Previous Issue
Volume 17, April
 
 

Pharmaceuticals, Volume 17, Issue 5 (May 2024) – 44 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 2367 KiB  
Article
Amber (Succinite) Extract Enhances Glucose Uptake through the Up-Regulation of ATP and Down-Regulation of ROS in Mouse C2C12 Cells
by Mahmoud Ben Othman, Reiko Takeda, Marie Sekita, Kazuma Okazaki and Kazuichi Sakamoto
Pharmaceuticals 2024, 17(5), 586; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050586 - 03 May 2024
Viewed by 129
Abstract
Traditionally, amber (Succinite) has been used to alleviate all types of pain, skin allergies, and headaches. However, no studies have been conducted on its antidiabetic and antioxidant effects. In this study, differentiated skeletal muscle C2C12 cells were used to demonstrate the protective effects [...] Read more.
Traditionally, amber (Succinite) has been used to alleviate all types of pain, skin allergies, and headaches. However, no studies have been conducted on its antidiabetic and antioxidant effects. In this study, differentiated skeletal muscle C2C12 cells were used to demonstrate the protective effects of amber (AMB) against H2O2-induced cell death. In addition, the effects of AMB on glucose uptake and ATP production were investigated. Our results showed that AMB at 10, 25, and 50 μg/mL suppressed the elevation of ROS production induced by H2O2 in a dose-dependent manner. Moreover, AMB enhanced glucose utilization in C2C12 cells through the improvement of ATP production and an increase in PGC-1α gene expression resulting in an amelioration of mitochondrial activity. On the other hand, AMB significantly increased the gene expression of glucose transporters GLUT4 and GLUT1. Our finding suggests that AMB can be used as a natural supplement for diabetes treatment and for the promotion of skeletal muscle function. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

16 pages, 3366 KiB  
Article
Hydrogen Sulfide Delivery to Enhance Bone Tissue Engineering Cell Survival
by Soheila Ali Akbari Ghavimi, Trent J. Faulkner, Rama Rao Tata, August J. Hemmerla, Samantha E. Huddleston, Farnoushsadat Rezaei, Ethan S. Lungren, Rui Zhang, Erin E. Bumann and Bret D. Ulery
Pharmaceuticals 2024, 17(5), 585; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050585 - 02 May 2024
Viewed by 295
Abstract
Though crucial for natural bone healing, local calcium ion (Ca2+) and phosphate ion (Pi) concentrations can exceed the cytotoxic limit leading to mitochondrial overload, oxidative stress, and cell death. For bone tissue engineering applications, H2S can be [...] Read more.
Though crucial for natural bone healing, local calcium ion (Ca2+) and phosphate ion (Pi) concentrations can exceed the cytotoxic limit leading to mitochondrial overload, oxidative stress, and cell death. For bone tissue engineering applications, H2S can be employed as a cytoprotective molecule to enhance mesenchymal stem cell (MSC) tolerance to cytotoxic Ca2+/Pi concentrations. Varied concentrations of sodium hydrogen sulfide (NaSH), a fast-releasing H2S donor, were applied to assess the influence of H2S on MSC proliferation. The results suggested a toxicity limit of 4 mM for NaSH and that 1 mM of NaSH could improve cell proliferation and differentiation in the presence of cytotoxic levels of Ca2+ (32 mM) and/or Pi (16 mM). To controllably deliver H2S over time, a novel donor molecule (thioglutamic acid—GluSH) was synthesized and evaluated for its H2S release profile. Excitingly, GluSH successfully maintained cytoprotective level of H2S over 7 days. Furthermore, MSCs exposed to cytotoxic Ca2+/Pi concentrations in the presence of GluSH were able to thrive and differentiate into osteoblasts. These findings suggest that the incorporation of a sustained H2S donor such as GluSH into CaP-based bone graft substitutes can facilitate considerable cytoprotection, making it an attractive option for complex bone regenerative engineering applications. Full article
(This article belongs to the Special Issue New Advances in Mesenchymal Stromal Cells as Therapeutic Tools)
Show Figures

