed in relation to the SR Ca2+ loading at high pacing rates. Overall, this study demonstrates the spontaneous Ca2+ release events and ion channel responses throughout various stimuli. Full article
(This article belongs to the Special Issue Computational Insights into Calcium Signaling)
Show Figures

Figure 1

19 pages, 6423 KiB  
Article
Circulating H3K27 Methylated Nucleosome Plasma Concentration: Synergistic Information with Circulating Tumor DNA Molecular Profiling
by Emmanuel Grolleau, Julie Candiracci, Gaelle Lescuyer, David Barthelemy, Nazim Benzerdjeb, Christine Haon, Florence Geiguer, Margaux Raffin, Nathalie Hardat, Julie Balandier, Rémi Rabeuf, Lara Chalabreysse, Anne-Sophie Wozny, Guillaume Rommelaere, Claire Rodriguez-Lafrasse, Fabien Subtil, Sébastien Couraud, Marielle Herzog and Lea Payen-Gay
Biomolecules 2023, 13(8), 1255; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081255 - 16 Aug 2023
Cited by 1 | Viewed by 1537
Abstract
The molecular profiling of circulating tumor DNA (ctDNA) is a helpful tool not only in cancer treatment, but also in the early detection of relapse. However, the clinical interpretation of a ctDNA negative result remains challenging. The characterization of circulating nucleosomes (carrying cell-free [...] Read more.
The molecular profiling of circulating tumor DNA (ctDNA) is a helpful tool not only in cancer treatment, but also in the early detection of relapse. However, the clinical interpretation of a ctDNA negative result remains challenging. The characterization of circulating nucleosomes (carrying cell-free DNA) and associated epigenetic modifications (playing a key role in the tumorigenesis of different cancers) may provide useful information for patient management, by supporting the contributive value of ctDNA molecular profiling. Significantly elevated concentrations of H3K27Me3 nucleosomes were found in plasmas at the diagnosis, and during the follow-up, of NSCLC patients, compared to healthy donors (p-value < 0.0001). By combining the H3K27Me3 level and the ctDNA molecular profile, we found that 25.5% of the patients had H3K27Me3 levels above the cut off, and no somatic alteration was detected at diagnosis. This strongly supports the presence of non-mutated ctDNA in the corresponding plasma. During the patient follow-up, a high H3K27Me3-nucleosome level was found in 15.1% of the sample, despite no somatic mutations being detected, allowing the identification of disease progression from 43.1% to 58.2% over molecular profiling alone. Measuring H3K27Me3-nucleosome levels in combination with ctDNA molecular profiling may improve confidence in the negative molecular result for cfDNA in lung cancer at diagnosis, and may also be a promising biomarker for molecular residual disease (MRD) monitoring, during and/or after treatment. Full article
(This article belongs to the Collection Feature Papers in Molecular Biomarkers)
Show Figures

Figure 1

17 pages, 1341 KiB  
Article
Long-Term Culturing of FreeStyle 293-F Cells Affects Immunoglobulin G Glycome Composition
by Fran Lukšić, Anika Mijakovac, Goran Josipović, Vedrana Vičić Bočkor, Jasminka Krištić, Ana Cindrić, Martina Vinicki, Filip Rokić, Oliver Vugrek, Gordan Lauc and Vlatka Zoldoš
Biomolecules 2023, 13(8), 1245; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081245 - 14 Aug 2023
Viewed by 1594
Abstract
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data [...] Read more.
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell “aging”. To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG. Full article
(This article belongs to the Special Issue Protein Glycosylation and Human Diseases)
Show Figures

Figure 1

11 pages, 7420 KiB  
Article
AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes
by Catriona H. Gordon, Emily Hendrix, Yi He and Mark C. Walker
Biomolecules 2023, 13(8), 1243; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081243 - 12 Aug 2023
Viewed by 1604
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. The enzymes that install the post-translational modifications on these peptides have the potential to be useful catalysts in the production of natural-product-like [...] Read more.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. The enzymes that install the post-translational modifications on these peptides have the potential to be useful catalysts in the production of natural-product-like compounds and can install non-proteogenic amino acids in peptides and proteins. However, engineering these enzymes has been somewhat limited, due in part to limited structural information on enzymes in the same families that nonetheless exhibit different substrate selectivities. Despite AlphaFold2’s superior performance in single-chain protein structure prediction, its multimer version lacks accuracy and requires high-end GPUs, which are not typically available to most research groups. Additionally, the default parameters of AlphaFold2 may not be optimal for predicting complex structures like RiPP biosynthetic enzymes, due to their dynamic binding and substrate-modifying mechanisms. This study assessed the efficacy of the structure prediction program ColabFold (a variant of AlphaFold2) in modeling RiPP biosynthetic enzymes in both monomeric and dimeric forms. After extensive benchmarking, it was found that there were no statistically significant differences in the accuracy of the predicted structures, regardless of the various possible prediction parameters that were examined, and that with the default parameters, ColabFold was able to produce accurate models. We then generated additional structural predictions for select RiPP biosynthetic enzymes from multiple protein families and biosynthetic pathways. Our findings can serve as a reference for future enzyme engineering complemented by AlphaFold-related tools. Full article
Show Figures

Figure 1

19 pages, 6804 KiB  
Article
Hidden Glutathione Transferases in the Human Genome
by Aaron J. Oakley
Biomolecules 2023, 13(8), 1240; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081240 - 12 Aug 2023
Cited by 1 | Viewed by 1143
Abstract
With the development of accurate protein structure prediction algorithms, artificial intelligence (AI) has emerged as a powerful tool in the field of structural biology. AI-based algorithms have been used to analyze large amounts of protein sequence data including the human proteome, complementing experimental [...] Read more.
With the development of accurate protein structure prediction algorithms, artificial intelligence (AI) has emerged as a powerful tool in the field of structural biology. AI-based algorithms have been used to analyze large amounts of protein sequence data including the human proteome, complementing experimental structure data found in resources such as the Protein Data Bank. The EBI AlphaFold Protein Structure Database (for example) contains over 230 million structures. In this study, these data have been analyzed to find all human proteins containing (or predicted to contain) the cytosolic glutathione transferase (cGST) fold. A total of 39 proteins were found, including the alpha-, mu-, pi-, sigma-, zeta- and omega-class GSTs, intracellular chloride channels, metaxins, multisynthetase complex components, elongation factor 1 complex components and others. Three broad themes emerge: cGST domains as enzymes, as chloride ion channels and as protein–protein interaction mediators. As the majority of cGSTs are dimers, the AI-based structure prediction algorithm AlphaFold-multimer was used to predict structures of all pairwise combinations of these cGST domains. Potential homo- and heterodimers are described. Experimental biochemical and structure data is used to highlight the strengths and limitations of AI-predicted structures. Full article
(This article belongs to the Special Issue Versatility of Glutathione Transferase Proteins)
Show Figures

Figure 1

14 pages, 5715 KiB  
Article
Graph-Based Analyses of Dynamic Water-Mediated Hydrogen-Bond Networks in Phosphatidylserine: Cholesterol Membranes
by Honey Jain, Konstantina Karathanou and Ana-Nicoleta Bondar
Biomolecules 2023, 13(8), 1238; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081238 - 11 Aug 2023
Cited by 1 | Viewed by 1122
Abstract
Phosphatidylserine lipids are anionic molecules present in eukaryotic plasma membranes, where they have essential physiological roles. The altered distribution of phosphatidylserine in cells such as apoptotic cancer cells, which, unlike healthy cells, expose phosphatidylserine, is of direct interest for the development of biomarkers. [...] Read more.
Phosphatidylserine lipids are anionic molecules present in eukaryotic plasma membranes, where they have essential physiological roles. The altered distribution of phosphatidylserine in cells such as apoptotic cancer cells, which, unlike healthy cells, expose phosphatidylserine, is of direct interest for the development of biomarkers. We present here applications of a recently implemented Depth-First-Search graph algorithm to dissect the dynamics of transient water-mediated lipid clusters at the interface of a model bilayer composed of 1-palmytoyl-2-oleoyl-sn-glycero-2-phosphatidylserine (POPS) and cholesterol. Relative to a reference POPS bilayer without cholesterol, in the POPS:cholesterol bilayer there is a somewhat less frequent sampling of relatively complex and extended water-mediated hydrogen-bond networks of POPS headgroups. The analysis protocol used here is more generally applicable to other lipid:cholesterol bilayers. Full article
(This article belongs to the Special Issue Proton and Proton-Coupled Transport)
Show Figures

Figure 1

29 pages, 3802 KiB  
Article
The Impact of Viral Infection on the Chemistries of the Earth’s Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria
by Yunpeng Wang, Scarlet Ferrinho, Helen Connaris and Rebecca J. M. Goss
Biomolecules 2023, 13(8), 1218; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081218 - 04 Aug 2023
Cited by 1 | Viewed by 1376
Abstract
Cyanobacteria are the most abundant photosynthesizers on earth, and as such, they play a central role in marine metabolite generation, ocean nutrient cycling, and the control of planetary oxygen generation. Cyanobacteriophage infection exerts control on all of these critical processes of the planet, [...] Read more.
Cyanobacteria are the most abundant photosynthesizers on earth, and as such, they play a central role in marine metabolite generation, ocean nutrient cycling, and the control of planetary oxygen generation. Cyanobacteriophage infection exerts control on all of these critical processes of the planet, with the phage-ported homologs of genes linked to photosynthesis, catabolism, and secondary metabolism (marine metabolite generation). Here, we analyze the 153 fully sequenced cyanophages from the National Center for Biotechnology Information (NCBI) database and the 45 auxiliary metabolic genes (AMGs) that they deliver into their hosts. Most of these AMGs are homologs of those found within cyanobacteria and play a key role in cyanobacterial metabolism-encoding proteins involved in photosynthesis, central carbon metabolism, phosphate metabolism, methylation, and cellular regulation. A greater understanding of cyanobacteriophage infection will pave the way to a better understanding of carbon fixation and nutrient cycling, as well as provide new tools for synthetic biology and alternative approaches for the use of cyanobacteria in biotechnology and sustainable manufacturing. Full article
(This article belongs to the Special Issue Marine-Derived Molecules with Different Bioactivities)
Show Figures

