materials-logo

Journal Browser

Journal Browser

Advanced Materials and Technologies for Thermal Sprayed Coatings

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Thin Films and Interfaces".

Deadline for manuscript submissions: 20 June 2024 | Viewed by 2391

Special Issue Editors


E-Mail Website
Guest Editor
Materials and Manufacturing Engineering Department, Politehnica University of Timişoara Bd. Mihai Viteazu Nr. 1, 300222 Timişoara, Romania
Interests: coating deposition for wear and corrosion

E-Mail Website
Guest Editor
Research Institute for Renewable Energy, Politehnica University of Timişoara, G. Muzicescu 138, 300501 Timişoara, Romania
Interests: materials characterization; HVOF; HVAF
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Materials Science and Testing, Westphalian University of Applied Sciences Gelsenkirchen Bocholt Recklinghausen, Neidenburger str. 43, 45897 Gelsenkirchen, Germany
Interests: thermal barrier coatings; self-fluxing alloys; marine corrosion; wear resistant cermets; additive manufacturing; PEM fuel cells
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In this Special Issue, we aim to publish scientific contributions on thermal spraying deposition methods addressing such aspects as feedstock manufacturing, coating deposition, post-treatment of sprayed coatings, microstructure characterization, and evaluation of properties.

We encourage the submission of research such that we can, through publication, disseminate original and innovative findings in the field of surface engineering related to thermal spraying methods covering the following topics:

  • Advanced materials manufacturing as feedstock for thermal spraying;
  • New and modern thermal spraying processes;
  • Problems associated with thermal sprayed coatings;
  • Thermal spraying process simulation;
  • Characterization and evaluation of thermal spraying properties.

Scientific papers, engineering articles, communications, and reviews are all welcome for submission and potential publication in this Special Issue “Advanced Materials and Technologies for Thermal Sprayed Coatings”.

Prof. Dr. Dragos Utu
Dr. Iosif Hulka
Dr. Gabriela Mǎrginean
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermal spraying
  • microstructure
  • feedstock manufacture
  • post treatments
  • properties evaluation
  • corrosion behavior
  • wear resistance

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 10931 KiB  
Article
An HVOF-Sprayed (Cr3C2-NiCr+Co) Composite Coating on Ductile Cast Iron: Microstructure, Mechanical Properties, and Scratch Resistance
by Marzanna Ksiazek and Katarzyna Łyp-Wrońska
Materials 2024, 17(7), 1484; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17071484 - 25 Mar 2024
Viewed by 448
Abstract
High-velocity oxy-fuel (HVOF) thermally sprayed Cr3C2-NiCr coatings have been shown to be effective in shielding important machinery and equipment components from wear in harsh, high-temperature conditions. In this investigation, the HVOF thermal spray coating technique was used to deposit [...] Read more.
High-velocity oxy-fuel (HVOF) thermally sprayed Cr3C2-NiCr coatings have been shown to be effective in shielding important machinery and equipment components from wear in harsh, high-temperature conditions. In this investigation, the HVOF thermal spray coating technique was used to deposit Cr3C2-NiCr powder with 10% Co particles onto ductile cast iron. The effect of the Co particles on the mechanical, tribological, and microstructure characteristics of a Cr3C2-NiCr/ductile cast iron system was investigated. The microstructure analysis employed various techniques, including light microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Scratch tests were applied to analyze the coating quality and adhesion. The coatings created using the HVOF spray method with Cr3C2-NiCr powders mixed with Co particles exhibited a dense structure containing large Co particles, partially melted, and very fine Cr3C2 particles embedded into the NiCr alloy matrix. Additionally, they possessed high hardness and excellent adhesion to the substrate. The results of bending strength tests were also presented, together with information on the coating’s microhardness and fracture toughness. These included an analysis of the cracks and delamination in the Cr3C2-NiCr/ductile cast iron system. It was observed that the addition of Co particles significantly increased the resistance to cracking and wear behavior in the studied system. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Thermal Sprayed Coatings)
Show Figures