Graphical abstract

17 pages, 1969 KiB  
Article
Structural Modification and Optimisation of Hyperoside Oriented to Inhibit TGF-β-Induced EMT Activity in Alveolar Epithelial Cells
by Ziye Gao, Mengzhen Xu, Chuanguo Liu, Kai Gong, Xin Yu, Kaihui Lu, Jiang Zhu, Haixing Guan and Qingjun Zhu
Pharmaceuticals 2024, 17(5), 584; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050584 - 02 May 2024
Viewed by 127
Abstract
Pulmonary fibrosis (PF) is a disease characterised by diffuse nonspecific alveolar inflammation with interstitial fibrosis, which clinically manifests as dyspnoea and a significant decline in lung function. Many studies have shown that the epithelial–mesenchymal transition (EMT) plays a pivotal role in the pathogenesis [...] Read more.
Pulmonary fibrosis (PF) is a disease characterised by diffuse nonspecific alveolar inflammation with interstitial fibrosis, which clinically manifests as dyspnoea and a significant decline in lung function. Many studies have shown that the epithelial–mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of pulmonary fibrosis. Based on our previous findings, hypericin (Hyp) can effectively inhibit the process of the EMT to attenuate lung fibrosis. Therefore, a series of hyperoside derivatives were synthesised via modifying the structure of hyperoside, and subsequently evaluated for A549 cytotoxicity. Among these, the pre-screening of eight derivatives inhibits the EMT. In this study, we evaluated the efficacy of Z6, the most promising hyperoside derivative, in reversing TGF-β1-induced EMTs and inhibiting the EMT-associated migration of A549 cells. After the treatment of A549 cells with Z6 for 48 h, RT-qPCR and Western blot results showed that Z6 inhibited TGF-β1-induced EMTs in epithelial cells by supressing morphological changes in A549 cells, up-regulating E-cadherin (p < 0.01, p < 0.001), and down-regulating Vimentin (p < 0.01, p < 0.001). This treatment significantly reduced the mobility of transforming growth factor β1 (TGF-β1)-stimulated cells (p < 0.001) as assessed by wound closure, while increasing the adhesion rate of A549 cells (p < 0.001). In conclusion, our results suggest that hyperoside derivatives, especially compound Z6, are promising as potential lead compounds for treating pulmonary fibrosis, and therefore deserve further investigation. Full article
(This article belongs to the Section Pharmacology)
20 pages, 2938 KiB  
Article
Protective Effects of Pear Extract on Skin from In Vitro and In Vivo UVA-Induced Damage
by Thomas W. Chu, Ching-Chih Ho, Yu-Jou Hsu, Yuan-Hsin Lo, Nan-Lin Wu, Yuan-Bin Cheng, Mao-Xuan Hong, Der-Chen Chang and Chi-Feng Hung
Pharmaceuticals 2024, 17(5), 583; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050583 - 02 May 2024
Viewed by 157
Abstract
The ancient Chinese medical book “Compendium of Materia Medica” records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus [...] Read more.
The ancient Chinese medical book “Compendium of Materia Medica” records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus pyrifolia (Burm.f.) Nakai seed components have not been studied. Ultraviolet light (UV) causes skin inflammation, damages the skin barrier, and is an important cause of skin photoaging. Therefore, UV light with a wavelength of 365 nm was used to irradiate HaCaT and mice. Western blot, real-time quantitative polymerase chain reaction, and fluorescence imaging system were used to explore its anti-UVA mechanism. Dialysis membrane and nuclear magnetic resonance were used for the chemical constituent analysis of pear seed water extract (PSWE). We found that PSWE can significantly reduce UVA-induced skin cell death and mitogen-activated protein kinase phosphorylation and can inhibit the mRNA expression of UVA-induced cytokines (including IL-1β, IL-6, and TNF-α). In addition, PSWE can also reduce the generation of oxidative stress within skin cells. In vivo experimental studies found that PSWE pretreatment effectively reduced transepidermal water loss, inflammation, redness, and dryness in hairless mice. The molecular weight of the active part of pear water extract is approximately 384. Based on the above results, we first found that pear seeds can effectively inhibit oxidative stress and damage caused by UVA. It is a natural extract with antioxidant properties and anti-aging activity that protects skin cells and strengthens the skin barrier. Full article
(This article belongs to the Section Biopharmaceuticals)
14 pages, 1705 KiB  
Article
Evaluation of the Efficacy of OSU-2S in the Treatment of Non-Small-Cell Lung Cancer and Screening of Potential Targets of Action
by Mengyuan Han, Xiangran Liu, Sendaer Hailati, Nurbiya Nurahmat, Dilihuma Dilimulati, Alhar Baishan, Alifeiye Aikebaier and Wenting Zhou
Pharmaceuticals 2024, 17(5), 582; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050582 - 01 May 2024
Viewed by 268
Abstract
(1) Background: OSU-2S is a derivative of FTY720 and exhibits significant inhibitory effects on various cancer cells. There is currently no research on the mechanism of the impact of OSU-2S on NSCLC development. We analysed and validated the hub genes and pharmacodynamic effects [...] Read more.
(1) Background: OSU-2S is a derivative of FTY720 and exhibits significant inhibitory effects on various cancer cells. There is currently no research on the mechanism of the impact of OSU-2S on NSCLC development. We analysed and validated the hub genes and pharmacodynamic effects of OSU-2S to treat NSCLC. (2) Methods: The hub genes of OSU-2S for the treatment of NSCLC were screened in PharmMapper, genecard, and KM Plotter database by survival and expression analysis. The effect of OSU-2S on hub gene expression was verified by Western blot analysis. The ex vivo and in vivo efficacy of OSU-2S on tumour growth was verified using A549 cells and a xenografted animal model. (3) Results: A total of 7 marker genes for OSU-2S treatment of NSCLC were obtained. AURKA and S1PR1 were screened as hub genes. Significant differences in the expression of AURKA and S1PR1 between normal and lung adenocarcinoma (LUAD) tissues were found in the GEPIA2 database; Western blot showed that OSU-2S could affect p-AURKA and S1PR1 protein expression. OSU-2S significantly inhibited tumour growth in A549 cells and xenografted animal models. (4) Conclusions: Our study confirms the inhibitory effect of OSU-2S on NSCLC, screens and demonstrates its potential targets AURKA(p-AURKA) and S1PR1, and provides a research basis for treating NSCLC with OSU-2S. Full article
(This article belongs to the Topic Research in Pharmacological Therapies)
23 pages, 3054 KiB  
Article
Investigating the Antiviral Properties of Nyctanthes arbor-tristis Linn against the Ebola, SARS-CoV-2, Nipah, and Chikungunya Viruses: A Computational Simulation Study
by Raed Albiheyri, Varish Ahmad, Mohammad Imran Khan, Faisal A. Alzahrani and Qazi Mohammad Sajid Jamal
Pharmaceuticals 2024, 17(5), 581; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050581 - 30 Apr 2024
Viewed by 316
Abstract
Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the [...] Read more.
Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the binding pattern of phytochemicals from Nyctanthes arbor-tristis Linn to Ebola virus VP35, SARS-CoV-2 protease, Nipah virus glycoprotein, and chikungunya virus. Results: Virtual screening and AutoDock analysis revealed that arborside-C, beta amyrin, and beta-sitosterol exhibited a substantial binding affinity for specific viral targets. The arborside-C and beta-sitosterol molecules were shown to have binding energies of −8.65 and −9.11 kcal/mol, respectively, when interacting with the major protease. Simultaneously, the medication remdesivir exhibited a control value of −6.18 kcal/mol. The measured affinity of phytochemicals for the other investigated targets was −7.52 for beta-amyrin against Ebola and −6.33 kcal/mol for nicotiflorin against Nipah virus targets. Additional molecular dynamics simulation (MDS) conducted on the molecules with significant antiviral potential, specifically the beta-amyrin-VP35 complex showing a stable RMSD pattern, yielded encouraging outcomes. Conclusions: Arborside-C, beta-sitosterol, beta-amyrin, and nicotiflorin could be established as excellent natural antiviral compounds derived from Nyctanthes arbor-tristis Linn. The virus-suppressing phytochemicals in this plant make it a compelling target for both in vitro and in vivo research in the future. Full article
(This article belongs to the Special Issue Antiviral Agents, 2024)
14 pages, 1425 KiB  
Article
1H-NMR Metabolomic Study of the Mushroom Pleurotus djamor for the Identification of Nematocidal Compounds
by Jesús Antonio Pineda-Alegría, Luis Manuel Peña-Rodríguez, Alexandre Cardoso-Taketa, José E. Sánchez, Juan Felipe de Jesús Torres-Acosta, Gloria Ivonne Hernández-Bolio, Anabel Ortiz-Caltempa, María Luisa Villarreal and Liliana Aguilar-Marcelino
Pharmaceuticals 2024, 17(5), 580; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050580 - 30 Apr 2024
Viewed by 253
Abstract
Due to the increasing populations of anthelmintic-resistant gastrointestinal nematodes and as a consequence of the adverse effects of synthetic drugs, this study focuses on the search for secondary metabolites with nematocidal activity from the edible mushroom Pleurotus djamor using The proton nuclear magnetic [...] Read more.
Due to the increasing populations of anthelmintic-resistant gastrointestinal nematodes and as a consequence of the adverse effects of synthetic drugs, this study focuses on the search for secondary metabolites with nematocidal activity from the edible mushroom Pleurotus djamor using The proton nuclear magnetic resonance (1H-NMR) metabolomics. The highest activity was shown by the ethyl acetate fractions of mycelium (EC50 290.8 µg/mL) and basidiomes (EC50 282.7 µg/mL). Principal component analysis (PCA) and hierarchical data analysis (HCA) of the 1H-NMR metabolic profiles data showed that the ethanolic extracts, the ethyl acetate, butanol, and water fractions from mycelium have different metabolic profiles than those from basidiomes, while low polarity (hexane) fractions from both stages of fungal development show similar profiles. Orthogonal partial least squares discriminant analysis (OPLS-DA) allowed the identification of signals in the 1H-NMR metabolic profile associated with nematocidal activity. The signals yielded via OPLS-DA and bidimensional NMR analysis allowed the identification of uracil as a component in the ethyl acetate fraction from basidiomes, with an EC50 of 237.7 µg/mL. The results obtained showed that chemometric analyses of the 1H-NMR metabolic profiles represent a viable strategy for the identification of bioactive compounds from samples with complex chemical profiles. Full article
(This article belongs to the Special Issue Natural Products for Treatment of Parasitic Diseases)
17 pages, 2199 KiB  
Article
The Impact of A3AR Antagonism on the Differential Expression of Chemoresistance-Related Genes in Glioblastoma Stem-like Cells
by Liuba Peñate, Diego Carrillo-Beltrán, Carlos Spichiger, Alexei Cuevas-Zhbankova, Ángelo Torres-Arévalo, Pamela Silva, Hans G. Richter, Ángel Ayuso-Sacido, Rody San Martín and Claudia Quezada-Monrás
Pharmaceuticals 2024, 17(5), 579; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050579 - 30 Apr 2024
Viewed by 220
Abstract
Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in [...] Read more.
Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in GB is, in part, attributed to the presence of a subpopulation of glioblastoma-like stem cells (GSCs) that are characterized by heightened tumorigenic capacity and chemoresistance. GSCs are situated in hypoxic tumor niches, where they sustain and promote the stem-like phenotype and have also been correlated with high chemoresistance. GSCs have the particularity of generating high levels of extracellular adenosine (ADO), which causes the activation of the A3 adenosine receptor (A3AR) with a consequent increase in the expression and activity of genes related to chemoresistance. Therefore, targeting its components is a promising alternative for treating GB. This analysis determined genes that were up- and downregulated due to A3AR blockades under both normoxic and hypoxic conditions. In addition, possible candidates associated with chemoresistance that were positively regulated by hypoxia and negatively regulated by A3AR blockades in the same condition were analyzed. We detected three potential candidate genes that were regulated by the A3AR antagonist MRS1220 under hypoxic conditions: LIMD1, TRIB2, and TGFB1. Finally, the selected markers were correlated with hypoxia-inducible genes and with the expression of adenosine-producing ectonucleotidases. In conclusion, we detected that hypoxic conditions generate extensive differential gene expression in GSCs, increasing the expression of genes associated with chemoresistance. Furthermore, we observed that MRS1220 could regulate the expression of LIMD1, TRIB2, and TGFB1, which are involved in chemoresistance and correlate with a poor prognosis, hypoxia, and purinergic signaling. Full article
Show Figures

