Special Issue "Multitarget Drug Discovery and Pharmacology"

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 15 April 2022.

Special Issue Editor

Prof. Dr. Óscar López
E-Mail Website
Guest Editor
Department of Organic Chemistry, University of Seville, Sevilla, Spain

Special Issue Information

Dear Colleagues,

The incidence of chronic multifactorial diseases has been increasing dramatically in the last few years, which has led to an important economic burden to both families and public health systems. Apart from a high prevalence within our society, diseases like diabetes, cancer, and cardiovascular or neurodegenerative diseases, among others, also share a tremendous complex etiology. A plethora of different factors can develop such diseases, such as genetic, environmental or lifestyles, yielding a complicated pathological network many of whose components are not even completely understood nowadays.

For this reason, the classical one drug–one target approach, where drugs are designed for interacting only with a single biological target, avoiding interactions with off-target receptors, is not effective against multifactorial diseases. The use of drug cocktails is usually the best available option for the treatment of complex diseases, but it is endowed with numerous disadvantages, such as undesired drug–drug interactions leading to severe side-effects, or reduced patient compliance for the intake of several drugs.

The lack of efficiency of traditional drug therapies has stimulated pharmacological research for searching alternative approaches; as a result, the multi-target-directed ligands approach (MTDL) recently emerged with the aim of overcoming these limitations; in this approach, small molecules are capable of simultaneously modulating several relevant therapeutic targets of a certain disease. Interest in MTDLs is experiencing a continuous increase, supported by the number of scientific publications on this topic, together with the fact that numerous drugs with a multitarget mode of action have already been approved by FDA.

The aim of this Special Issue is to provide an overview of recent pharmacological research of MTDL’s against multifactorial diseases; topics will include but are not limited to cancer, Alzheimer’s, Parkinson, diabetes, and infectious diseases.

Prof. Dr. Óscar López
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Multifactorial diseases
  • Multitarget drugs
  • Cancer
  • Neurodegenerative diseases
  • Diabetes
  • Infectious diseases

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
STW 5 Herbal Preparation Modulates Wnt3a and Claudin 1 Gene Expression in Zebrafish IBS-like Model
Pharmaceuticals 2021, 14(12), 1234; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14121234 - 28 Nov 2021
Viewed by 461
Abstract
Aim: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal pain and stool irregularities. STW 5 has proven clinical efficacy in functional gastrointestinal disorders, including IBS, targeting pathways that suppress inflammation and protect the mucosa. Wnt signaling is known [...] Read more.
Aim: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal pain and stool irregularities. STW 5 has proven clinical efficacy in functional gastrointestinal disorders, including IBS, targeting pathways that suppress inflammation and protect the mucosa. Wnt signaling is known to modulate NF-kβ-dependent inflammatory cytokine production. This sparked the idea of evaluating the impact of STW 5 on the expression of inflammatory-response and Wnt/β catenin-target genes in an IBS-like model. Main methods: We used zebrafish and dextran sodium sulfate (DSS) treatment to model IBS-like conditions in vivo and in vitro and examined the effects of subsequent STW 5 treatment on the intestines of DSS-treated fish and primary cultured intestinal and neuronal cells. Gross gut anatomy, histology, and the expression of Wnt-signaling and cytokine genes were analyzed in treated animals and/or cells, and in controls. Key findings: DSS treatment up-regulated the expression of interleukin-8, tumor necrosis factor-α, wnt3a, and claudin-1 in explanted zebrafish gut. Subsequent STW 5 treatment abolished both the macroscopic signs of gut inflammation, DSS-induced mucosecretory phenotype, and normalized the DSS-induced upregulated expression of il10 and Wnt signaling genes, such as wnt3a and cldn1 in explanted zebrafish gut. Under inflammatory conditions, STW 5 downregulated the expression of the pro-inflammatory cytokine genes il1β, il6, il8, and tnfα while it upregulated the expression of the anti-inflammatory genes il10 and wnt3a in enteric neuronal cells in vitro. Significance: Wnt signaling could be a novel target for the anti-inflammatory and intestinal permeability-restoring effects of STW 5, possibly explaining its clinical efficacy in IBS. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Figure 1

