molecules-logo

Journal Browser

Journal Browser

Advances in Green Analytical Chemistry

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Analytical Chemistry".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 1913

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
Interests: pharmaceutical analysis; green chemistry; analytical chemistry; environmental chemistry; subcritical water oxidation; subcritical water extraction and chromatography; supercritical fluid extraction and chromatography; gas chromatography and liquid chromatography; separation and analysis of species from environmental and herbal matrices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Green analytical chemistry is an emerging field where hazardous organic solvents are either eliminated or minimized in analytical chemistry assays. Therefore, alternative green analytical methods are not only environmentally friendly, but also reduce the costs in regard to both solvent purchasing and waste disposal.

The aim of this Special Issue “Advances in Green Analytical Chemistry” is to focus on the application of sub- and supercritical fluids in a wide range of chemical processes as well as other green analytical technologies such as solid-phase microextraction (SPME). The goal of this type of green chemistry is to eliminate or minimize the use of toxic organic solvents in synthesis, cleaning, extraction, chromatography, environmental remediation, and other chemical processes.

Prof. Dr. Yu Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • subcritical water
  • supercritical fluid
  • extraction
  • chromatography
  • organic solvent free
  • ethanol as eluent

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

7 pages, 1782 KiB  
Communication
Rapid and Visual Detection of Volatile Amines Based on Their Gas–Solid Reaction with Tetrachloro-p-Benzoquinone
by Yue-Xiang Sun, Zi-Jian Yan, Wan-Xia Liu, Xiao-Ming Chen, Man-Hua Ding, Lin-Li Tang and Fei Zeng
Molecules 2024, 29(8), 1818; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29081818 - 17 Apr 2024
Viewed by 358
Abstract
The detection of volatile amines is necessary due to the serious toxicity hazards they pose to human skin, respiratory systems, and nervous systems. However, traditional amines detection methods require bulky equipment, high costs, and complex measurements. Herein, we report a new simple, rapid, [...] Read more.
The detection of volatile amines is necessary due to the serious toxicity hazards they pose to human skin, respiratory systems, and nervous systems. However, traditional amines detection methods require bulky equipment, high costs, and complex measurements. Herein, we report a new simple, rapid, convenient, and visual method for the detection of volatile amines based on the gas–solid reactions of tetrachloro-p-benzoquinone (TCBQ) and volatile amines. The gas–solid reactions of TCBQ with a variety of volatile amines showed a visually distinct color in a time-dependent manner. Moreover, TCBQ can be easily fabricated into simple and flexible rapid test strips for detecting and distinguishing n-propylamine from other volatile amines, including ethylamine, n-butyamine, n-pentamine, n-butyamine and dimethylamine, in less than 3 s without any equipment assistance. Full article
(This article belongs to the Special Issue Advances in Green Analytical Chemistry)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 1480 KiB  
Review
A Review: Subcritical Water Extraction of Organic Pollutants from Environmental Matrices
by Erdal Yabalak, Mohammad Tahir Aminzai, Ahmet Murat Gizir and Yu Yang
Molecules 2024, 29(1), 258; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29010258 - 03 Jan 2024
Cited by 1 | Viewed by 1382
Abstract
Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. [...] Read more.
Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery. Full article
(This article belongs to the Special Issue Advances in Green Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop