Celebrating the 18th Anniversary of the Invention of the First Nanogenerators

A special issue of Nanoenergy Advances (ISSN 2673-706X).

Deadline for manuscript submissions: 30 June 2024 | Viewed by 10705

Special Issue Editors


grade E-Mail Website
Guest Editor
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
Interests: piezoelectric/triboelectric nanogenerators; triboelectric mechanisms and piezoelectric (photo)electronics; other applied fundamentals; functional devices; integrated systems research
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Interests: ferroelectric nanomaterials and devices; hybridizd and coupled nanogenerators; self-powered sensors; other energy-scavenging devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The first nanogenerator was invented in 2005 by Wang’s group. Ever since then, several important fields have been coined: piezoelectric nanogenerators, triboelectric nanogenerators, pyro-electric nanogenerators, self-powered sensors, piezotronics, piezo-phototronics, tribotronics, and more. Their invention has inspired a worldwide effort in energy harvesting and sensors for the Internet of things, robotics, artificial intelligence, human–machine interfacing, blue energy, etc. Based on the SCI database, there are 12000 researchers, distributed in over 83 countries and regions, who are engaged with nanogenerators. Through continuous development over the years, there are many types of nanogenerators. The type of energy that can be collected and converted varies from one type of nanogenerator to another. Piezoelectric nanogenerators and triboelectric nanogenerators can collect mechanical energy from the environment. Pyroelectric and thermoelectric nanogenerators can come to harvest thermal energy. With the exception of triboelectric nanogenerators, other different types of nanogenerators are based on different functional materials; for example, piezoelectric materials, ferroelectric materials, thermoelectric materials, etc. Using these multifunctional types of materials, hybridized and coupled nanogenerators can harvest various types of energy with enhanced energy conversion efficiency. On a material basis, the performance of nanogenerators can be enhanced for wider applications in various fields. At the most basic level, the characteristics of nanogenerators allow them to be used not only as sources of power supply but also as self-powered sensors; however, in the era of intelligence, nanogenerators have a wide scope for development and can be combined with the Internet of things as well as artificial intelligence to bring out greater potential.

To celebrate the great success of the nanogenerator field, the journal of Nanoenergy Advances will publish a Special Issue on the occasion of the 18th anniversary of nanogenerators by reporting on the most recent progress in the field. The objective is to continuously promote its development and technological impact. We sincerely invite you to author an article on a topic related to nanogenerators. Thank you very much.

Prof. Dr. Zhong Lin Wang
Prof. Dr. Ya Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanoenergy Advances is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • piezoelectric materials
  • ferroelectric materials
  • thermoelectric materials
  • triboelectric nanogenerators
  • piezoelectric nanogenerators
  • pyroelectric nanogenerators
  • thermoelectric nanogenerators
  • hybridized and coupled nanogenerators
  • self-powered sensors

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 5025 KiB  
Article
Self-Powered Dual-Mode Pressure Sensor Based on Porous Triboelectric Nanogenerator for Use in Smart Home System
by Yuanzheng Zhang, Ju Chong, Yiqian Mao, Xiangyang Gao, Jinmiao He, Hao Wang, Shishang Guo and Haiwu Zheng
Nanoenergy Adv. 2024, 4(1), 97-109; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv4010005 - 04 Feb 2024
Viewed by 554
Abstract
With the rapid evolution of the Internet of Things (IoT), smart home systems have greatly improved people’s lifestyles and quality of life. However, smart home systems based on a single sensor cannot efficiently control multiple terminals, which limits product penetration into lower-end markets. [...] Read more.
With the rapid evolution of the Internet of Things (IoT), smart home systems have greatly improved people’s lifestyles and quality of life. However, smart home systems based on a single sensor cannot efficiently control multiple terminals, which limits product penetration into lower-end markets. Here, we have developed a dual-mode smart home system based on a porous triboelectric nanogenerator (TENG), which effectively compensates for the shortcomings of smart home systems being unable to control multiple appliances through a single switch. Benefitting from the remarkable electronegativity of MXene and the ameliorative specific surface area of the friction layer, the output characteristics of the porous TENG are greatly improved. Under the identical external stimulus, the open-circuit voltage (VOC) and short-circuit current (ISC) of the porous TENG were 3.03 and 3.04 times higher than those of the TENG with a pure PVDF membrane used as the friction layer. Thanks to the excellent output performance and good linear relationship between pressure and voltage, the developed dual-mode smart home system could efficiently control multiple terminals through a single sensor. This work not only provides theoretical support for developing high-performance TENGs but also paves the way to designing multifunctional smart home systems. Full article
Show Figures