Article
The Specificity and Broad Multitarget Properties of Ligands for the Free Fatty Acid Receptors FFA3/GPR41 and FFA2/GPR43 and the Related Hydroxycarboxylic Acid Receptor HCA2/GPR109A
Pharmaceuticals 2021, 14(10), 987; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14100987 - 28 Sep 2021
Viewed by 629
Abstract
The paradigm of ligand-receptor interactions postulated as “one compound—one target” has been evolving; a multi-target, pleiotropic approach is now considered to be realistic. Novel series of 1,4,5,6,7,8-hexahydro-5-oxoquinolines, pyranopyrimidines and S-alkyl derivatives of pyranopyrimidines have been synthesized in order to characterise their pleiotropic, multitarget [...] Read more.
The paradigm of ligand-receptor interactions postulated as “one compound—one target” has been evolving; a multi-target, pleiotropic approach is now considered to be realistic. Novel series of 1,4,5,6,7,8-hexahydro-5-oxoquinolines, pyranopyrimidines and S-alkyl derivatives of pyranopyrimidines have been synthesized in order to characterise their pleiotropic, multitarget activity on the FFA3/GPR41, FFA2/GPR43, and HCA2/GPR109A receptors. Hexahydroquinoline derivatives have been known to exhibit characteristic activity as FFA3/GPR41 ligands, but during this study we observed their impact on FFA2/GPR43 and HCA2/GPR109A receptors as well as their electron-donating activity. Oxopyranopyrimidine and thioxopyranopyrimidine type compounds have been studied as ligands of the HCA2/GPR109A receptor; nevertheless, they exhibited equal or higher activity towards FFA3/GPR41 and FFA2/GPR43 receptors. S-Alkyl derivatives of pyranopyrimidines that have not yet been studied as ligands of GPCRs were more active towards HCA2/GPR109A and FFA3/GPR41 receptors than towards FFA2/GPR43. Representative compounds from each synthesized series were able to decrease the lipopolysaccharide-induced gene expression and secretion of proinflammatory cytokines (IL-6, TNF-α) and of a chemokine (MCP-1) in THP-1 macrophages, resembling the effect of HCA2/GPR109A ligand niacin and the endogenous ligand propionate. This study revealed groups of compounds possessing multitarget activity towards several receptors. The obtained data could be useful for further development of multitarget ligands. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Graphical abstract

Article
In Silico-Based Design and In Vivo Evaluation of an Anthranilic Acid Derivative as a Multitarget Drug in a Diet-Induced Metabolic Syndrome Model
Pharmaceuticals 2021, 14(9), 914; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14090914 - 10 Sep 2021
Cited by 1 | Viewed by 1476
Abstract
Metabolic syndrome (MetS) is a complex disease that affects almost a quarter of the world’s adult population. In MetS, diabetes, obesity, hyperglycemia, high cholesterol, and high blood pressure are the most common disorders. Polypharmacy is the most used strategy for managing conditions related [...] Read more.
Metabolic syndrome (MetS) is a complex disease that affects almost a quarter of the world’s adult population. In MetS, diabetes, obesity, hyperglycemia, high cholesterol, and high blood pressure are the most common disorders. Polypharmacy is the most used strategy for managing conditions related to MetS, but it has drawbacks such as low medication adherence. Multitarget ligands have been proposed as an interesting approach to developing drugs to treat complex diseases. However, suitable preclinical models that allow their evaluation in a context closer to a clinical situation of a complex disease are needed. From molecular docking studies, compound 1b, a 5-aminoanthranilic acid derivative substituted with 4′-trifluoromethylbenzylamino and 3′,4′-dimethoxybenzamide moieties, was identified as a potential multitarget drug, as it showed high in silico affinity against targets related to MetS, including PPAR-α, PPAR-γ, and HMG-CoA reductase. It was evaluated in a diet-induced MetS rat model and simultaneously lowered blood pressure, glucose, total cholesterol, and triglyceride levels after a 14-day treatment. No toxicity events were observed during an acute lethal dose evaluation test at 1500 mg/kg. Hence, the diet-induced MetS model is suitable for evaluating treatments for MetS, and compound 1b is an attractive starting point for developing multitarget drugs. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Figure 1

Article
Selective DNA Gyrase Inhibitors: Multi-Target in Silico Profiling with 3D-Pharmacophores
Pharmaceuticals 2021, 14(8), 789; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14080789 - 10 Aug 2021
Viewed by 983
Abstract
DNA gyrase is an important target for the development of novel antibiotics. Although ATP-competitive DNA gyrase (GyrB) inhibitors are a well-studied class of antibacterial agents, there is currently no representative used in therapy, largely due to unwanted off-target activities. Selectivity of GyrB inhibitors [...] Read more.
DNA gyrase is an important target for the development of novel antibiotics. Although ATP-competitive DNA gyrase (GyrB) inhibitors are a well-studied class of antibacterial agents, there is currently no representative used in therapy, largely due to unwanted off-target activities. Selectivity of GyrB inhibitors against closely related human ATP-binding enzymes should be evaluated early in development to avoid off-target binding to homologous binding domains. To address this challenge, we developed selective 3D-pharmacophore models for GyrB, human topoisomerase IIα (TopoII), and the Hsp90 N-terminal domain (NTD) to be used in in silico activity profiling paradigms to identify molecules selective for GyrB over TopoII and Hsp90, as starting points for hit expansion and lead optimization. The models were used to profile highly active GyrB, TopoII, and Hsp90 inhibitors. Selected compounds were tested in in vitro assays. GyrB inhibitors 1 and 2 were inactive against TopoII and Hsp90, while 3 and 4, potent Hsp90 inhibitors, displayed no inhibition of GyrB and TopoII, and TopoII inhibitors 5 and 6 were inactive at GyrB and Hsp90. The results provide a proof of concept for the use of target activity profiling methods to identify selective starting points for hit and lead identification. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Graphical abstract