Figure 1

17 pages, 765 KiB  
Review
Anticancer Potential and Molecular Targets of Pristimerin in Human Malignancies
by Kirti S. Prabhu, Serah Jessy, Shilpa Kuttikrishnan, Farina Mujeeb, Zahwa Mariyam, Ummu Habeeba, Nuha Ahamad, Ajaz A. Bhat and Shahab Uddin
Pharmaceuticals 2024, 17(5), 578; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050578 - 30 Apr 2024
Viewed by 188
Abstract
The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side [...] Read more.
The growing global burden of malignant tumors with increasing incidence and mortality rates underscores the urgent need for more effective and less toxic therapeutic options. Herbal compounds are being increasingly studied for their potential to meet these needs due to their reduced side effects and significant efficacy. Pristimerin (PS), a triterpenoid from the quinone formamide class derived from the Celastraceae and Hippocrateaceae families, has emerged as a potent anticancer agent. It exhibits broad-spectrum anti-tumor activity across various cancers such as breast, pancreatic, prostate, glioblastoma, colorectal, cervical, and lung cancers. PS modulates several key cellular processes, including apoptosis, autophagy, cell migration and invasion, angiogenesis, and resistance to chemotherapy, targeting crucial signaling pathways such as those involving NF-κB, p53, and STAT3, among others. The main objective of this review is to provide a comprehensive synthesis of the current literature on PS, emphasizing its mechanisms of action and molecular targets with the utmost clarity. It discusses the comparative advantages of PS over current cancer therapies and explores the implications for future research and clinical applications. By delineating the specific pathways and targets affected by PS, this review seeks to offer valuable insights and directions for future research in this field. The information gathered in this review could pave the way for the successful development of PS into a clinically applicable anticancer therapy. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Internal Diseases)
17 pages, 1351 KiB  
Article
Insulin Treatment Does Not Prevent EARLY Autonomic Cardiovascular and Diastolic Dysfunctions in Streptozotocin-Induced Diabetic Rats
by Sarah C. F. Freitas, Marina R. H. Dutra, Paulo M. M. Dourado, Victor Hugo de Martins Miranda, Camila P. dos Santos, Iris C. Sanches, Maria-Cláudia Irigoyen and Kátia De Angelis
Pharmaceuticals 2024, 17(5), 577; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050577 - 30 Apr 2024
Viewed by 215
Abstract
Recent studies have found increased cardiovascular mortality risk in patients with type 1 diabetes when compared to normoglycemic people, even when they were kept under good glycemic control. However, the mechanisms underlying this condition have yet to be fully understood. Using streptozotocin (STZ)-induced [...] Read more.
Recent studies have found increased cardiovascular mortality risk in patients with type 1 diabetes when compared to normoglycemic people, even when they were kept under good glycemic control. However, the mechanisms underlying this condition have yet to be fully understood. Using streptozotocin (STZ)-induced diabetic rats, we evaluated the effects of insulin replacement therapy on cardiac, autonomic, inflammatory, and oxidative stress parameters. Daily treatment with insulin administrated subcutaneously in the STZ-diabetic rats showed a reduction in hyperglycemia (>250 mg/dL) to normalized values. The insulin treatment was effective in preventing alterations in cardiac morphometry and systolic function but had no impact on diastolic function. Also, the treatment was not able to prevent the impairment of baroreflex-tachycardic response and systolic arterial pressure variability (SAP-V). A correlation was found between improvement of these autonomic parameters and higher levels of IL-10 and lower levels of oxidized glutathione. Our findings show that insulin treatment was not able to prevent diastolic, baroreflex, and SAP-V dysfunction, suggesting an outstanding cardiovascular risk, even after obtaining a good glycemic control in STZ-induced diabetic rats. This study shed light on a relatively large population of diabetic patients in need of other therapies to be used in combination with insulin treatment and thus more effectively manage cardiovascular risk. Full article
(This article belongs to the Special Issue Cardiovascular Neuromodulatory Therapy)
31 pages, 1804 KiB  
Article
Chlorin Conjugates in Photodynamic Chemotherapy for Triple-Negative Breast Cancer
by Meden F. Isaac-Lam
Pharmaceuticals 2024, 17(5), 576; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050576 - 30 Apr 2024
Viewed by 199
Abstract
Breast cancer (BC) is the most common type of cancer in women and the number of new cases in the US is still increasing each year. Triple-negative breast cancer (TNBC), which comprises 15–20% of all breast cancer, is a heterogeneous disease and is [...] Read more.
Breast cancer (BC) is the most common type of cancer in women and the number of new cases in the US is still increasing each year. Triple-negative breast cancer (TNBC), which comprises 15–20% of all breast cancer, is a heterogeneous disease and is considered the most aggressive type of breast cancer due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions for treatments. Traditional chemotherapy is the standard protocol for the treatment of TNBC. Toxicity and multidrug resistance are major drawbacks to chemotherapy. The lack of molecular targets and poor prognosis for TNBC prompts an urgent need to discover novel therapeutic strategies to improve clinical outcomes and quality of life for patients. Photodynamic therapy (PDT) or light treatment is a binary anti-cancer procedure that uses a photosensitizer (PS) that, upon light activation, produces cytotoxic oxygen species, destroying tumor cells. PDT is minimally invasive and can be repeated a few times without accumulating significant toxicity in the surrounding tissues. The primary goal of this study was to investigate in vitro photodynamic chemotherapy as a ternary combination therapy using our synthesized photosensitizers (chlorin–vitamin conjugates and their corresponding indium complexes) co-treated with known chemotherapeutic agents (taxol, doxorubicin, cisplatin, fluorouracil, or methotrexate) in the presence of light and determine the optimum conditions as a pre-clinical study of an enhanced tumoricidal effect against TNBC. Our results indicated that the best combination for an effective chemophotodynamic effect involves a ternary treatment of the indium complex of the chlorin–lipoic acid conjugate (InCLA) co-treated with taxol, which exhibited strong synergism at the nanomolar concentration when combined in the presence of visible light irradiation. Other ternary combinations containing taxol with a synergistic anti-tumor effect against TNBC include chlorin–pantothenic acid (CPA) and chlorin–biotin (CBTN) conjugates. Several other ternary combinations containing InCLA, CBTN, and CPA with either cisplatin, fluorouracil, or methotrexate were identified to generate a synergistic or additive effect. The light dosage remained constant, but the dosages of photosensitizers and chemotherapy drugs were varied to obtain the lowest possible concentration for the desired effect. The synergistic, additive or antagonistic effects of the drug combinations were determined based on the Chou–Talalay method, with InCLA–taxol having the lowest combination index (CI) of 0.25. Fluorescence and transmission electron microscopy (TEM) images provided evidence of apoptosis as the preferred mode of cell death. Our study demonstrated the combination of PDT and chemotherapy as a potential treatment option for TNBC patients. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2023)
29 pages, 8076 KiB  
Article
Characterization, Biocompatibility and Antioxidant Activity of Hydrogels Containing Propolis Extract as an Alternative Treatment in Wound Healing
by Lindalva Maria de Meneses Costa Ferreira, Yuri Yoshioka Modesto, Poliana Dimsan Queiroz de Souza, Fabiana Cristina de Araújo Nascimento, Rayanne Rocha Pereira, Attilio Converti, Desireé Gyles Lynch, Davi do Socorro Barros Brasil, Edilene Oliveira da Silva, José Otávio Carréra Silva-Júnior and Roseane Maria Ribeiro-Costa
Pharmaceuticals 2024, 17(5), 575; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050575 - 30 Apr 2024
Viewed by 313
Abstract
Hydrogels consist of a network of highly porous polymeric chains with the potential for use as a wound dressing. Propolis is a natural product with several biological properties including anti-inflammatory, antibacterial and antioxidant activities. This study was aimed at synthesizing and characterizing a [...] Read more.
Hydrogels consist of a network of highly porous polymeric chains with the potential for use as a wound dressing. Propolis is a natural product with several biological properties including anti-inflammatory, antibacterial and antioxidant activities. This study was aimed at synthesizing and characterizing a polyacrylamide/methylcellulose hydrogel containing propolis as an active ingredient, to serve as a wound dressing alternative, for the treatment of skin lesions. The hydrogels were prepared using free radical polymerization, and were characterized using scanning electron microscopy, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, swelling capacity, mechanical and rheological properties, UV-Vis spectroscopy, antioxidant activity by the DPPH, ABTS and FRAP assays and biocompatibility determined in Vero cells and J774 macrophages by the MTT assay. Hydrogels showed a porous and foliaceous structure with a well-defined network, a good ability to absorb water and aqueous solutions simulating body fluids as well as desirable mechanical properties and pseudoplastic behavior. In hydrogels containing 1.0 and 2.5% propolis, the contents of total polyphenols were 24.74 ± 1.71 mg GAE/g and 32.10 ± 1.01 mg GAE/g and those of total flavonoids 8.01 ± 0.99 mg QE/g and 13.81 ± 0.71 mg QE/g, respectively, in addition to good antioxidant activity determined with all three methods used. Therefore, hydrogels containing propolis extract, may serve as a promising alternative wound dressing for the treatment of skin lesions, due to their anti-oxidant properties, low cost and availability. Full article
(This article belongs to the Special Issue Hydrogels for Pharmaceutical and Biomedical Applications 2024)
Show Figures

