Development, Evaluation and Biomedical Applications of Novel Biomimetic Systems

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Biomaterials for Tissue Engineering and Regenerative Medicine".

Deadline for manuscript submissions: 12 July 2024 | Viewed by 5505

Special Issue Editors


E-Mail
Guest Editor
Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, Israel
Interests: biomimetic drug-delivery systems; ultrasound; polymers penetration enhancers; mass transport across membranes
Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, Israel
Interests: tissue engineering; nanoparticles; drug delivery; bio-medical engineering; biomaterials

Special Issue Information

Dear Colleagues,

In recent years, biomimetic systems are gaining attention as powerful and efficient technology inspired by biological solutions at the macro and nanoscale. In general, biomimetic systems aim to apply the knowledge gained from biological systems in diverse fields of science. Understanding the principles of nature's design, structure, and function enables the development of novel methods and solutions in various areas, such as biology, medicine, engineering, and physics. This technology is a multidisciplinary approach with a wide range of strategies.

In this Special Issue, we wish to focus on *original research papers* describing recent developments, achievements, and biomedical applications inspired by nature. Research topics include drug-delivery systems, regenerative medicine, tissue engineering, organ-on-a-chip systems, biomaterials, and nanotechnology. In this Special Issue, we also welcome review papers covering the requirements of biomimetic systems, the latest advances, and developments in biomimetic systems used for biomedical applications, and the remaining challenges in this field.

Dr. Aharon Azagury
Dr. Malka Shilo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug-delivery systems
  • tissue engineering
  • nanoparticles
  • regenerative medicine
  • biomimetic nanoparticles

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3926 KiB  
Article
Cellulose/Zeolitic Imidazolate Framework (ZIF-8) Composites with Antibacterial Properties for the Management of Wound Infections
by Valentina Di Matteo, Maria Francesca Di Filippo, Barbara Ballarin, Giovanna Angela Gentilomi, Francesca Bonvicini, Silvia Panzavolta and Maria Cristina Cassani
J. Funct. Biomater. 2023, 14(9), 472; https://0-doi-org.brum.beds.ac.uk/10.3390/jfb14090472 - 13 Sep 2023
Viewed by 1788
Abstract
Metal–organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are [...] Read more.
Metal–organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite materials were characterized by several techniques (IR, XRD, SEM, TGA, ICP, and BET) and their antibacterial activity as well as their biocompatibility in a mammalian model system were investigated. The cellulose/ZIF-8 samples remarkably inhibited the growth of Gram-positive and Gram-negative reference strains, and, notably, they proved to be effective against clinical isolates of Staphylococcus epidermidis and Pseudomonas aeruginosa presenting different antibiotic resistance profiles. As these pathogens are of primary importance in skin diseases and in the delayed healing of wounds, and the cellulose/ZIF-8 composites met the requirements of biological safety, the herein materials reveal a great potential for use as gauze pads in the management of wound infections. Full article
Show Figures

Figure 1

19 pages, 4210 KiB  
Article
A Sustainable, Green-Processed, Ag-Nanoparticle-Incorporated Eggshell-Derived Biomaterial for Wound-Healing Applications
by Rosemond A. Mensah, Federico Trotta, Emily Briggs, Nik San Sharifulden, Lady V. Barrios Silva, Zalike Keskin-Erdogan, Seyta Diop, Alvena K. Kureshi and David Y. S. Chau
J. Funct. Biomater. 2023, 14(9), 450; https://0-doi-org.brum.beds.ac.uk/10.3390/jfb14090450 - 01 Sep 2023
Cited by 4 | Viewed by 3396
Abstract
The eggshell membrane (ESM) is a natural biomaterial with unique physical and mechanical properties that make it a promising candidate for wound-healing applications. However, the ESM’s inherent properties can be enhanced through incorporation of silver nanoparticles (AgNPs), which have been shown to have [...] Read more.
The eggshell membrane (ESM) is a natural biomaterial with unique physical and mechanical properties that make it a promising candidate for wound-healing applications. However, the ESM’s inherent properties can be enhanced through incorporation of silver nanoparticles (AgNPs), which have been shown to have antimicrobial properties. In this study, commercially produced AgNPs and green-processed AgNPs were incorporated into ESM and evaluated for their physical, biological, and antimicrobial properties for potential dermal application. The ESM was extracted using various techniques, and then treated with either commercially produced AgNPs (Sigma-Aldrich, Poole, UK) or green-synthesized AgNPs (Metalchemy, London, UK) to produce AgNPs-ESM samples. The physical characteristics of the samples were evaluated using scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and the biological properties were assessed through in vitro studies using human dermal fibroblasts (HDFs) and BJ cells. The SEM analysis of the AgNPs-ESM samples showed localization of AgNPs on the ESM surface, and that the ESM maintained its structural integrity following AgNP incorporation. The FTIR confirmed loading of AgNPs to ESM samples. The biological studies showed that the 5 μg/mL AgNPs-ESM samples were highly biocompatible with both HDFs and BJ cells, and had good viability and proliferation rates. Additionally, the AgNPs-ESM samples demonstrated pro-angiogenic properties in the CAM assay, indicating their potential for promoting new blood vessel growth. Assessment of the antimicrobial activity of the enhanced AgNPs/ESMs was validated using the International Standard ISO 16869:2008 methodology and exploited Cladosporium, which is one of the most commonly identified fungi in wounds, as the test microorganism (≥5 × 106 cells/mL). The AgNPs-ESM samples displayed promising antimicrobial efficacy as evidenced by the measured zone of inhibition. Notably, the green-synthesized AgNPs demonstrated greater zones of inhibition (~17 times larger) compared to commercially available AgNPs (Sigma-Aldrich). Although both types of AgNP exhibited long-term stability, the Metalchemy-modified samples demonstrated a slightly stronger inhibitory effect. Overall, the AgNPs-ESM samples developed in this study exhibited desirable physical, biological, and antimicrobial properties for potential dermal wound-dressing applications. The use of green-processed AgNPs in the fabrication of the AgNPs-ESM samples highlights the potential for sustainable and environmentally friendly wound-healing therapies. Further research is required to assess the long-term biocompatibility and effectiveness of these biomaterials in vivo. Full article
Show Figures

Figure 1

Back to TopTop