Article
Aryl Urea Based Scaffolds for Multitarget Drug Discovery in Anticancer Immunotherapies
Pharmaceuticals 2021, 14(4), 337; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14040337 - 06 Apr 2021
Cited by 2 | Viewed by 633
Abstract
Twenty-one styryl and phenethyl aryl ureas have been synthetized and biologically evaluated as multitarget inhibitors of Vascular endothelial growth factor receptor-2 VEGFR-2 and programmed death-ligand-1 (PD-L1) proteins in order to overcome resistance phenomena offered by cancer. The antiproliferative activity of these molecules on [...] Read more.
Twenty-one styryl and phenethyl aryl ureas have been synthetized and biologically evaluated as multitarget inhibitors of Vascular endothelial growth factor receptor-2 VEGFR-2 and programmed death-ligand-1 (PD-L1) proteins in order to overcome resistance phenomena offered by cancer. The antiproliferative activity of these molecules on several tumor cell lines (HT-29, MCF-7, HeLa and A549), on the endothelial cell line human microvascular endothelial cells (HMEC)-1 and on the non-tumor cell line human embryonic kidney cells (HEK)-293 has been determined. Some derivatives were evaluated for their antiangiogenic properties such as their ability to inhibit microvessel formation using HMEC-1 or their effect on VEGFR-2 in both cancer and endothelial cell lines. In addition, the immunomodulator action of a number of selected compounds was also studied on PD-L1 and c-Myc proteins. Compounds 16 and 23 (Z) and (E)-styryl p-bromophenyl urea, respectively, showed better results than sorafenib in down-regulation of VEGFR-2 and also improved the effect of the anti-PD-L1 compound BMS-8 on both targets, PD-L1 and c-Myc proteins. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Graphical abstract

Article
Masked Phenolic-Selenium Conjugates: Potent and Selective Antiproliferative Agents Overcoming P-gp Resistance
Pharmaceuticals 2020, 13(11), 358; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13110358 - 31 Oct 2020
Cited by 3 | Viewed by 926
Abstract
Cancer accounts for one of the most complex diseases nowadays due to its multifactorial nature. Despite the vast number of cytotoxic agents developed so far, good therapeutic approaches are not always reached. In recent years, multitarget drugs are gaining great attention against multifactorial [...] Read more.
Cancer accounts for one of the most complex diseases nowadays due to its multifactorial nature. Despite the vast number of cytotoxic agents developed so far, good therapeutic approaches are not always reached. In recent years, multitarget drugs are gaining great attention against multifactorial diseases in contraposition to polypharmacy. Herein we have accomplished the conjugation of phenolic derivatives with an ample number of organochalcogen motifs with the aim of developing novel antiproliferative agents. Their antioxidant, and antiproliferative properties (against six tumour and one non-tumour cell lines) were analysed. Moreover, in order to predict P-gp-mediated chemoresistance, the P-glycoprotein assay was also conducted in order to determine whether compounds prepared herein could behave as substrates of that glycoprotein. Selenium derivatives were found to be significantly stronger antiproliferative agents than their sulfur isosters. Moreover, the length and the nature of the tether, together with the nature of the organoselenium scaffold were also found to be crucial features in the observed bioactivities. The lead compound, bearing a methylenedioxyphenyl moiety, and a diselenide functionality, showed a good activity (GI50 = 0.88‒2.0 µM) and selectivity towards tumour cell lines (selectivity index: 14‒32); moreover, compounds considered herein were not substrates for the P-gp efflux pump, thus avoiding the development of chemoresistance coming from such mechanism, commonly found for widely-used chemotherapeutic agents. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Graphical abstract

