Special Issue "Nanocrystalline Materials: Preparation, Structural, Magnetic, Dielectric, Electrical, Optical, Thermal Properties and Applications (Volume II)"

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Inorganic Crystalline Materials".

Deadline for manuscript submissions: 30 June 2022.

Special Issue Editors

Dr. Raghvendra Singh Yadav
E-Mail Website1 Website2
Guest Editor
Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 76001 Zlin, Czech Republic
Interests: magnetic materials; dielectric materials; electrical properties; luminescent nanomaterials; micro-wave absorbing materials; ceramics; materials chemistry; soft matter; nanostructured materials; materials for energy; semiconductor materials; nano-bio composite materials; metals and alloys; nanocomposites; functional materials; optical materials; graphene; polymer nanocomposites; graphene nanocomposites; graphene quantum dots; nanoparticles; nanocomposites; structural properties; magnetic properties; dielectric properties; electrical properties; magnetically recoverable efficient photo-catalysts; data storage; gas sensing; magnetoresistance; other physical properties; synthesis; characterization; hyperthermia cancer treatment; drug delivery; magnetic resonance imaging (MRI) contrast agents; magnetic refrigeration (MR); spintronic devices; ferro-fluids; anode materials for Li-ion batteries; microwave devices; water splitting for hydrogen production; paint industry; super-capacitors; elect
Special Issues, Collections and Topics in MDPI journals
Dr. Anju Anju
E-Mail Website
Guest Editor
Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 76001 Zlin, Czech Republic
Interests: magnetic materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanocrystalline materials have proven a noteworthy consideration due to its extensive technological applications, i.e., anode material for Li-ion battery, super-capacitors, photovoltaic, solar cells, light emitting diodes, displays, spintronic devices, magnetic resonance imaging (MRI) contrast agent, drug-delivery, magnetically recoverable efficient photo-catalyst, ferrofluids, gas sensor, hyperthermia cancer treatment, magnetic refrigeration (MR), data storage devices, microwave devices, paint industry, and water splitting for hydrogen production, etc. Further, the variation in the magnetic, dielectric, electrical, optical and thermal characteristics of nanocrystalline materials in comparison with their bulk, make them very attractive functional material. For technological applications, the performance of nanocrystalline material can be regulated by particle size, morphology, capping, surfactant, doping, and core-shell structure, etc. In addition, a nanocrystalline material of desired physical properties for specific application can be made via. a controllable nucleation and crystal growth of material during chemical synthesis approaches such as hydrothermal method, solvothermal method, coprecipitation method, microemulsion method, sol-gel method, sonochemical method, solution combustion method, microwave synthesis, etc.

The special issue on ‘‘Nanocrystalline Materials: Preparation, Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties and Application (Volume II)’’ is intended to cover a broad description in the field of nanocrystalline materials, its application, synthesis, characterization including investigation of physical properties such as structural, magnetic, dielectric, electrical, optical, and thermal, etc. Researchers and academicians working in the field of nanocrystalline materials are welcome to contribute to this special issue whose scope is intended to cover multiple aspects (from chemistry to physics) of fascinating nanocrystalline material systems.

Dr. Raghvendra Singh Yadav
Dr. Anju Anju
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • preparation
  • nucleation and crystal growth
  • properties
  • applications

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Ultraviolet-Visible-Near Infrared Broadband Photodetector Based on Electronspun Disorder ZnO Nanowires/Ge Quantum Dots Hybrid Structure
Crystals 2022, 12(2), 172; https://0-doi-org.brum.beds.ac.uk/10.3390/cryst12020172 - 25 Jan 2022
Viewed by 122
Abstract
Ultraviolet-visible-near infrared broadband photodetectors have significant prospects in many fields such as image sensing, communication, chemical sensing, and day and nighttime surveillance. Hybrid one-dimensional (1D) and zero-dimensional (0D) materials are attractive for broadband-responsive photodetectors since its unique charges transfer characteristics and facile fabrication [...] Read more.
Ultraviolet-visible-near infrared broadband photodetectors have significant prospects in many fields such as image sensing, communication, chemical sensing, and day and nighttime surveillance. Hybrid one-dimensional (1D) and zero-dimensional (0D) materials are attractive for broadband-responsive photodetectors since its unique charges transfer characteristics and facile fabrication processes. Herein, a Si/ZnO nanowires/Ge quantum dots photodetector has been constructed via processes that combined electrospinning and spin-coating methods. A broadband response behavior from ultraviolet to near-infrared (from 250 to 1550 nm) is observed. The responsivity of the hybrid structure increases around three times from 550 to 1100 nm compared with the pure Si photodetector. Moreover, when the photodetector is illuminated by a light source exceeding 1100 nm, such as 1310 and 1550 nm, there is also a significant photoresponse. Additionally, the ZnO NWs/Ge quantum dots heterostructure is expected to be used in flexible substrates, which benefits from electrospinning and spin-coating processes. The strategy that combines 1D ZnO NWs and 0D solution-processed Ge QDs nanostructures may open a new avenue for flexible and broadband photodetector. Full article
Show Figures