Graphical abstract

20 pages, 3229 KiB  
Article
Pyro-Phototronic Effect Enhanced MXene/ZnO Heterojunction Nanogenerator for Light Energy Harvesting
by Mingyan Xue, Fangpei Li, Wenbo Peng, Quanzhe Zhu and Yongning He
Nanoenergy Adv. 2023, 3(4), 401-420; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv3040020 - 04 Dec 2023
Viewed by 875
Abstract
The coupling of pyroelectricity, semiconductor, and optical excitation yields the pyro-phototronic effect, which has been extensively utilized in photodetectors. It can also enhance the performance of light energy harvesting nanogenerators. In this work, a pyro-phototronic effect-enhanced MXene/ZnO heterojunction nanogenerator has been successfully demonstrated, [...] Read more.
The coupling of pyroelectricity, semiconductor, and optical excitation yields the pyro-phototronic effect, which has been extensively utilized in photodetectors. It can also enhance the performance of light energy harvesting nanogenerators. In this work, a pyro-phototronic effect-enhanced MXene/ZnO heterojunction nanogenerator has been successfully demonstrated, which can harvest broadband light energy (from deep UV to near-infrared) and still operate at 200 °C. The morphology of the ZnO layer and the MXene layer’s thickness have been further optimized for better light energy harvesting performance. For the optimized heterojunction nanogenerator, the responsivity can be improved from ~0.2 mA/W to ~3.5 mA/W by pyro-phototronic effect, under 0.0974 mW/cm2 365 nm UV illumination. Moreover, the coupling of pyro-phototronic and piezo-phototronic effects in MXene/ZnO heterojunction nanogenerators has been investigated. The results indicate that only a small tensile strain could improve the nanogenerator’s performance. The working mechanisms have been carefully analyzed, and the modulation of piezoelectric charges on the Schottky barrier height is found to be the key factor. These results demonstrate the enormous potential of the pyro-phototronic effect in light energy harvesting nanogenerators and illustrate the coupling of pyro-phototronic and piezo-phototronic effects for further performance improvement. Full article
Show Figures

Figure 1

12 pages, 2628 KiB  
Article
Multi-Charge Storage Layer Model of High-Charge-Density Triboelectric Nanogenerator
by Xin Cui, Yaming Zhang and Yan Zhang
Nanoenergy Adv. 2023, 3(3), 247-258; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv3030013 - 31 Aug 2023
Viewed by 1101
Abstract
Triboelectric nanogenerators (TENGs) are key technologies for the Internet of Things with energy harvesting. To improve energy conversion efficiency and convert mechanical energy into electrical energy, high charge density in TENGs plays a crucial role in the design of triboelectric materials and device [...] Read more.
Triboelectric nanogenerators (TENGs) are key technologies for the Internet of Things with energy harvesting. To improve energy conversion efficiency and convert mechanical energy into electrical energy, high charge density in TENGs plays a crucial role in the design of triboelectric materials and device structures. This paper proposes mechanisms and strategies to increase TENGs’ charge density through multi-charge storage layers. We also discuss the realization of higher charge densities through material and structure design. The implementation of novel charge storage strategies holds the potential for significant improvements in charge density. Full article
Show Figures

Graphical abstract

11 pages, 4544 KiB  
Article
A Double-Electrode-Layer Wind-Driven Triboelectric Nanogenerator with Low Frictional Resistance and High Mechanical Energy Conversion Efficiency of 10.3%
by Dongyang Fang, Guangqin Gu, Wenhe Zhang, Guangxiang Gu, Cong Wang, Bao Zhang, Gang Cheng and Zuliang Du
Nanoenergy Adv. 2023, 3(3), 236-246; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv3030012 - 08 Aug 2023
Cited by 1 | Viewed by 1099
Abstract
As a new technology for harvesting distributed energy, the triboelectric nanogenerator (TENG) has been widely used in harvesting wind energy. However, the wind-driven TENG (WD-TENG) faces the problems of high frictional resistance and low mechanical energy conversion efficiency. Here, based on optimizing the [...] Read more.
As a new technology for harvesting distributed energy, the triboelectric nanogenerator (TENG) has been widely used in harvesting wind energy. However, the wind-driven TENG (WD-TENG) faces the problems of high frictional resistance and low mechanical energy conversion efficiency. Here, based on optimizing the structure of the wind turbine, a rotational double-electrode-layer WD-TENG (DEL-WD-TENG) is developed. When the rotational speed is less than 400 round per minute (rpm), the dielectric triboelectric layer rubs with the inner electrode layer under its gravity; when the rotational speed is higher than 400 rpm, the dielectric triboelectric layer rubs with the outer electrode layer under the centrifugal force. The double-electrode-layer structure avoids the energy loss caused by other forces except gravity, centrifugal, and electrostatic adsorption, which improves the mechanical energy conversion efficiency and prolongs the working life of the DEL-WD-TENG. The conversion efficiency from mechanical energy to electricity of the DEL-WD-TENG can reach 10.3%. After 7 million cycles, the transferred charge of the DEL-WD-TENG is reduced by about 5.0%, and the mass loss of dielectric triboelectric layer is only 5.6%. The DEL-WD-TENG with low frictional resistance and high energy conversion efficiency has important application prospects in wind energy harvesting and self-powered sensing systems. Full article
Show Figures