Figure 1

16 pages, 2091 KiB  
Article
Phosphoserine Aminotransferase Pathogenetic Variants in Serine Deficiency Disorders: A Functional Characterization
by Francesco Marchesani, Annalisa Michielon, Elisabetta Viale, Annalisa Bianchera, Davide Cavazzini, Loredano Pollegioni, Giulia Murtas, Andrea Mozzarelli, Stefano Bettati, Alessio Peracchi, Barbara Campanini and Stefano Bruno
Biomolecules 2023, 13(8), 1219; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081219 - 04 Aug 2023
Cited by 1 | Viewed by 945
Abstract
In humans, the phosphorylated pathway (PP) converts the glycolytic intermediate D-3-phosphoglycerate (3-PG) into L-serine through the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase. From the pathogenic point of view, the PP in the brain is particularly relevant, as genetic defects of [...] Read more.
In humans, the phosphorylated pathway (PP) converts the glycolytic intermediate D-3-phosphoglycerate (3-PG) into L-serine through the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase. From the pathogenic point of view, the PP in the brain is particularly relevant, as genetic defects of any of the three enzymes are associated with a group of neurometabolic disorders known as serine deficiency disorders (SDDs). We recombinantly expressed and characterized eight variants of PSAT associated with SDDs and two non-SDD associated variants. We show that the pathogenetic mechanisms in SDDs are extremely diverse, including low affinity of the cofactor pyridoxal 5′-phosphate and thermal instability for S179L and G79W PSAT, loss of activity of the holo form for R342W PSAT, aggregation for D100A PSAT, increased Km for one of the substrates with invariant kcats for S43R PSAT, and a combination of increased Km and decreased kcat for C245R PSAT. Finally, we show that the flux through the in vitro reconstructed PP at physiological concentrations of substrates and enzymes is extremely sensitive to alterations of the functional properties of PSAT variants, confirming PSAT dysfunctions as a cause of SSDs. Full article
Show Figures

Figure 1

14 pages, 35695 KiB  
Article
Del1 Is a Growth Factor for Skeletal Progenitor Cells in the Fracture Callus
by Yuxi Sun, Tatiana Boyko, Owen Marecic, Danielle Struck, Randall K. Mann, Tom W. Andrew, Michael Lopez, Xinming Tong, Stuart B. Goodman, Fan Yang, Michael T. Longaker, Charles K. F. Chan and George P. Yang
Biomolecules 2023, 13(8), 1214; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081214 - 03 Aug 2023
Viewed by 1506
Abstract
Failure to properly form bone or integrate surgical implants can lead to morbidity and additional surgical interventions in a significant proportion of orthopedic surgeries. While the role of skeletal stem cells (SSCs) in bone formation and repair is well-established, very little is known [...] Read more.
Failure to properly form bone or integrate surgical implants can lead to morbidity and additional surgical interventions in a significant proportion of orthopedic surgeries. While the role of skeletal stem cells (SSCs) in bone formation and repair is well-established, very little is known about the factors that regulate the downstream Bone, Cartilage, Stromal, Progenitors (BCSPs). BCSPs, as transit amplifying progenitor cells, undergo multiple mitotic divisions to expand the pool of lineage committed progenitors allowing stem cells to preserve their self-renewal and stemness. Del1 is a protein widely expressed in the skeletal system, but its deletion led to minimal phenotype changes in the uninjured mouse. In this paper, we demonstrate that Del1 is a key regulator of BCSP expansion following injury. In Del1 knockout mice, there is a significant reduction in the number of BCSPs which leads to a smaller callus and decreased bone formation compared with wildtype (WT) littermates. Del1 serves to promote BCSP proliferation and prevent apoptosis in vivo and in vitro. Moreover, exogenous Del1 promotes proliferation of aged human BCSPs. Our results highlight the potential of Del1 as a therapeutic target for improving bone formation and implant success. Del1 injections may improve the success of orthopedic surgeries and fracture healing by enhancing the proliferation and survival of BCSPs, which are crucial for generating new bone tissue during the process of bone formation and repair. Full article
Show Figures

Figure 1

19 pages, 2480 KiB  
Article
A Combination of Conformation-Specific RAF Inhibitors Overcome Drug Resistance Brought about by RAF Overexpression
by Hiroaki Imoto, Nora Rauch, Ashish J. Neve, Fahimeh Khorsand, Martina Kreileder, Leonidas G. Alexopoulos, Jens Rauch, Mariko Okada, Boris N. Kholodenko and Oleksii S. Rukhlenko
Biomolecules 2023, 13(8), 1212; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081212 - 02 Aug 2023
Cited by 1 | Viewed by 2149
Abstract
Cancer cells often adapt to targeted therapies, yet the molecular mechanisms underlying adaptive resistance remain only partially understood. Here, we explore a mechanism of RAS/RAF/MEK/ERK (MAPK) pathway reactivation through the upregulation of RAF isoform (RAFs) abundance. Using computational modeling and in vitro experiments, [...] Read more.
Cancer cells often adapt to targeted therapies, yet the molecular mechanisms underlying adaptive resistance remain only partially understood. Here, we explore a mechanism of RAS/RAF/MEK/ERK (MAPK) pathway reactivation through the upregulation of RAF isoform (RAFs) abundance. Using computational modeling and in vitro experiments, we show that the upregulation of RAFs changes the concentration range of paradoxical pathway activation upon treatment with conformation-specific RAF inhibitors. Additionally, our data indicate that the signaling output upon loss or downregulation of one RAF isoform can be compensated by overexpression of other RAF isoforms. We furthermore demonstrate that, while single RAF inhibitors cannot efficiently inhibit ERK reactivation caused by RAF overexpression, a combination of two structurally distinct RAF inhibitors synergizes to robustly suppress pathway reactivation. Full article
(This article belongs to the Special Issue MAP Kinases: Functions in Signal Transduction and Disease)
Show Figures