Article
Novel Sulfonamide-Based Analogs of Metformin Exert Promising Anti-Coagulant Effects without Compromising Glucose-Lowering Activity
Pharmaceuticals 2020, 13(10), 323; https://0-doi-org.brum.beds.ac.uk/10.3390/ph13100323 - 21 Oct 2020
Cited by 2 | Viewed by 1045
Abstract
Metformin, one of the most frequently prescribed oral anti-diabetic drugs, is characterized by multidirectional activity, including lipid lowering, cardio-protective and anti-inflammatory properties. This study presents synthesis and stability studies of 10 novel sulfonamide-based derivatives of metformin with alkyl substituents in the aromatic ring. [...] Read more.
Metformin, one of the most frequently prescribed oral anti-diabetic drugs, is characterized by multidirectional activity, including lipid lowering, cardio-protective and anti-inflammatory properties. This study presents synthesis and stability studies of 10 novel sulfonamide-based derivatives of metformin with alkyl substituents in the aromatic ring. The potential of the synthesized compounds as glucose-lowering agents and their effects on selected parameters of plasma and vascular hemostasis were examined. Compounds with two or three methyl groups in the aromatic ring (6, 7, 9, 10) significantly increased glucose uptake in human umbilical vein endothelial cells (HUVECs), e.g., 15.8 µmol/L for comp. 6 at 0.3 µmol/mL versus 11.4 ± 0.7 µmol/L for control. Basic coagulation studies showed that all examined compounds inhibit intrinsic coagulation pathway and the process of fibrin polymerization stronger than the parent drug, metformin, which give evidence of their greater anti-coagulant properties. Importantly, synthesized compounds decrease the activity of factor X, a first member of common coagulation pathway, while metformin does not affect coagulation factor X (FX) activity. A multiparametric clot formation and lysis test (CL-test) revealed that the examined compounds significantly prolong the onset of clot formation; however, they do not affect the overall potential of clot formation and fibrinolysis. Erythrotoxicity studies confirmed that none of the synthesized compounds exert an adverse effect on erythrocyte integrity, do not contribute to the massive hemolysis and do not interact strongly with the erythrocyte membrane. In summary, chemical modification of metformin scaffold into benzenesulfonamides containing alkyl substituents leads to the formation of potential dual-action agents with comparable glucose-lowering properties and stronger anti-coagulant activity than the parent drug, metformin. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus
Pharmaceuticals 2021, 14(8), 806; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14080806 - 17 Aug 2021
Cited by 5 | Viewed by 1697
Abstract
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin [...] Read more.
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulphonylureas, meglinides), alpha-glucosidase inhibitors, and the newest incretin-based therapies and sodium–glucose co-transporter 2 inhibitors. However, their long-term application can cause many harmful side effects, emphasising the importance of the using natural therapeutic products. Natural health substances including non-flavonoid polyphenols (e.g., resveratrol, curcumin, tannins, and lignans), flavonoids (e.g., anthocyanins, epigallocatechin gallate, quercetin, naringin, rutin, and kaempferol), plant fruits, vegetables and other products (e.g., garlic, green tea, blackcurrant, rowanberry, bilberry, strawberry, cornelian cherry, olive oil, sesame oil, and carrot) may be a safer alternative to primary pharmacological therapy. They are recommended as food supplements to prevent and/or ameliorate T2DM-related complications. In the advanced stage of T2DM, the combination therapy of synthetic agents and natural compounds with synergistic interactions makes the treatment more efficient. In this review, both pharmaceutical drugs and selected natural products, as well as combination therapies, are characterized. Mechanisms of their action and possible negative side effects are also provided. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Graphical abstract

Review
Dipeptidyl Peptidase (DPP)-IV Inhibitors with Antioxidant Potential Isolated from Natural Sources: A Novel Approach for the Management of Diabetes
Pharmaceuticals 2021, 14(6), 586; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14060586 - 18 Jun 2021
Cited by 3 | Viewed by 1058
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia that is predominantly caused by insulin resistance or impaired insulin secretion, along with disturbances in carbohydrate, fat and protein metabolism. Various therapeutic approaches have been used to treat diabetes, including improvement of insulin sensitivity, [...] Read more.
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia that is predominantly caused by insulin resistance or impaired insulin secretion, along with disturbances in carbohydrate, fat and protein metabolism. Various therapeutic approaches have been used to treat diabetes, including improvement of insulin sensitivity, inhibition of gluconeogenesis, and decreasing glucose absorption from the intestines. Recently, a novel approach has emerged using dipeptidyl peptidase-IV (DPP-IV) inhibitors as a possible agent for the treatment of T2DM without producing any side effects, such as hypoglycemia and exhaustion of pancreatic β-cells. DPP-IV inhibitors improve hyperglycemic conditions by stabilizing the postprandial level of gut hormones such as glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides, which function as incretins to help upregulate insulin secretion and β-cell mass. In this review, we summarized DPP-IV inhibitors and their mechanism of inhibition, activities of those isolated from various natural sources, and their capacity to overcome oxidative stress in disease conditions. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Figure 1

Back to TopTop