Feature Papers of Biosensors—Emerging Trends and Solutions Tackling Current Global Challenges

A special issue of Chemosensors (ISSN 2227-9040). This special issue belongs to the section "(Bio)chemical Sensing".

Deadline for manuscript submissions: closed (30 June 2022) | Viewed by 11075

Special Issue Editor


E-Mail Website
Guest Editor
Department of Analytical Chemistry, Director Doctoral School of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
Interests: sensors and biosensors addressing current emerging problems of clinical, food and environmental importance; bioanalytical chemistry focusing on investigations of basic biochemical mechanisms at bio-interfaces; biomimetic materials and artificial receptors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biosensor technologies hold exceptional promise for providing critical information for continuous, real-time and in situ, point of care and data collection. Due to specificity, portability, simplicity, high sensitivity, potential ability for real-time and on-site analysis coupled with the speed and low cost, biosensors have been projected to have applications in food analysis, environment control, clinical detection, drug and agriculture industries etc. One of the new important technological issues in biosensor is the development of complete sensing systems that can be with mobile technology such smart phones. The biosensors offer opportunities for numerous on site clinical applications, food and environmental monitoring. The new generation of biosensors combining new bioreceptors with the ever-growing number of transducers is emerging.

This Special Issue aims at collecting both reviews and recent papers on this topic highlighting the recent advances in the area of biosensors.

Prof. Dr. Camelia Bala
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biosensor
  • portable system
  • miniaturization
  • lab-on-a chip
  • real sample

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3540 KiB  
Article
Microwave-Assisted Synthesis of Schiff Base Metal–Ligand Complexes with Copper and Nickel Centres for Electrochemical In Vitro Sensing of Nitric Oxide in an Aqueous Solution
by Teboho N. Moeketse, Priscilla G. Baker, Al. C. Farao and Emmanuel I. Iwuoha
Chemosensors 2022, 10(5), 175; https://0-doi-org.brum.beds.ac.uk/10.3390/chemosensors10050175 - 06 May 2022
Cited by 4 | Viewed by 2407
Abstract
Nitric oxide (NO), the smallest signalling molecule known in the human body, keeps blood vessels dilated, controls blood pressure, and has numerous other health regulatory effects. The use of Schiff base complexes incorporated onto electrodes to make electrochemical sensors has been explored as [...] Read more.
Nitric oxide (NO), the smallest signalling molecule known in the human body, keeps blood vessels dilated, controls blood pressure, and has numerous other health regulatory effects. The use of Schiff base complexes incorporated onto electrodes to make electrochemical sensors has been explored as an effective method for the determination and quantification of nitric oxide in aqueous solutions. Schiff base ligands were complexed with Cu and Ni metal centres using the microwave synthesis method to produce metal–ligand complexes with enhanced capabilites for NO detection. The electrical current generated at the anode is directly proportional to NO concentrations in the solution through its oxidation to HNO3. Various characterisation techniques were implemented to verify the integrity of each step of metal–ligand synthesis as well as the final product produced, using FT-IR, UV-VIS, and TGA. The as-synthesised Schiff base complexes were electrodeposited on screen-printed carbon electrodes (SPCE) and electrochemically evaluated in a 0.1 M PBS. Furthermore, metal complexes were screened for their in vitro activity towards NO detection in an aqueous solution (PBS). The results show that the investigated sensors (SPCE/Ni-BPND and SPCE/Cu-BPND) respond positively toward NO detection. It was, therefore, identified that the two sensors also do not differ significantly in terms of precision, sensitivity, and lowest detection limit. The sensor strategies demonstrate the NO limits of detection of 0.22 µM and 0.09 µM, and they also demonstrate sensitivity values of 16.3 µA/µM and 13.1 µA/µM for SPCE/Cu-BPND and SPCE/Ni-BPND sensors, respectively. Full article
Show Figures

Figure 1

15 pages, 3228 KiB  
Article
Application of Multiharmonic QCM-D for Detection of Plasmin at Hydrophobic Surfaces Modified by β-Casein
by Sandro Spagnolo, Eric S. Muckley, Ilia N. Ivanov and Tibor Hianik
Chemosensors 2022, 10(4), 143; https://0-doi-org.brum.beds.ac.uk/10.3390/chemosensors10040143 - 11 Apr 2022
Cited by 4 | Viewed by 2419
Abstract
Plasmin protease plays an important role in many processes in living systems, including milk. Monitoring plasmin activity is important for control of the nutritional quality of milk and other dairy products. We designed a biosensor to detect the proteolytic activity of plasmin, using [...] Read more.
Plasmin protease plays an important role in many processes in living systems, including milk. Monitoring plasmin activity is important for control of the nutritional quality of milk and other dairy products. We designed a biosensor to detect the proteolytic activity of plasmin, using multiharmonic quartz crystal microbalance with dissipation (QCM-D). The β-casein immobilized on the hydrophobic surface of 1-dodecanethiol on the AT-cut quartz crystal was used to monitor plasmin activity. We demonstrated detection of plasmin in a concentration range of 0.1–20 nM, with the limit of detection about 0.13 ± 0.01 nM. The analysis of viscoelastic properties of the β-casein layer showed rapid changes of shear elasticity modulus, μ, and coefficient of viscosity, η, at plasmin sub-nanomolar concentrations, followed by modest changes at nanomolar concentrations, indicating multilayer architecture β-casein. A comparative analysis of viscoelastic properties of β-casein layers following plasmin and trypsin cleavage showed that the higher effect of trypsin was due to larger potential cleavage sites of β-casein. Full article
Show Figures