Figure 1

16 pages, 9406 KiB  
Article
CXCL10 Is Associated with Increased Cerebrospinal Fluid Immune Cell Infiltration and Disease Duration in Multiple Sclerosis
by Stephanie N. Blandford, Neva J. Fudge and Craig S. Moore
Biomolecules 2023, 13(8), 1204; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081204 - 01 Aug 2023
Cited by 1 | Viewed by 1299
Abstract
Background: Cerebrospinal fluid (CSF) is an important sampling site for putative biomarkers and contains immune cells. CXCL10 is a multiple sclerosis (MS)-relevant chemokine that is present in the injured central nervous system and recruits CXCR3+ immune cells toward injured tissues. Objective: Perform a [...] Read more.
Background: Cerebrospinal fluid (CSF) is an important sampling site for putative biomarkers and contains immune cells. CXCL10 is a multiple sclerosis (MS)-relevant chemokine that is present in the injured central nervous system and recruits CXCR3+ immune cells toward injured tissues. Objective: Perform a comprehensive evaluation to determine a potential relationship between CXCL10 and various immune cell subsets in the CNS of MS and control cases. Methods: In MS and control cases, CXCL10 was measured in the CSF and plasma by ELISA. Immune cells within both the CSF and peripheral blood were quantified by flow cytometry. Results: Compared to non-inflammatory neurological disease (NIND) cases, MS cases had significantly higher CXCL10 in CSF (p = 0.021); CXCL10 was also correlated with total cell numbers in CSF (p = 0.04) and T cell infiltrates (CD3+, p = 0.01; CD4+, p = 0.01; CD8+, p = 0.02); expression of CXCR3 on peripheral immune cell subsets was not associated with CSF CXCL10. Conclusions: Elevated levels of CXCL10 in the CSF of MS cases are associated with increased T cells but appear to be independent of peripheral CXCR3 expression. These results support the importance of elevated CXCL10 in MS and suggest the presence of an alternative mechanism of CXCL10 outside of solely influencing immune cell trafficking. Full article
(This article belongs to the Special Issue New Insights into Neuroimmunology)
Show Figures

Figure 1

17 pages, 3410 KiB  
Article
Serum Soluble Lectin-like Oxidized Low-Density Lipoprotein Receptor-1 (sLOX-1) Is Associated with Atherosclerosis Severity in Coronary Artery Disease
by Katharine A. Kott, Elijah Genetzakis, Michael P. Gray, Peter Hansen, Helen M. McGuire, Jean Y. Yang, Stuart M. Grieve, Stephen T. Vernon and Gemma A. Figtree
Biomolecules 2023, 13(8), 1187; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081187 - 29 Jul 2023
Viewed by 1055
Abstract
Risk-factor-based scoring systems for atherosclerotic coronary artery disease (CAD) remain concerningly inaccurate at the level of the individual and would benefit from the addition of biomarkers that correlate with atherosclerosis burden directly. We hypothesized that serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) [...] Read more.
Risk-factor-based scoring systems for atherosclerotic coronary artery disease (CAD) remain concerningly inaccurate at the level of the individual and would benefit from the addition of biomarkers that correlate with atherosclerosis burden directly. We hypothesized that serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) would be independently associated with CAD and investigated this in the BioHEART study using 968 participants with CT coronary angiograms, which were scored for disease burden in the form of coronary artery calcium scores (CACS), Gensini scores, and a semi-quantitative soft-plaque score (SPS). Serum sLOX-1 was assessed by ELISA and was incorporated into regression models for disease severity and incidence. We demonstrate that sLOX-1 is associated with an improvement in the prediction of CAD severity when scored by Gensini or SPS, but not CACS. sLOX-1 also significantly improved the prediction of the incidence of obstructive CAD, defined as stenosis in any vessel >75%. The predictive value of sLOX-1 was significantly greater in the subgroup of patients who did not have any of the standard modifiable cardiovascular risk factors (SMuRFs). sLOX-1 is associated with CAD severity and is the first biomarker shown to have utility for risk prediction in the SMuRFless population. Full article
(This article belongs to the Special Issue Cardiovascular Diseases and Biomarkers)
Show Figures