Figure 1

16 pages, 7663 KiB  
Article
Correlation between the Dimensions and Piezoelectric Properties of ZnO Nanowires Grown by PLI-MOCVD with Different Flow Rates
by Quang Chieu Bui, Vincent Consonni, Carmen Jiménez, Hervé Roussel, Xavier Mescot, Bassem Salem and Gustavo Ardila
Nanoenergy Adv. 2023, 3(3), 220-235; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv3030011 - 02 Aug 2023
Viewed by 974
Abstract
Zinc oxide nanowires (ZnO NWs) have gained considerable attention in the field of piezoelectricity in the past two decades. However, the impact of growth-process conditions on their dimensions and polarity, as well as the piezoelectric properties, has not been fully explored, specifically when [...] Read more.
Zinc oxide nanowires (ZnO NWs) have gained considerable attention in the field of piezoelectricity in the past two decades. However, the impact of growth-process conditions on their dimensions and polarity, as well as the piezoelectric properties, has not been fully explored, specifically when using pulsed-liquid injection metal–organic chemical vapor deposition (PLI-MOCVD). In this study, we investigate the influence of the O2 gas and DEZn solution flow rates on the formation process of ZnO NWs and their related piezoelectric properties. While the length and diameter of ZnO NWs were varied by adjusting the flow-rate conditions through different growth regimes limited either by the O2 gas or DEZn reactants, their polarity was consistently Zn-polar, as revealed by piezoresponse force microscopy. Moreover, the piezoelectric coefficient of ZnO NWs exhibits a strong correlation with their length and diameter. The highest mean piezoelectric coefficient of 3.7 pm/V was measured on the ZnO NW array with the length above 800 nm and the diameter below 65 nm. These results demonstrate the ability of the PLI-MOCVD system to modify the dimensions of ZnO NWs, as well as their piezoelectric properties. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

27 pages, 11679 KiB  
Review
Networking Strategies of Triboelectric Nanogenerators for Harvesting Ocean Blue Energy
by Xianye Li, Liang Xu and Zhong Lin Wang
Nanoenergy Adv. 2024, 4(1), 70-96; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv4010004 - 22 Jan 2024
Viewed by 782
Abstract
The utilization of abundant blue energy in the ocean could greatly contribute to achieving carbon neutrality. However, the unsolved economic and technical challenges of traditional technologies for harvesting blue energy have resulted in slow progress. Triboelectric nanogenerators (TENGs), as a new approach for [...] Read more.
The utilization of abundant blue energy in the ocean could greatly contribute to achieving carbon neutrality. However, the unsolved economic and technical challenges of traditional technologies for harvesting blue energy have resulted in slow progress. Triboelectric nanogenerators (TENGs), as a new approach for converting mechanical energy into electricity, have great potential for blue energy harvesting, which can be connected as networks with different numbers of units for varying scales of energy harvesting. Here, recent advances of networking strategies of TENGs for harvesting blue energy are reviewed, mainly concerning mechanical and electrical connection designs. Anchoring strategies of devices and networks are also discussed. The development of TENG networks could provide an effective solution for large-scale ocean blue energy harvesting, which can also serve as an in-situ energy station or power source for self-powered systems, supporting various marine equipment and activities. Full article
Show Figures