Figure 1

13 pages, 2376 KiB  
Article
Angiotensin-Converting Enzyme 2 (ACE2) As a Novel Biorecognition Element in A Cell-Based Biosensor for the Ultra-Rapid, Ultra-Sensitive Detection of the SARS-CoV-2 S1 Spike Protein Antigen
by Sofia Mavrikou, Vasileios Tsekouras, Kyriaki Hatziagapiou, Asimina Tsalidou, Petros Bakakos, Nikoletta Rovina, Antonia Koutsoukou, Athanasios Michos, Olti Nikola, Eleni Koniari, Joseph Papaparaskevas, George P. Chrousos, Christina Kanaka-Gantenbein and Spyridon Kintzios
Chemosensors 2021, 9(12), 341; https://0-doi-org.brum.beds.ac.uk/10.3390/chemosensors9120341 - 03 Dec 2021
Cited by 6 | Viewed by 2795
Abstract
Antigen screening for the SARS-CoV-2 S1 spike protein is among the most promising tools for the mass monitoring of asymptomatic carriers of the virus, especially in limited resource environments. Herewith, we report on the possible use of the angiotensin-converting enzyme 2 (ACE2), the [...] Read more.
Antigen screening for the SARS-CoV-2 S1 spike protein is among the most promising tools for the mass monitoring of asymptomatic carriers of the virus, especially in limited resource environments. Herewith, we report on the possible use of the angiotensin-converting enzyme 2 (ACE2), the natural receptor and entry point of the virus, as a biorecognition element for the detection of the S1 antigen combined with an established bioelectric biosensor based on membrane-engineered cells. The working principle of our approach is based on the measurable change of the electric potential of membrane-engineered mammalian cells bearing ACE2 after attachment of the respective viral protein. We demonstrate that sensitive and selective detection of the S1 antigen is feasible in just three min, with a limit of detection of 20 fg/mL. In a preliminary clinical application, positive patient-derived samples were identified with a 87.9% score compared to RT-PCR. No cross-reactivity was observed against a wide range of nucleocapsid protein concentrations. The novel biosensor is embedded in a commercially ready-to-use testing platform, complete with the consumable immobilized cell–electrode interface and a portable read-out device operable through smartphone or tablet. In addition, the possible application of the system for the high throughput screening of potential pharmacological inhibitors of the ACE2 receptor-S1 RBD interaction is discussed. Full article
Show Figures

Graphical abstract

14 pages, 4943 KiB  
Article
Highly Fluorescent Carbon Dots as a Potential Fluorescence Probe for Selective Sensing of Ferric Ions in Aqueous Solution
by Raji Atchudan, Somasundaram Chandra Kishore, Thomas Nesakumar Jebakumar Immanuel Edison, Suguna Perumal, Rajangam Vinodh, Ashok K. Sundramoorthy, Rajendran Suresh Babu, Muthulakshmi Alagan and Yong Rok Lee
Chemosensors 2021, 9(11), 301; https://0-doi-org.brum.beds.ac.uk/10.3390/chemosensors9110301 - 25 Oct 2021
Cited by 15 | Viewed by 2658
Abstract
This paper’s emphasis is on the development of a fluorescent chemosensor for Fe3+ ions in an aqueous solution, using hydrophilic carbon dots (O-CDs). A simple, cost-effective, and environmentally friendly one-step hydrothermal synthesis method was used to synthesize fluorescent hydrophilic O [...] Read more.
This paper’s emphasis is on the development of a fluorescent chemosensor for Fe3+ ions in an aqueous solution, using hydrophilic carbon dots (O-CDs). A simple, cost-effective, and environmentally friendly one-step hydrothermal synthesis method was used to synthesize fluorescent hydrophilic O-CDs from Oxalis corniculata (Family; Oxalidaceae). The graphitic structure and size distribution of the O-CDs was verified by X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy studies. The resulting O-CDs had a near-spherical shape and an adequate degree of graphitization at the core, with an average diameter of 4.5 nm. X-ray photoelectron and Fourier transform infrared spectroscopy methods revealed the presence of several hydrophilic groups (carbonyl, amine, carboxyl, and hydroxyl, along with nitrogen and oxygen-rich molecules) on the surface of O-CDs. The synthesized hydrophilic O-CDs with excitation wavelength-dependent emission fluorescence characteristics showed a high quantum yield of about 20%. Besides this, the hydrophilic O-CDs exhibited a bright and controllable fluorescence with prolonged stability and photo-stability. These fluorescent hydrophilic O-CDs were used as a nanoprobe for the fluorometric identification of Fe3+ ions in an aqueous solution, with high sensitivity and selectivity. By quenching the blue emission fluorescence of this nanosensor, a highly sensitive Fe3+ ion in the range of 10–50 µM with a minimum detection limit of 0.73 µM was achieved. In addition, the developed nanosensor can be used to sense intracellular Fe3+ ions with high biocompatibility and cellular imaging capacity, and it has a lot of potential in biomedical applications. Full article
Show Figures

Figure 1

Back to TopTop