Figure 1

21 pages, 3365 KiB  
Article
Hemocompatibility of β-Cyclodextrin-Modified (Methacryloyloxy)ethyl Phosphorylcholine Coated Magnetic Nanoparticles
by Shuhui Li, Mehdi Ghaffari Sharaf, Elyn M. Rowe, Katherine Serrano, Dana V. Devine and Larry D. Unsworth
Biomolecules 2023, 13(8), 1165; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13081165 - 25 Jul 2023
Viewed by 1173
Abstract
Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that [...] Read more.
Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that unmodified magnetic nanoparticles greatly perturbed the structure of proteins compared to coated particles. Plasma clotting assays were conducted to investigate the stability of plasma in the presence of particles, where a 2:2 monomer ratio yielded the best results for a given total surface area of particles. Total protein adsorption results revealed that modified surfaces exhibited reduced protein adsorption compared to bare particles, and pure MPC showed the lowest adsorption. Immunoblot results showed that fibrinogen, α1-antitrypsin, vitronectin, prekallikrein, antithrombin, albumin, and C3 correlated with film composition. Hemocompatibility testing with whole blood illustrated that the 1:3 ratio of CD to MPC had a negative impact on platelets, as evidenced by the increased activation, reduced response to an agonist, and reduced platelet count. Other formulations had statistically significant effects on platelet activation, but no formulation yielded apparent adverse effects on hemostasis. For the first time, p(PMβCD-co-MPC)-coated MNP were synthesized and their general hemocompatibility assessed. Full article
(This article belongs to the Special Issue Mechanisms and Kinetics of Interactions of Biomolecules at Interfaces)
Show Figures

Figure 1

17 pages, 3567 KiB  
Article
Goldilocks Dilemma: LPS Works Both as the Initial Target and a Barrier for the Antimicrobial Action of Cationic AMPs on E. coli
by Martin Jakubec, Fredrik G. Rylandsholm, Philip Rainsford, Mitchell Silk, Maxim Bril’kov, Tone Kristoffersen, Eric Juskewitz, Johanna U. Ericson and John Sigurd M. Svendsen
Biomolecules 2023, 13(7), 1155; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071155 - 20 Jul 2023
Cited by 5 | Viewed by 1751
Abstract
Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative E. coli and AMPs [...] Read more.
Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative E. coli and AMPs is driven by lipopolysaccharides (LPS) that act as kinetic barriers for the binding of AMPs to the bacterial membrane. A combination of SPR and NMR experiments provide evidence suggesting that cationic AMPs first bind to the negatively charged LPS before reaching a binding place in the lipid bilayer. In the event that the initial LPS-binding is too strong (corresponding to a low dissociation rate), the cationic AMPs cannot effectively get from the LPS to the membrane, and their antimicrobial potency will thus be diminished. On the other hand, the AMPs must also be able to effectively interact with the membrane to exert its activity. The ability of the studied cyclic hexapeptides to bind LPS and to translocate into a lipid membrane is related to the nature of the cationic charge (arginine vs. lysine) and to the distribution of hydrophobicity along the molecule (alternating vs. clumped tryptophan). Full article
(This article belongs to the Special Issue Mechanisms and Kinetics of Interactions of Biomolecules at Interfaces)
Show Figures

Graphical abstract

23 pages, 14523 KiB  
Article
A Molecular Analysis of the Aminopeptidase P-Related Domain of PID-5 from Caenorhabditis elegans
by Anna C. Lloyd, Kyle S. Gregory, R. Elwyn Isaac and K. Ravi Acharya
Biomolecules 2023, 13(7), 1132; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071132 - 14 Jul 2023
Cited by 1 | Viewed by 1352
Abstract
A novel protein, PID-5, has been shown to be a requirement for germline immortality and has recently been implicated in RNA-induced epigenetic silencing in the Caenorhabditis elegans embryo. Importantly, it has been shown to contain both an eTudor and aminopeptidase P-related domain. However, [...] Read more.
A novel protein, PID-5, has been shown to be a requirement for germline immortality and has recently been implicated in RNA-induced epigenetic silencing in the Caenorhabditis elegans embryo. Importantly, it has been shown to contain both an eTudor and aminopeptidase P-related domain. However, the silencing mechanism has not yet been fully characterised. In this study, bioinformatic tools were used to compare pre-existing aminopeptidase P molecular structures to the AlphaFold2-predicted aminopeptidase P-related domain of PID-5 (PID-5 APP-RD). Structural homology, metal composition, inhibitor-bonding interactions, and the potential for dimerisation were critically assessed through computational techniques, including structural superimposition and protein-ligand docking. Results from this research suggest that the metallopeptidase-like domain shares high structural homology with known aminopeptidase P enzymes and possesses the canonical ‘pita-bread fold’. However, the absence of conserved metal-coordinating residues indicates that only a single Zn2+ may be bound at the active site. The PID-5 APP-RD may form transient interactions with a known aminopeptidase P inhibitor and may therefore recognise substrates in a comparable way to the known structures. However, loss of key catalytic residues suggests the domain will be inactive. Further evidence suggests that heterodimerisation with C. elegans aminopeptidase P is feasible and therefore PID-5 is predicted to regulate proteolytic cleavage in the silencing pathway. PID-5 may interact with PID-2 to bring aminopeptidase P activity to the Z-granule, where it could influence WAGO-4 activity to ensure the balanced production of 22G-RNA signals for transgenerational silencing. Targeted experiments into APPs implicated in malaria and cancer are required in order to build upon the biological and therapeutic significance of this research. Full article
(This article belongs to the Topic Metalloproteins and Metalloenzymes)
Show Figures