Graphical abstract

29 pages, 1637 KiB  
Review
Potential Anti-Tumorigenic Properties of Diverse Medicinal Plants against the Majority of Common Types of Cancer
by Ghosoon Albahri, Adnan Badran, Zaher Abdel Baki, Mohamad Alame, Akram Hijazi, Anis Daou and Elias Baydoun
Pharmaceuticals 2024, 17(5), 574; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050574 - 30 Apr 2024
Viewed by 356
Abstract
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these [...] Read more.
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these products have played a significant role in the development of novel treatments whose bioactive components serve as both chemotherapeutic and chemo-preventive agents. Phytochemicals are naturally occurring molecules obtained from plants that have potential applications in both cancer therapy and the development of new medications. These phytochemicals function by regulating the molecular pathways connected to the onset and progression of cancer. Among the specific methods are immune system control, inducing cell cycle arrest and apoptosis, preventing proliferation, raising antioxidant status, and inactivating carcinogens. A thorough literature review was conducted using Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent to obtain the data. To provide an overview of the anticancer effects of several medicinal plants, including Annona muricata, Arctium lappa, Arum palaestinum, Cannabis sativa, Catharanthus roseus, Curcuma longa, Glycyrrhiza glabra, Hibiscus, Kalanchoe blossfeldiana, Moringa oleifera, Nerium oleander, Silybum marianum, Taraxacum officinale, Urtica dioica, Withania somnifera L., their availability, classification, active components, pharmacological activities, signaling mechanisms, and potential side effects against the most common cancer types were explored. Full article
Show Figures

Figure 1

14 pages, 3014 KiB  
Article
Anti-Biofilm and Anti-Quorum-Sensing Activity of Inula Extracts: A Strategy for Modulating Chromobacterium violaceum Virulence Factors
by Petya D. Dimitrova, Viktoria Ivanova, Antoaneta Trendafilova and Tsvetelina Paunova-Krasteva
Pharmaceuticals 2024, 17(5), 573; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050573 - 30 Apr 2024
Viewed by 240
Abstract
The formation of microbial biofilm is a self-organizing process among bacterial cells, regulated by quorum-sensing (QS) mechanisms, contributing to development of infections. These processes, either separately or in combination, significantly contribute to bacterial resistance to antibiotics and disinfectants. A novel approach to addressing [...] Read more.
The formation of microbial biofilm is a self-organizing process among bacterial cells, regulated by quorum-sensing (QS) mechanisms, contributing to development of infections. These processes, either separately or in combination, significantly contribute to bacterial resistance to antibiotics and disinfectants. A novel approach to addressing the challenge of treating infections due to antibacterial resistance involves the use of plant metabolites. In recent years, there has been increasing recognition of different phytochemicals as potential modulators. In our study, we evaluated the synergistic effect of chloroform and methanol extracts from Inula species against key virulence factors, including biofilm formation, violacein production, and swarming motility. Each of the 11 examined plant extracts demonstrated the ability to reduce biofilms and pigment synthesis in C. violaceum. Two of the extracts from I. britannica exhibited significant anti-biofilm and anti-quorum-sensing effects with over 80% inhibition. Their inhibitory effect on violacein synthesis indicates their potential as anti-QS agents, likely attributed to their high concentration of terpenoids (triterpenoids, sesquiterpene lactones, and diterpenoids). Scanning electron microscopy revealed a notable reduction in biofilm biomass, along with changes in biofilm architecture and cell morphology. Additionally, fluorescence microscopy revealed the presence of metabolically inactive cells, indicating the potent activity of the extracts during treatment. These new findings underscore the effectiveness of the plant extracts from the genus Inula as potential anti-virulent agents against C. violaceum. They also propose a promising strategy for preventing or treating its biofilm formation. Full article
Show Figures

Figure 1

25 pages, 5335 KiB  
Article
Bee Venom-Loaded Niosomes as Innovative Platforms for Cancer Treatment: Development and Therapeutical Efficacy and Safety Evaluation
by Maria Beatriz Pinto, Patrícia C. Pires, Ricardo C. Calhelha, Ana Rita Silva, Maria João Sousa, Miguel Vilas-Boas, Soraia I. Falcão, Francisco Veiga, Pooyan Makvandi and Ana Cláudia Paiva-Santos
Pharmaceuticals 2024, 17(5), 572; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050572 - 29 Apr 2024
Viewed by 240
Abstract
Despite past efforts towards therapeutical innovation, cancer remains a highly incident and lethal disease, with current treatments lacking efficiency and leading to severe side effects. Hence, it is imperative to develop new, more efficient, and safer therapies. Bee venom has proven to have [...] Read more.
Despite past efforts towards therapeutical innovation, cancer remains a highly incident and lethal disease, with current treatments lacking efficiency and leading to severe side effects. Hence, it is imperative to develop new, more efficient, and safer therapies. Bee venom has proven to have multiple and synergistic bioactivities, including antitumor effects. Nevertheless, some toxic effects have been associated with its administration. To tackle these issues, in this work, bee venom-loaded niosomes were developed, for cancer treatment. The vesicles had a small (150 nm) and homogeneous (polydispersity index of 0.162) particle size, and revealed good therapeutic efficacy in in vitro gastric, colorectal, breast, lung, and cervical cancer models (inhibitory concentrations between 12.37 ng/mL and 14.72 ng/mL). Additionally, they also revealed substantial anti-inflammatory activity (inhibitory concentration of 28.98 ng/mL), effects complementary to direct antitumor activity. Niosome safety was also assessed, both in vitro (skin, liver, and kidney cells) and ex vivo (hen’s egg chorioallantoic membrane), and results showed that compound encapsulation increased its safety. Hence, small, and homogeneous bee venom-loaded niosomes were successfully developed, with substantial anticancer and anti-inflammatory effects, making them potentially promising primary or adjuvant cancer therapies. Future research should focus on evaluating the potential of the developed platform in in vivo models. Full article
Show Figures