Figure 1

25 pages, 5857 KiB  
Review
Recent Progress of Bioinspired Triboelectric Nanogenerators for Electronic Skins and Human–Machine Interaction
by Baosen Zhang, Yunchong Jiang, Baojin Chen, Haidong Li and Yanchao Mao
Nanoenergy Adv. 2024, 4(1), 45-69; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv4010003 - 17 Jan 2024
Viewed by 719
Abstract
Advances in biomimetic triboelectric nanogenerators (TENGs) have significant implications for electronic skin (e-skin) and human–machine interaction (HMI). Emphasizing the need to mimic complex functionalities of natural systems, particularly human skin, TENGs leverage triboelectricity and electrostatic induction to bridge the gap in traditional electronic [...] Read more.
Advances in biomimetic triboelectric nanogenerators (TENGs) have significant implications for electronic skin (e-skin) and human–machine interaction (HMI). Emphasizing the need to mimic complex functionalities of natural systems, particularly human skin, TENGs leverage triboelectricity and electrostatic induction to bridge the gap in traditional electronic devices’ responsiveness and adaptability. The exploration begins with an overview of TENGs’ operational principles and modes, transitioning into structural and material biomimicry inspired by plant and animal models, proteins, fibers, and hydrogels. Key applications in tactile sensing, motion sensing, and intelligent control within e-skins and HMI systems are highlighted, showcasing TENGs’ potential in revolutionizing wearable technologies and robotic systems. This review also addresses the challenges in performance enhancement, scalability, and system integration of TENGs. It points to future research directions, including optimizing energy conversion efficiency, discovering new materials, and employing micro-nanostructuring techniques for enhanced triboelectric charges and energy conversion. The scalability and cost-effectiveness of TENG production, pivotal for mainstream application, are discussed along with the need for versatile integration with various electronic systems. The review underlines the significance of making bioinspired TENGs more accessible and applicable in everyday technology, focusing on compatibility, user comfort, and durability. Conclusively, it underscores the role of bioinspired TENGs in advancing wearable technology and interactive systems, indicating a bright future for these innovations in practical applications. Full article
Show Figures

Figure 1

33 pages, 17037 KiB  
Review
Direct Current Triboelectric Nanogenerators, a Perspective from Material Selections
by Xiang Li, Di Wei and Zhong Lin Wang
Nanoenergy Adv. 2023, 3(4), 343-375; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv3040018 - 03 Nov 2023
Cited by 2 | Viewed by 1435
Abstract
With the global energy shortages, sustainable energy scavenging from the natural environment is desperately needed. Unlike solar cell or wind power, which depends heavily on weather conditions, triboelectric nanogenerator (TENG) has received extensive attention as an efficient all–weather energy–harvesting technology. Based on the [...] Read more.
With the global energy shortages, sustainable energy scavenging from the natural environment is desperately needed. Unlike solar cell or wind power, which depends heavily on weather conditions, triboelectric nanogenerator (TENG) has received extensive attention as an efficient all–weather energy–harvesting technology. Based on the coupling principle of contact electrification (CE) and electrostatic induction, conventional TENGs convert mechanical energy into an alternating current (AC) output. However, the typically distributed sensor systems in the ubiquitous Internet of Things (IoTs) request a direct current (DC) input. Direct current triboelectric nanogenerators (DC-TENGs) with the constant output characteristic are critical to satisfy the above requirements. Here, DC-TENGs were reviewed from the perspective of material selections. As device performance is mainly determined by material properties, the development of DC-TENGs could be divided into three categories based on dielectric materials, semiconductor materials, and materials for iontronic rectifications. The operating mechanism and influencing factors of various types of DC-TENG were summarized, representative applications were demonstrated, and the main challenges of future developments were also discussed. Full article
Show Figures

Figure 1

28 pages, 8391 KiB  
Review
Hydrogel-Based Energy Harvesters and Self-Powered Sensors for Wearable Applications
by Zhaosu Wang, Ning Li, Zhiyi Zhang, Xiaojing Cui and Hulin Zhang
Nanoenergy Adv. 2023, 3(4), 315-342; https://0-doi-org.brum.beds.ac.uk/10.3390/nanoenergyadv3040017 - 16 Oct 2023
Cited by 2 | Viewed by 1735
Abstract
Collecting ambient energy to power various wearable electronics is considered a prospective approach to addressing their energy consumption. Mechanical and thermal energies are abundantly available in the environment and can be efficiently converted into electricity based on different physical effects. Hydrogel-based energy harvesters [...] Read more.
Collecting ambient energy to power various wearable electronics is considered a prospective approach to addressing their energy consumption. Mechanical and thermal energies are abundantly available in the environment and can be efficiently converted into electricity based on different physical effects. Hydrogel-based energy harvesters have turned out to be a promising solution, owing to their unique properties including flexibility and biocompatibility. In this review, we provide a concise overview of the methods and achievements in hydrogel-based energy harvesters, including triboelectric nanogenerators, piezoelectric nanogenerators, and thermoelectric generators, demonstrating their applications in power generation, such as LED lighting and capacitor charging. Furthermore, we specifically focus on their applications in self-powered wearables, such as detecting human motion/respiration states, monitoring joint flexion, promoting wound healing, and recording temperature. In addition, we discuss the progress in the sensing applications of hydrogel-based self-powered electronics by hybridizing multiple energy conversion in the field of wearables. This review analyzes hydrogel-based energy harvesters and their applications in self-powered sensing for wearable devices, with the aim of stimulating ongoing advancements in the field of smart sensors and intelligent electronics. Full article
Show Figures

Graphical abstract

Back to TopTop