Graphical abstract

11 pages, 5442 KiB  
Article
Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles
by Justin E. Miller, Roger Castells-Graells, Mark A. Arbing, Aldo Munoz, Yi-Xiao Jiang, Charlize T. Espinoza, Brian Nguyen, Paul Moroz and Todd O. Yeates
Biomolecules 2023, 13(7), 1122; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071122 - 14 Jul 2023
Cited by 4 | Viewed by 1549
Abstract
Beta-2 microglobulin (B2M) is an immune system protein that is found on the surface of all nucleated human cells. B2M is naturally shed from cell surfaces into the plasma, followed by renal excretion. In patients with impaired renal function, B2M will accumulate in [...] Read more.
Beta-2 microglobulin (B2M) is an immune system protein that is found on the surface of all nucleated human cells. B2M is naturally shed from cell surfaces into the plasma, followed by renal excretion. In patients with impaired renal function, B2M will accumulate in organs and tissues leading to significantly reduced life expectancy and quality of life. While current hemodialysis methods have been successful in managing electrolyte as well as small and large molecule disturbances arising in chronic renal failure, they have shown only modest success in managing plasma levels of B2M and similar sized proteins, while sparing important proteins such as albumin. We describe a systematic protein design effort aimed at adding the ability to selectively remove specific, undesired waste proteins such as B2M from the plasma of chronic renal failure patients. A novel nanoparticle built using a tetrahedral protein assembly as a scaffold that presents 12 copies of a B2M-binding nanobody is described. The designed nanoparticle binds specifically to B2M through protein–protein interactions with nanomolar binding affinity (~4.2 nM). Notably, binding to the nanoparticle increases the effective size of B2M by over 50-fold, offering a potential selective avenue for separation based on size. We present data to support the potential utility of such a nanoparticle for removing B2M from plasma by either size-based filtration or by polyvalent binding to a stationary matrix under blood flow conditions. Such applications could address current shortcomings in the management of problematic mid-sized proteins in chronic renal failure patients. Full article
(This article belongs to the Section Biomacromolecules: Proteins)
Show Figures

Figure 1

10 pages, 1211 KiB  
Article
An Integrated Glycosylation Signature of Rheumatoid Arthritis
by Oleg A. Mayboroda, Guinevere S. M. Lageveen-Kammeijer, Manfred Wuhrer and Radboud J. E. M. Dolhain
Biomolecules 2023, 13(7), 1106; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071106 - 12 Jul 2023
Viewed by 1117
Abstract
Rheumatoid arthritis (RA) Is a highly prevalent autoimmune disease that affects the joints but also various other organs. The disease is characterized by autoantibodies that are often already observed pre-disease. Since the 1980s, it has been known that antibody glycosylation is different in [...] Read more.
Rheumatoid arthritis (RA) Is a highly prevalent autoimmune disease that affects the joints but also various other organs. The disease is characterized by autoantibodies that are often already observed pre-disease. Since the 1980s, it has been known that antibody glycosylation is different in RA as compared to control individuals. While the literature on glycosylation changes in RA is dominated by reports on serum or plasma immunoglobulin G (IgG), our recent studies have indicated that the glycosylation changes observed for immunoglobulin A (IgA) and total serum N-glycome (TSNG) may be similarly prominent, and useful in differentiating between the RA patients and controls, or as a proxy of the disease activity. In this study, we integrated and compared the RA glycosylation signatures of IgG, IgA and TSNG, all determined in the pregnancy-induced amelioration of rheumatoid arthritis (PARA) cohort. We assessed the association of the altered glycosylation patterns with the disease, autoantibody positivity and disease activity. Our analyses indicated a common, composite glycosylation signature of RA that was independent of the autoantibody status. Full article
(This article belongs to the Special Issue Protein Glycosylation and Human Diseases)
Show Figures

Figure 1

22 pages, 3658 KiB  
Article
The Metallodrug BOLD-100 Is a Potent Inhibitor of SARS-CoV-2 Replication and Has Broad-Acting Antiviral Activity
by Daniel S. Labach, Hinissan P. Kohio, Edwin A. Tse, Ermela Paparisto, Nicole J. Friesen, Jim Pankovich, Mark Bazett and Stephen D. Barr
Biomolecules 2023, 13(7), 1095; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071095 - 08 Jul 2023
Cited by 2 | Viewed by 1642
Abstract
The COVID-19 pandemic has highlighted an urgent need to discover and test new drugs to treat patients. Metal-based drugs are known to interact with DNA and/or a variety of proteins such as enzymes and transcription factors, some of which have been shown to [...] Read more.
The COVID-19 pandemic has highlighted an urgent need to discover and test new drugs to treat patients. Metal-based drugs are known to interact with DNA and/or a variety of proteins such as enzymes and transcription factors, some of which have been shown to exhibit anticancer and antimicrobial effects. BOLD-100 (sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)]dihydrate) is a novel ruthenium-based drug currently being evaluated in a Phase 1b/2a clinical trial for the treatment of advanced gastrointestinal cancer. Given that metal-based drugs are known to exhibit antimicrobial activities, we asked if BOLD-100 exhibits antiviral activity towards SARS-CoV-2. We demonstrated that BOLD-100 potently inhibits SARS-CoV-2 replication and cytopathic effects in vitro. An RNA sequencing analysis showed that BOLD-100 inhibits virus-induced transcriptional changes in infected cells. In addition, we showed that the antiviral activity of BOLD-100 is not specific for SARS-CoV-2, but also inhibits the replication of the evolutionarily divergent viruses Human Immunodeficiency Virus type 1 and Human Adenovirus type 5. This study identifies BOLD-100 as a potentially novel broad-acting antiviral drug. Full article
(This article belongs to the Special Issue Viral Drug Targets and Discovery of Antiviral Agents)
Show Figures