Graphical abstract

31 pages, 825 KiB  
Review
The Therapeutic Potential of Essential Oils in Managing Inflammatory Skin Conditions: A Scoping Review
by Anouk E. W. K. Dontje, Catharina C. M. Schuiling-Veninga, Florence P. A. M. van Hunsel, Corine Ekhart, Fatih Demirci and Herman J. Woerdenbag
Pharmaceuticals 2024, 17(5), 571; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050571 - 29 Apr 2024
Viewed by 212
Abstract
Conventional therapy is commonly used for the treatment of inflammatory skin conditions, but undesirable effects, such as erythema, dryness, skin thinning, and resistance to treatment, may cause poor patient compliance. Therefore, patients may seek complementary treatment with herbal plant products including essential oils [...] Read more.
Conventional therapy is commonly used for the treatment of inflammatory skin conditions, but undesirable effects, such as erythema, dryness, skin thinning, and resistance to treatment, may cause poor patient compliance. Therefore, patients may seek complementary treatment with herbal plant products including essential oils (EOs). This scoping review aims to generate a broad overview of the EOs used to treat inflammatory skin conditions, namely, acne vulgaris, dermatitis and eczema, psoriasis, and rosacea, in a clinical setting. The quality, efficacy, and safety of various EOs, as well as the way in which they are prepared, are reviewed, and the potential, as well as the limitations, of EOs for the treatment of inflammatory skin conditions are discussed. Twenty-nine eligible studies (case studies, uncontrolled clinical studies, and randomized clinical studies) on the applications of EOs for inflammatory skin conditions were retrieved from scientific electronic databases (PubMed, Embase, Scopus, and the Cochrane Library). As an initial result, tea tree (Melaleuca alternifolia) oil emerged as the most studied EO. The clinical studies with tea tree oil gel for acne treatment showed an efficacy with fewer adverse reactions compared to conventional treatments. The uncontrolled studies indicated the potential efficacy of ajwain (Trachyspermum ammi) oil, eucalyptus (Eucalyptus globulus) oil, and cedarwood (Cedrus libani) oil in the treatment of acne, but further research is required to reach conclusive evidence. The placebo-controlled studies revealed the positive effects of kānuka (Kunzea ericoides) oil and frankincense (Boswellia spp.) oil in the treatment of psoriasis and eczema. The quality verification of the EO products was inconsistent, with some studies lacking analyses and transparency. The quality limitations of some studies included a small sample size, a short duration, and the absence of a control group. This present review underscores the need for extended, well-designed clinical studies to further assess the efficacy and safety of EOs for treating inflammatory skin conditions with products of assured quality and to further elucidate the mechanisms of action involved. Full article
(This article belongs to the Special Issue Multi-Targeted Natural Products as Therapeutics)
11 pages, 2529 KiB  
Article
Synthesis and Evaluation of 5-(Heteroarylmethylene)hydantoins as Glycogen Synthase Kinase-3β Inhibitors
by Nicholas O. Schneider, Kendra Gilreath, Daniel J. Burkett, Martin St. Maurice and William A. Donaldson
Pharmaceuticals 2024, 17(5), 570; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050570 - 29 Apr 2024
Viewed by 706
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule [...] Read more.
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule inhibitors of GSK-3 have been reported. Phenylmethylene hydantoins are known to exhibit a wide range of inhibitory activities including for GSK-3β. A family of fourteen 2-heterocycle substituted methylene hydantoins (14, 1729) were prepared and evaluated for the inhibition of GSK-3β at 25 μM. The IC50 values of five of these compounds was determined; the two best inhibitors are 5-[(4′-chloro-2-pyridinyl)methylene]hydantoin (IC50 = 2.14 ± 0.18 μM) and 5-[(6′-bromo-2-pyridinyl)methylene]hydantoin (IC50 = 3.39 ± 0.16 μM). The computational docking of the compounds with GSK-3β (pdb 1q41) revealed poses with hydrogen bonding to the backbone at Val135. The 5-[(heteroaryl)methylene]hydantoins did not strongly inhibit other metalloenzymes, demonstrating poor inhibitory activity against matrix metalloproteinase-12 at 25 μM and against human carbonic anhydrase at 200 μM, and were not inhibitors for Staphylococcus aureus pyruvate carboxylase at concentrations >1000 μM. Full article
(This article belongs to the Special Issue Nitrogen Containing Scaffolds in Medicinal Chemistry 2023)
Show Figures

Figure 1

22 pages, 7116 KiB  
Article
Computational Modeling to Identify Drugs Targeting Metastatic Castration-Resistant Prostate Cancer Characterized by Heightened Glycolysis
by Mei-Chi Su, Adam M. Lee, Weijie Zhang, Danielle Maeser, Robert F. Gruener, Yibin Deng and R. Stephanie Huang
Pharmaceuticals 2024, 17(5), 569; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050569 - 29 Apr 2024
Viewed by 342
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains a deadly disease due to a lack of efficacious treatments. The reprogramming of cancer metabolism toward elevated glycolysis is a hallmark of mCRPC. Our goal is to identify therapeutics specifically associated with high glycolysis. Here, we established [...] Read more.
Metastatic castration-resistant prostate cancer (mCRPC) remains a deadly disease due to a lack of efficacious treatments. The reprogramming of cancer metabolism toward elevated glycolysis is a hallmark of mCRPC. Our goal is to identify therapeutics specifically associated with high glycolysis. Here, we established a computational framework to identify new pharmacological agents for mCRPC with heightened glycolysis activity under a tumor microenvironment, followed by in vitro validation. First, using our established computational tool, OncoPredict, we imputed the likelihood of drug responses to approximately 1900 agents in each mCRPC tumor from two large clinical patient cohorts. We selected drugs with predicted sensitivity highly correlated with glycolysis scores. In total, 77 drugs predicted to be more sensitive in high glycolysis mCRPC tumors were identified. These drugs represent diverse mechanisms of action. Three of the candidates, ivermectin, CNF2024, and P276-00, were selected for subsequent vitro validation based on the highest measured drug responses associated with glycolysis/OXPHOS in pan-cancer cell lines. By decreasing the input glucose level in culture media to mimic the mCRPC tumor microenvironments, we induced a high-glycolysis condition in PC3 cells and validated the projected higher sensitivity of all three drugs under this condition (p < 0.0001 for all drugs). For biomarker discovery, ivermectin and P276-00 were predicted to be more sensitive to mCRPC tumors with low androgen receptor activities and high glycolysis activities (AR(low)Gly(high)). In addition, we integrated a protein–protein interaction network and topological methods to identify biomarkers for these drug candidates. EEF1B2 and CCNA2 were identified as key biomarkers for ivermectin and CNF2024, respectively, through multiple independent biomarker nomination pipelines. In conclusion, this study offers new efficacious therapeutics beyond traditional androgen-deprivation therapies by precisely targeting mCRPC with high glycolysis. Full article
(This article belongs to the Special Issue Novel Therapies for the Treatment of Metastatic Prostate Cancer)
Show Figures