Figure 1

14 pages, 8542 KiB  
Article
Electrophysical Properties of the Three-Component Multiferroic Ceramic Composites
by Dariusz Bochenek, Przemysław Niemiec, Dagmara Brzezińska, Grzegorz Dercz and Marcin Wąs
Materials 2024, 17(1), 49; https://0-doi-org.brum.beds.ac.uk/10.3390/ma17010049 - 22 Dec 2023
Viewed by 560
Abstract
Using the free (pressureless) sintering method, multiferroic ceramic composites based on two ferroelectric materials, i.e., BaTiO3 (B) and Pb0.94Sr0.06 (Zr0.46Ti0.54)0.99Cr0.01O3 (P), and magnetic material, i.e., zinc–nickel ferrite (F) were obtained. [...] Read more.
Using the free (pressureless) sintering method, multiferroic ceramic composites based on two ferroelectric materials, i.e., BaTiO3 (B) and Pb0.94Sr0.06 (Zr0.46Ti0.54)0.99Cr0.01O3 (P), and magnetic material, i.e., zinc–nickel ferrite (F) were obtained. Three composite compositions (BP-F) were obtained with a constant 90/10 content (ferroelectric/magnetic) and a variable content of the ferroelectric component (B/P), i.e., 70/30, 50/50, and 30/70. Crystalline structure, microstructural, DC electrical conductivity, dielectric, and ferroelectric properties of multiferroic composites were investigated. The concept of a composite consisting of two ferroelectric components ensures the preservation of sufficiently high ferroelectric properties of multiferroic composites sintered by the free sintering method. Research has shown that the percentage of individual ferroelectric components in the composite significantly affects the functional properties and the entire set of physical parameters of the multiferroic BP-F composite. In the case of the dielectric parameters, the best results were obtained for the composition with a more significant amount of BaTiO3; i.e., permittivity is 1265, spontaneous polarization is 7.90 µC/cm2, and remnant polarization is 5.40 µC/cm2. However, the most advantageous set of performance parameters shows the composite composition of 50BP-F. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Thermal Sprayed Coatings)
Show Figures

Figure 1

12 pages, 10525 KiB  
Article
Considerations on the Wear Behavior of Vacuum-Remelted ZrO2-Reinforced Self-Fluxing Ni-Based Thermally Sprayed Alloys
by Norbert Kazamer, Roxana Muntean, Ion-Dragoș Uțu and Gabriela Mărginean
Materials 2023, 16(14), 5183; https://0-doi-org.brum.beds.ac.uk/10.3390/ma16145183 - 24 Jul 2023
Cited by 1 | Viewed by 819
Abstract
Without proper post-processing (often using flame, furnace, laser remelting, and induction) or reinforcements’ addition, Ni-based flame-sprayed coatings generally manifest moderate adhesion to the substrate, high porosity, unmelted particles, undesirable oxides, or weak wear resistance and mechanical properties. The current research aimed to investigate [...] Read more.
Without proper post-processing (often using flame, furnace, laser remelting, and induction) or reinforcements’ addition, Ni-based flame-sprayed coatings generally manifest moderate adhesion to the substrate, high porosity, unmelted particles, undesirable oxides, or weak wear resistance and mechanical properties. The current research aimed to investigate the addition of ZrO2 as reinforcement to the self-fluxing alloy coatings. Mechanically mixed NiCrBSi-ZrO2 powders were thermally sprayed onto an industrially relevant high-grade steel. After thermal spraying, the samples were differently post-processed with a flame gun and with a vacuum furnace, respectively. Scanning electron microscopy showed a porosity reduction for the vacuum-heat-treated samples compared to that of the flame-post-processed ones. X-ray diffraction measurements showed differences in the main peaks of the patterns for the thermal processed samples compared to the as-sprayed ones, these having a direct influence on the mechanical behavior of the coatings. Although a slight microhardness decrease was observed in the case of vacuum-remelted samples, the overall low porosity and the phase differences helped the coating to perform better during wear-resistance testing, realized using a ball-on-disk arrangement, compared to the as-sprayed reference samples. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Thermal Sprayed Coatings)
Show Figures

Figure 1

Back to TopTop