Figure 1

23 pages, 1444 KiB  
Article
Xanthine–Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases
by Michał Załuski, Tadeusz Karcz, Anna Drabczyńska, Christin Vielmuth, Agnieszka Olejarz-Maciej, Monika Głuch-Lutwin, Barbara Mordyl, Agata Siwek, Grzegorz Satała, Christa E. Müller and Katarzyna Kieć-Kononowicz
Biomolecules 2023, 13(7), 1079; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071079 - 05 Jul 2023
Cited by 1 | Viewed by 1546
Abstract
Multitarget drugs based on a hybrid dopamine–xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional [...] Read more.
Multitarget drugs based on a hybrid dopamine–xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer’s and Parkinson’s diseases is warranted. Full article
Show Figures

Figure 1

18 pages, 2548 KiB  
Article
Activation of Metabotropic Glutamate Receptor (mGlu2) and Muscarinic Receptors (M1, M4, and M5), Alone or in Combination, and Its Impact on the Acquisition and Retention of Learning in the Morris Water Maze, NMDA Expression and cGMP Synthesis
by Joanna M. Wierońska, Paulina Cieślik, Grzegorz Burnat and Leszek Kalinowski
Biomolecules 2023, 13(7), 1064; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071064 - 30 Jun 2023
Cited by 2 | Viewed by 1468
Abstract
The Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M [...] Read more.
The Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M4, and M5 receptors) and metabotropic glutamate (mGlu) receptors are important targets in the search for antipsychotic drugs with the potency to treat cognitive disabilities associated with the disorder. Here, we show that muscarinic receptor activators (VU0357017, VU0152100, and VU0238429) and an mGlu2 receptor activator, LY487379, dose-dependently prevented the development of cognitive disorders as a result of MK-801 administration in the MWM. The dose-ranges of the compounds were as follows: VU0357017, 0.25, 0.5, and 1 mg/kg; VU0152100, 0.05, 0.25, and 1 mg/kg; VU0238429, 1, 5, and 20 mg/kg; and LY487379, 0.5, 3, and 5 mg/kg. The co-administration of LY487379 with each of the individual muscarinic receptor ligands showed no synergistic effect, which contradicts the results obtained earlier in the novel object recognition (NOR) test. MWM learning resulted in increased cGMP synthesis, both in the cortex and hippocampi, when compared to that in intact animals, which was prevented by MK-801 administration. The investigated compounds at the highest doses reversed this MK-801-induced effect. Neither the procedure nor the treatment resulted in changes in GluN2B-NMDA expression. Full article
(This article belongs to the Special Issue Glutamate and Glutamate Receptors in Health and Diseases)
Show Figures

Figure 1

23 pages, 9441 KiB  
Article
Quantitative Spatial Analysis of Neuroligin-3 mRNA Expression in the Enteric Nervous System Reveals a Potential Role in Neuronal–Glial Synapses and Reduced Expression in Nlgn3R451C Mice
by Madushani Herath, Ellie Cho, Ulrika Marklund, Ashley E. Franks, Joel C. Bornstein and Elisa L. Hill-Yardin
Biomolecules 2023, 13(7), 1063; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071063 - 30 Jun 2023
Cited by 2 | Viewed by 1526
Abstract
Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 [...] Read more.
Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron–glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 β -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD. Full article
(This article belongs to the Special Issue Neuroimmune Interactions in Neuropsychiatric Diseases)
Show Figures

Figure 1

23 pages, 4070 KiB  
Article
Bioinspired Synthesis of Silver Nanoparticles for the Remediation of Toxic Pollutants and Enhanced Antibacterial Activity
by Sujata Mandal, Sangchul Hwang, Sreekar B. Marpu, Mohammad A. Omary, Victor Prybutok and Sheldon Q. Shi
Biomolecules 2023, 13(7), 1054; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071054 - 29 Jun 2023
Cited by 4 | Viewed by 1365
Abstract
This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver [...] Read more.
This research presents a novel and environmentally friendly approach for the synthesis of multifunctional nanobiocomposites for the efficient removal of toxic heavy metal and dye, as well as the disinfection of wastewater microorganisms. The nanobiocomposites (KAC-CS-AgNPs) were prepared by incorporating photochemically generated silver nanoparticles (AgNPs) within a chitosan (CS)-modified, high-surface-area activated carbon derived from kenaf (KAC), using a unique self-activation method. The even distribution of AgNPs was visible in the scanning electron microscopy images and a Fourier transform infra red study demonstrated major absorption peaks. The experimental results revealed that KA-CS-AgNPs exhibited exceptional adsorption efficiency for copper (Cu2+), lead (Pb2+), and Congo Red dye (CR), and showed potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The maximum adsorption capacity (mg g−1) of KAC-CS-AgNPs was 71.5 for Cu2+, 72.3 for Pb2+, and 75.9 for CR, and the adsorption phenomena followed on the Freundlich and Langmuir isotherm models and the second-order kinetic model (R2 > 0.99). KAC-CS-AgNPs also exhibited excellent reusability of up to four consecutive cycles with minor losses in adsorption ability. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic in nature. The bacterial inactivation tests demonstrated that KAC-CS-AgNPs had a strong bactericidal effect on both E. coli and S. aureus, with MIC calculated for E. coli and S. aureus as 32 µg mL−1 and 44 µg mL−1, respectively. The synthesized bioinspired nanocomposite KAC-CS-AgNPs could be an innovative solution for effective and sustainable wastewater treatment and has great potential for commercial applications. Full article
Show Figures