Graphical abstract

20 pages, 1235 KiB  
Review
Classical and Novel Lipid-Lowering Therapies for Diabetic Patients with Established Coronary Artery Disease or High Risk of Coronary Artery Disease—A Narrative Clinical Review
by Nikolaos Velidakis, Panagiotis Stachteas, Evangelia Gkougkoudi, Christodoulos Papadopoulos and Nikolaos P. E. Kadoglou
Pharmaceuticals 2024, 17(5), 568; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050568 - 29 Apr 2024
Viewed by 383
Abstract
Diabetic atherosclerosis is a complex process that is characterized by diffuse and unstable lesions increasing 2–4-fold the risk of adverse cardiovascular (CV) events. Diabetic dyslipidemia has a predominant role in coronary artery disease (CAD) and has been the target of classical and emerging [...] Read more.
Diabetic atherosclerosis is a complex process that is characterized by diffuse and unstable lesions increasing 2–4-fold the risk of adverse cardiovascular (CV) events. Diabetic dyslipidemia has a predominant role in coronary artery disease (CAD) and has been the target of classical and emerging pharmaceutical agents with established or promising CV benefits. The aim of the present narrative review was to summarize the effects of classical and novel lipid-lowering pharmaceutical agents on lipid profile and CV outcomes in diabetic patients with established CAD or high risk of CAD. Statins remain the first-line treatment for all diabetic patients since they considerably ameliorate lipid parameters and non-lipid CV risk factors, leading to reduced CV morbidity and mortality. Complementary to statins, ezetimibe exerts lipid-lowering properties with modest but significant reductions in major adverse cardiovascular events (MACEs) and CV mortality. PCSK9 inhibitors considerably reduce LDL-C levels and lower MACEs in diabetic patients. On the other hand, fibrates may confer a very modest decline in MACE incidence, while the CV impact of omega-3 fatty acids is promising but remains questionable. Bempedoic acid and inclisiran have a potential therapeutic role in the management of diabetic dyslipidemia, but this is still not adequately documented. Given the heightened CV risk among individuals with diabetes, more decisive results would be of great importance in the utility of all these drugs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 457 KiB  
Article
Persistence in the Methadone Maintenance Program and Its Relationship with the Medication Regimen Complexity Index in Opioid-Dependent Patients
by Elena Alba Álvaro-Alonso, María del Carmen Gómez-Álvarez, Beatriz Segovia-Tapiador, María Isabel Del-Pino-Illaconza, Jorge Valencia, Pablo Ryan, Antonio Aguilar-Ros and Ismael Escobar-Rodríguez
Pharmaceuticals 2024, 17(5), 567; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050567 - 29 Apr 2024
Viewed by 279
Abstract
It has been shown that the Medication Regimen Complexity Index (MRCI) is a useful and reliable tool for calculating the complexity of the pharmacotherapeutic regimen (CPR). Furthermore, a high MRCI is associated with lower adherence. However, the MRCI of opioid-dependent patients (ODP) has [...] Read more.
It has been shown that the Medication Regimen Complexity Index (MRCI) is a useful and reliable tool for calculating the complexity of the pharmacotherapeutic regimen (CPR). Furthermore, a high MRCI is associated with lower adherence. However, the MRCI of opioid-dependent patients (ODP) has not been studied. The aim of this study is to calculate the Methadone Maintenance Program (MMP) persistence and the MRCI score in a ODP cohort. Second, to analyze its relationship and association with other variables. To accomplish this research, an observational study including adults with a confirmed diagnosis of opiate-dependency according to the DSM-5 in a MMP center was carried out. To define MMP-persistence, a group was created by the researchers who defined five weighted items according to their agreed importance. Our first contribution was to create a new definition of MMP-persistence. This study also identified age, comorbidities, and received methadone maintenance doses as successful predictors for MMP-persistence. We have also shown that the MRCI does not seem to be a useful tool to determine MMP-persistence, probably because there are multiple factors that influence it in addition to the CPR. It is necessary to continue searching for more precise selection and stratification tools for ODP to improve their persistence. Full article
(This article belongs to the Special Issue Drug Safety and Relevant Issues in the Real-World 2024)
13 pages, 3994 KiB  
Article
Effect of Lampaya medicinalis Phil. (Verbenaceae) and Palmitic Acid on Insulin Signaling and Inflammatory Marker Expression in Human Adipocytes
by Gabriela Yuri, Mariana Cifuentes, Pedro Cisternas, Adrián Paredes and Paulina Ormazabal
Pharmaceuticals 2024, 17(5), 566; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050566 - 29 Apr 2024
Viewed by 343
Abstract
Background: Aging and obesity are associated with insulin resistance (IR) and low-grade inflammation. Molecularly, IR is characterized by a reduction in glucose uptake and insulin signaling (IRS-1/Akt/AS160 pathway), while inflammation may result from upregulated NF-κB pathway after low Tyr-IκBα phosphorylation. Upregulated phosphatase activity [...] Read more.
Background: Aging and obesity are associated with insulin resistance (IR) and low-grade inflammation. Molecularly, IR is characterized by a reduction in glucose uptake and insulin signaling (IRS-1/Akt/AS160 pathway), while inflammation may result from upregulated NF-κB pathway after low Tyr-IκBα phosphorylation. Upregulated phosphatase activity of PTP1B is associated with impaired insulin signaling and increased inflammation. Plasma levels of palmitic acid (PA) are elevated in obesity, triggering inflammation and disruption of insulin signaling. Traditional medicine in Northern Chile uses oral infusions of Lampaya medicinalis Phil. (Verbenaceae) to treat inflammatory conditions. Significant amounts of flavonoids are found in the hydroethanolic extract of Lampaya (HEL), which may account for its biological activity. The aim of this work was to study the effect of HEL and PA on insulin signaling and glucose uptake as well as inflammatory marker expression in human adipocytes. Methods: We studied HEL effects on PA-induced impairment on insulin signaling, glucose uptake and inflammatory marker content in human SW872 adipocytes. HEL cytotoxicity was assessed in adipocytes at different concentrations (0.01 to 10 g/mL). Adipocytes were incubated or not with PA (0.4 mM, 24 h) with or without HEL (2 h pre-incubation), and then stimulated with insulin (10 min, 100 mM) or a vehicle. Phospho-IRS-1, phospho-Akt, phospho-AS160, phospho-NF-κB and phospho-IκBα, as well as protein levels of PTP1B, were assessed using Western blotting, and glucose uptake was evaluated using the 2-NBDG analogue. Results: At the assessed HEL concentrations, no cytotoxic effects were observed. PA decreased insulin-stimulated phospho-Akt and glucose uptake, while co-treatment with HEL increased such markers. PA decreased phospho-IRS-1 and phospho-Tyr-IκBα. On the other hand, incubation with HEL+PA decreased phospho-AS160 and phospho-NF-κB compared with cells treated with PA alone. Conclusion: Our results suggest a beneficial effect of HEL by improving PA-induced impairment on molecular markers of insulin signaling, glucose uptake and inflammation in adipocytes. Further studies are necessary to elucidate whether lampaya may constitute a preventive strategy for people whose circulating PA levels contribute to IR and inflammation during aging and obesity. Full article
Show Figures