Figure 1

Article
Wide Bandwidth Silicon Nitride Strip-Loaded Grating Coupler on Lithium Niobate Thin Film
Crystals 2022, 12(1), 70; https://0-doi-org.brum.beds.ac.uk/10.3390/cryst12010070 - 05 Jan 2022
Viewed by 121
Abstract
In this research, a vertical silicon nitride strip-loaded grating coupler on lithium niobate thin film was proposed, designed, and simulated. In order to improve the coupling efficiency and bandwidth, the parameters such as the SiO2 cladding layer thickness, grating period, duty cycle, [...] Read more.
In this research, a vertical silicon nitride strip-loaded grating coupler on lithium niobate thin film was proposed, designed, and simulated. In order to improve the coupling efficiency and bandwidth, the parameters such as the SiO2 cladding layer thickness, grating period, duty cycle, fiber position, and fiber angle were optimized and analyzed. The alignment tolerances of the grating coupler parameters were also calculated. The maximum coupling efficiency and the −3 dB bandwidth were optimized to 33.5% and 113 nm, respectively. In addition, the grating coupler exhibited a high alignment tolerance. Full article
Show Figures

Figure 1

Article
Study of Phase Formation Processes in Li2ZrO3 Ceramics Obtained by Mechanochemical Synthesis
Crystals 2022, 12(1), 21; https://0-doi-org.brum.beds.ac.uk/10.3390/cryst12010021 - 24 Dec 2021
Viewed by 283
Abstract
The article is dedicated to the study of the phase formation processes in Li2ZrO3 ceramics obtained by the method of solid phase synthesis. Interest in these types of ceramics is due to their great potential for use as blanket materials [...] Read more.
The article is dedicated to the study of the phase formation processes in Li2ZrO3 ceramics obtained by the method of solid phase synthesis. Interest in these types of ceramics is due to their great potential for use as blanket materials in thermonuclear reactors, as well as being one of the candidates for tritium breeder materials. Analysis of the morphological features of the synthesized ceramics depending on the annealing temperature showed that the average grain size is 90–110 nm; meanwhile the degree of homogeneity is more than 90% according to electronic image data processing results. The temperature dependences of changes in the structural and conducting characteristics, as well as the phase transformation dynamics, have been established. It has been determined that a change in the phase composition by displacing the impurity LiO and ZrO2 phases results in the compaction of ceramics, as well as a decrease in their porosity. These structural changes are due to the displacement of LiO and ZrO2 impurity phases from the ceramic structure and their transformation into the Li2ZrO3 phase. During research, the following phase transformations that directly depend on the annealing temperature were established: LiO/ZrO2/Li2ZrO3 → LiO/Li2ZrO3 → Li2ZrO3. During analysis of the obtained current-voltage characteristics, depending on the annealing temperature, it was discovered that the formation of the Li2ZrO3 ordered phase in the structure results in a rise in resistance by three orders of magnitude, which indicates the dielectric nature of the ceramics. Full article
Show Figures

Figure 1

Article
Evolution of Free Volumes in Polycrystalline BaGa2O4 Ceramics Doped with Eu3+ Ions
Crystals 2021, 11(12), 1515; https://0-doi-org.brum.beds.ac.uk/10.3390/cryst11121515 - 05 Dec 2021
Viewed by 503
Abstract
BaGa2O4 ceramics doped with Eu3+ ions (1, 3 and 4 mol.%) were obtained by solid-phase sintering. The phase composition and microstructural features of ceramics were investigated using X-ray diffraction and scanning electron microscopy in comparison with energy-dispersive methods. Here, [...] Read more.
BaGa2O4 ceramics doped with Eu3+ ions (1, 3 and 4 mol.%) were obtained by solid-phase sintering. The phase composition and microstructural features of ceramics were investigated using X-ray diffraction and scanning electron microscopy in comparison with energy-dispersive methods. Here, it is shown that undoped and Eu3+-doped BaGa2O4 ceramics are characterized by a developed structure of grains, grain boundaries and pores. Additional phases are mainly localized near grain boundaries creating additional defects. The evolution of defect-related extended free volumes in BaGa2O4 ceramics due to the increase in the content of Eu3+ ions was studied using the positron annihilation lifetime spectroscopy technique. It is established that the increase in the number of Eu3+ ions in the basic BaGa2O4 matrix leads to the agglomeration of free-volume defects with their subsequent fragmentation. The presence of Eu3+ ions results in the expansion of nanosized pores and an increase in their number with their future fragmentation. Full article
Show Figures

Figure 1

Article
Influence of Cr/Zr Ratio on Activity of Cr–Zr Oxide Catalysts in Non-Oxidative Propane Dehydrogenation
Crystals 2021, 11(11), 1435; https://0-doi-org.brum.beds.ac.uk/10.3390/cryst11111435 - 22 Nov 2021
Viewed by 295
Abstract
Two series of chromium–zirconium mixed oxide catalysts with different Cr/Zr molar ratio are prepared by co-precipitation method. Porous structure of the catalysts is studied by low-temperature N2 adsorption–desorption. Phase composition and chromium states in the catalysts are characterized by X-ray diffraction (XRD), [...] Read more.
Two series of chromium–zirconium mixed oxide catalysts with different Cr/Zr molar ratio are prepared by co-precipitation method. Porous structure of the catalysts is studied by low-temperature N2 adsorption–desorption. Phase composition and chromium states in the catalysts are characterized by X-ray diffraction (XRD), UV-visible spectroscopy, and temperature-programmed reduction with hydrogen (TPR-H2). The mixed catalysts are tested in non-oxidative dehydrogenation of propane at 550 °C. The catalysts synthesized without ageing of precipitate show higher activity in propane dehydrogenation due to the higher content of reducible Cr+5/+6 species due to its stabilization on the ZrO2 surface. Full article
Show Figures

Figure 1

Back to TopTop