Graphical abstract

18 pages, 2809 KiB  
Article
Tissue Inhibitor of Matrix Metalloproteinases-1 (TIMP-1) and Pulmonary Involvement in COVID-19 Pneumonia
by Maria Antonella Zingaropoli, Tiziana Latronico, Patrizia Pasculli, Giorgio Maria Masci, Roberta Merz, Federica Ciccone, Federica Dominelli, Cosmo Del Borgo, Miriam Lichtner, Franco Iafrate, Gioacchino Galardo, Francesco Pugliese, Valeria Panebianco, Paolo Ricci, Carlo Catalano, Maria Rosa Ciardi, Grazia Maria Liuzzi and Claudio Maria Mastroianni
Biomolecules 2023, 13(7), 1040; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071040 - 26 Jun 2023
Cited by 3 | Viewed by 1291
Abstract
Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and [...] Read more.
Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and were stratified into ARDS and non-ARDS groups. As a control group, healthy donors (HD) were enrolled. Results: At the baseline, compared to HD (n = 53), COVID-19 patients (n = 129) showed higher plasma levels of MMP-9 (p < 0.0001) and TIMP-1 (p < 0.0001) and the higher plasma activity of MMP-2 (p < 0.0001) and MMP-9 (p < 0.0001). In the ARDS group, higher plasma levels of MMP-9 (p = 0.0339) and TIMP-1 (p = 0.0044) and the plasma activity of MMP-2 (p = 0.0258) and MMP-9 (p = 0.0021) compared to non-ARDS was observed. A positive correlation between the plasma levels of TIMP-1 and chest computed tomography (CT) score (ρ = 0.2302, p = 0.0160) was observed. At the T post, a reduction in plasma levels of TIMP-1 (p < 0.0001), whereas an increase in the plasma levels of MMP-9 was observed (p = 0.0088). Conclusions: The positive correlation between TIMP-1 with chest CT scores highlights its potential use as a marker of fibrotic burden. At T post, the increase in plasma levels of MMP-9 and the reduction in plasma levels of TIMP-1 suggested that inflammation and fibrosis resolution were still ongoing. Full article
(This article belongs to the Special Issue Matrix Metalloproteinases in Health and Disease 3.0)
Show Figures

Figure 1

16 pages, 2707 KiB  
Article
Enzymatic Modification of Pomace Olive Oil with Natural Antioxidants: Effect on Oxidative Stability
by Renia Fotiadou, Dimitrios Lefas, Despina Vougiouklaki, Aliki Tsakni, Dimitra Houhoula and Haralambos Stamatis
Biomolecules 2023, 13(7), 1034; https://0-doi-org.brum.beds.ac.uk/10.3390/biom13071034 - 23 Jun 2023
Cited by 1 | Viewed by 1175
Abstract
Enzymatic lipophilization has been proposed as a cost-effective strategy to produce new liposoluble antioxidant compounds. In this study, modified oils rich in structured phenolipids were prepared via one-pot enzymatic acylation of hydroxytyrosol (HTYR), vanillyl alcohol (VA) and homovanillyl alcohol (HVA) with pomace olive [...] Read more.
Enzymatic lipophilization has been proposed as a cost-effective strategy to produce new liposoluble antioxidant compounds. In this study, modified oils rich in structured phenolipids were prepared via one-pot enzymatic acylation of hydroxytyrosol (HTYR), vanillyl alcohol (VA) and homovanillyl alcohol (HVA) with pomace olive oil (POO) in solvent-free conditions using immobilized lipase on biogenic nanoparticles. The effect of temperature (30–70 °C) and enzyme concentration (0.1–1%, w/w) on the efficiency of the bioprocess as well as the reusability of the nanobiocatalyst were thoroughly investigated. The modified oils exhibited increased antioxidant activity compared to the control oil according to DPPH and CUPRAC assays (p < 0.05). The oxidative stability of pomace olive oil was also significantly enhanced after modification, as depicted by the K232 values and TBARS contents under accelerated oxidation at 60 °C (p < 0.05). Moreover, a fortified mayonnaise containing modified oil with HTYR was prepared that was noticeably stable compared to the control mayonnaise at 28 °C for 5 months (p < 0.05). Enzymatically modified oils have great potential for application in the nutraceutical and food industry, encouraging the exploitation of immobilized lipases as effective and green catalytic tools. Full article
(This article belongs to the Topic Antioxidant Activity of Natural Products)
Show Figures

Figure 1

Back to TopTop