Graphical abstract

20 pages, 1736 KiB  
Article
Comprehensive Analysis of Drug Utilization Patterns, Gender Disparities, Lifestyle Influences, and Genetic Factors: Insights from Elderly Cohort Using g-Nomic® Software
by Bárbara Rodríguez Castillo, Marc Cendrós, Carlos J. Ciudad and Ana Sabater
Pharmaceuticals 2024, 17(5), 565; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050565 - 28 Apr 2024
Viewed by 275
Abstract
Polypharmacy is a global healthcare concern, especially among the elderly, leading to drug interactions and adverse reactions, which are significant causes of death in developed nations. However, the integration of pharmacogenetics can help mitigate these risks. In this study, the data from 483 [...] Read more.
Polypharmacy is a global healthcare concern, especially among the elderly, leading to drug interactions and adverse reactions, which are significant causes of death in developed nations. However, the integration of pharmacogenetics can help mitigate these risks. In this study, the data from 483 patients, primarily elderly and polymedicated, were analyzed using Eugenomic®’s personalized prescription software, g-Nomic®. The most prescribed drug classes included antihypertensives, platelet aggregation inhibitors, cholesterol-lowering drugs, and gastroprotective medications. Drug–lifestyle interactions primarily involved inhibitions but also included inductions. Interactions were analyzed considering gender. Significant genetic variants identified in the study encompassed ABCB1, SLCO1B1, CYP2C19, CYP2C9, CYP2D6, CYP3A4, ABCG2, NAT2, SLC22A1, and G6PD. To prevent adverse reactions and enhance medication effectiveness, it is strongly recommended to consider pharmacogenetics testing. This approach shows great promise in optimizing medication regimens and ultimately improving patient outcomes. Full article
(This article belongs to the Special Issue Drug Safety and Relevant Issues in the Real-World 2024)
Show Figures

Figure 1

19 pages, 5128 KiB  
Article
A Comprehensive Description of the Anatomy and Histochemistry of Psychotria capillacea (Müll. Arg.) Standl. and an Investigation into Its Anti-Inflammatory Effects in Mice and Role in Scopolamine-Induced Memory Impairment
by Anelise Samara Nazari Formagio, Wagner Vilegas, Cândida Aparecida Leite Kassuya, Valter Paes De Almeida, Jane Manfron, Elisabete Castelon Konkiewitz, Edward Benjamin Ziff, Janaine Alberto Marangoni Faoro, Jessica Maurino Dos Santos, Ana Julia Cecatto, Maria Helena Sarragiotto and Rosilda Mara Mussury
Pharmaceuticals 2024, 17(5), 564; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050564 - 28 Apr 2024
Viewed by 234
Abstract
Species of the genus Psychotria are used in popular medicine for pain, inflammatory symptoms, and mental disorders. Psychotria capillacea (Müll. Arg.) Standl. (Rubiaceae) is commonly known as coffee and some scientific studies have demonstrated its therapeutic potential. The goal of this study was [...] Read more.
Species of the genus Psychotria are used in popular medicine for pain, inflammatory symptoms, and mental disorders. Psychotria capillacea (Müll. Arg.) Standl. (Rubiaceae) is commonly known as coffee and some scientific studies have demonstrated its therapeutic potential. The goal of this study was to investigate the anti-inflammatory and neuroprotective effects, and acetylcholinesterase (AChE) inhibitory activity of a methanolic extract obtained from leaves of P. capillacea (MEPC), as well as the micromorphology and histochemistry of the leaves and stems of this plant. In addition, the MEPC was analyzed by UHPLC-MS/MS and the alkaloidal fraction (AF) obtained from the MEPC was tested in a mouse model of inflammation. MEPC contained three indole alkaloids, one sesquiterpene (megastigmane-type) and two terpene lactones. MEPC (3, 30 and 100 mg/kg) and AF (3 and 30 mg/kg) were evaluated in inflammation models and significantly inhibited edema at 2 h and 4 h, mechanical hyperalgesia after 4 h and the response to cold 3 h and 4 h after carrageenan injection. Scopolamine significantly increased the escape latency, and reduced the swimming time and number of crossings in the target quadrant and distance, while MEPC (3, 30 and 100 mg/kg), due to its neuroprotective actions, reversed these effects. AChE activity was significantly decreased in the cerebral cortex (52 ± 3%) and hippocampus (60 ± 3%), after MEPC administration. Moreover, micromorphological and histochemical information was presented, to aid in species identification and quality control of P. capillacea. The results of this study demonstrated that P. capillacea is an anti-inflammatory and antihyperalgesic agent that can treat acute disease and enhance memory functions in mouse models. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

2 pages, 180 KiB  
Editorial
Methyl-Containing Pharmaceuticals
by Davide Illuminati and Anna Fantinati
Pharmaceuticals 2024, 17(5), 563; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050563 - 28 Apr 2024
Viewed by 219
Abstract
This Special Issue, which focused on methyl-containing pharmaceuticals, collected different papers and reviews on this topic [...] Full article
(This article belongs to the Special Issue Methyl-Containing Pharmaceuticals)
19 pages, 1320 KiB  
Article
An Assessment of Different Decision Support Software from the Perspective of Potential Drug–Drug Interactions in Patients with Chronic Kidney Diseases
by Muhammed Yunus Bektay, Aysun Buker Cakir, Meltem Gursu, Rumeyza Kazancioglu and Fikret Vehbi Izzettin
Pharmaceuticals 2024, 17(5), 562; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050562 - 28 Apr 2024
Viewed by 284
Abstract
Chronic kidney disease (CKD) is a multifaceted disorder influenced by various factors. Drug–drug interactions (DDIs) present a notable risk factor for hospitalization among patients with CKD. This study aimed to assess the frequency and attributes of potential DDIs (pDDIs) in patients with CKD [...] Read more.
Chronic kidney disease (CKD) is a multifaceted disorder influenced by various factors. Drug–drug interactions (DDIs) present a notable risk factor for hospitalization among patients with CKD. This study aimed to assess the frequency and attributes of potential DDIs (pDDIs) in patients with CKD and to ascertain the concordance among different Clinical Decision Support Software (CDSS). A cross-sectional study was conducted in a nephrology outpatient clinic at a university hospital. The pDDIs were identified and evaluated using Lexicomp® and Medscape®. The patients’ characteristics, comorbidities, and medicines used were recorded. The concordance of different CDSS were evaluated using the Kendall W coefficient. An evaluation of 1121 prescribed medications for 137 patients was carried out. The mean age of the patients was 64.80 ± 14.59 years, and 41.60% of them were male. The average year with CKD was 6.48 ± 5.66. The mean number of comorbidities was 2.28 ± 1.14. The most common comorbidities were hypertension, diabetes, and coronary artery disease. According to Medscape, 679 pDDIs were identified; 1 of them was contraindicated (0.14%), 28 (4.12%) were serious-use alternative, and 650 (9.72%) were interventions that required closely monitoring. According to Lexicomp, there were 604 drug–drug interactions. Of these interactions, 9 (1.49%) were in the X category, 60 (9.93%) were in the D category, and 535 (88.57%) were in the C category. Two different CDSS systems exhibited statistically significant concordance with poor agreement (W = 0.073, p < 0.001). Different CDSS systems are commonly used in clinical practice to detect pDDIs. However, various factors such as the operating principles of these programs and patient characteristics can lead to incorrect guidance in clinical decision making. Therefore, instead of solely relying on programs with lower reliability and consistency scores, multidisciplinary healthcare teams, including clinical pharmacists, should take an active role in identifying and preventing pDDIs. Full article
Show Figures

Figure 1

35 pages, 1687 KiB  
Review
From Eye Care to Hair Growth: Bimatoprost
by Marco Zeppieri, Caterina Gagliano, Leopoldo Spadea, Carlo Salati, Ekele Caleb Chukwuyem, Ehimare Samuel Enaholo, Fabiana D’Esposito and Mutali Musa
Pharmaceuticals 2024, 17(5), 561; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050561 - 27 Apr 2024
Viewed by 357
Abstract
Background: Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular [...] Read more.
Background: Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular hypertension. Its ability to reduce intraocular pressure has established it as a first-line treatment option, improving management and preventing vision loss. In dermatology, bimatoprost has shown promising results in the promotion of hair growth, particularly in the treatment of alopecia and hypotrichosis. Its mechanism of action, stimulating the hair cycle and prolonging the growth phase, has led to the development of bimatoprost-containing solutions for enhancing eyelash growth. Aim: The aim of our review is to provide a brief description, overview, and studies in the current literature regarding the versatile clinical use of bimatoprost in recent years. This can help clinicians determine the most suitable individualized therapy to meet the needs of each patient. Methods: Our methods involve a comprehensive review of the latest advancements reported in the literature in bimatoprost formulations, which range from traditional eye drops to sustained-release implants. These innovations offer extended drug delivery, enhance patient compliance, and minimize side effects. Results: The vast literature published on PubMed has confirmed the clinical usefulness of bimatoprost in lowering intraocular pressure and in managing patients with glaucoma. Numerous studies have shown promising results in dermatology and esthetics in promoting hair growth, particularly in treating alopecia and hypotrichosis. Its mechanism of action involves stimulating the hair cycle and prolonging the growth phase, leading to the development of solutions that enhance eyelash growth. The global use of bimatoprost has expanded significantly, with applications growing beyond its initial indications. Ongoing research is exploring its potential in glaucoma surgery, neuroprotection, and cosmetic procedures. Conclusions: Bimatoprost has shown immense potential for addressing a wide range of therapeutic needs through various formulations and advancements. Promising future perspectives include the exploration of novel delivery systems such as contact lenses and microneedles to further enhance drug efficacy and patient comfort. Ongoing research and future perspectives continue to shape its role in medicine, promising further advancements and improved patient outcomes. Full article
(This article belongs to the Special Issue Ophthalmic Pharmacology)
Show Figures

Figure 1

11 pages, 855 KiB  
Article
Antimicrobial Effect of Honey Phenolic Compounds against E. coli—An In Vitro Study
by Laura Kassym, Assiya Kussainova, Yuliya Semenova and Pauline McLoone
Pharmaceuticals 2024, 17(5), 560; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050560 - 27 Apr 2024
Viewed by 434
Abstract
Growing concern over antimicrobial resistance in chronic wound patients necessitates the exploration of alternative treatments from natural sources. This study suggests that honey’s phenolic compounds may offer antimicrobial benefits, warranting further investigation for therapeutic development. The main aim of this study was to [...] Read more.
Growing concern over antimicrobial resistance in chronic wound patients necessitates the exploration of alternative treatments from natural sources. This study suggests that honey’s phenolic compounds may offer antimicrobial benefits, warranting further investigation for therapeutic development. The main aim of this study was to investigate the antimicrobial activity of phenolic compounds and to determine the effects of their sub-inhibitory concentrations against Escherichia coli (E. coli). 3-phenyllactic acid (PLA), p-coumaric acid (PCA), and phloretin were tested against the bacterial strain of E. coli ATCC 25922. Comparison of the antimicrobial activity of honey constituents in vitro was performed using a broth culture assay. Measurement of the inhibitory properties of constituents in vitro was conducted using disc and well diffusion assays. The effects of sub-inhibitory concentrations of PCA on the susceptibility of E. coli ATCC 25922 to penicillin–streptomycin were tested. The results demonstrated that PLA was the most efficient antimicrobial agent, followed by PCA, whereas phloretin, at lower (2 mg/mL) concentrations, led to an increase in the growth of E. coli. Various modifications of the agar diffusion assay did not reveal the antibacterial properties of the studied phytochemicals. The enhancing effect of a sub-inhibitory concentration of PCA in cooperation with penicillin–streptomycin was shown. These findings might be helpful for the further investigation and development of new antimicrobial agents for the treatment of skin infections and wounds. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

16 pages, 3728 KiB  
Article
Development of New Drugs to Treat Tuberculosis Based on the Dinitrobenzamide Scaffold
by Tiago Delgado, João P. Pais, David Pires, Filipe G. A. Estrada, Rita C. Guedes, Elsa Anes and Luis Constantino
Pharmaceuticals 2024, 17(5), 559; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050559 - 27 Apr 2024
Viewed by 237
Abstract
Tuberculosis (TB) continues to be a major global health challenge and a leading cause of death from infectious diseases. Inspired by the results from a previous work by our group on antimycobacterial N-alkylnitrobenzamides, which are structurally related to the nitrobenzamide family of [...] Read more.
Tuberculosis (TB) continues to be a major global health challenge and a leading cause of death from infectious diseases. Inspired by the results from a previous work by our group on antimycobacterial N-alkylnitrobenzamides, which are structurally related to the nitrobenzamide family of decaprenylphosphoryl-β-d-ribose oxidase (DprE1) inhibitors, the present study explored a broad array of substituted benzamides. We particularly focused on previously unexplored 3,5-dinitrobenzamide derivatives. Starting with 3,5-dinitrobenzoic acid, we synthesized a diverse library of amides, incorporating both linear and cyclic amine moieties and also assessed the impact of terminal aromatic groups connected through ether, ester, or amide bonds on the bioactivity of the compounds. The synthesis primarily utilized nucleophilic addition/elimination, SN2, and Mitsunobu reactions. The activity was impacted mainly by two structural features, the addition of an aromatic moiety as a terminal group and the type of linker. The most interesting compounds (c2, d1, and d2, MIC = 0.031 μg/mL) exhibited activities against Mycobacterium Tuberculosis (Mtb) H37Rv comparable to isoniazid. Complementary computational studies helped elucidate potential interactions with DprE1, enhancing our understanding of the molecular basis of their action. Our findings suggest that the most active compounds provide a promising foundation for the continued development of new antimycobacterial agents. Full article
Show Figures

Figure 1

19 pages, 1501 KiB  
Article
Unveiling the Role of Tryptophan 2,3-Dioxygenase in the Angiogenic Process
by Marta Cecchi, Cecilia Anceschi, Angela Silvano, Maria Luisa Coniglio, Aurora Chinnici, Lucia Magnelli, Andrea Lapucci, Anna Laurenzana and Astrid Parenti
Pharmaceuticals 2024, 17(5), 558; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050558 - 27 Apr 2024
Viewed by 198
Abstract
Background: Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 [...] Read more.
Background: Indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO) are the two principals enzymes involved in the catabolization of tryptophan (Trp) into kynurenine (Kyn). Despite their well-established role in the immune escape, their involvement in angiogenesis remains uncertain. We aimed to characterize TDO and IDO1 in human umbilical venular endothelial cells (HUVECs) and human endothelial colony-forming cells (ECFCs). Methods: qRT-PCR and immunofluorescence were used for TDO and IDO1 expression while their activity was measured using ELISA assays. Cell proliferation was examined via MTT tests and in in vitro angiogenesis by capillary morphogenesis. Results: HUVECs and ECFCs expressed TDO and IDO1. Treatment with the selective TDO inhibitor 680C91 significantly impaired HUVEC proliferation and 3D-tube formation in response to VEGF-A, while IDO1 inhibition showed no effect. VEGF-induced mTor phosphorylation and Kyn production were hindered by 680C91. ECFC morphogenesis was also inhibited by 680C91. Co-culturing HUVECs with A375 induced TDO up-regulation in both cell types, whose inhibition reduced MMP9 activity and prevented c-Myc and E2f1 upregulation. Conclusions: HUVECs and ECFCs express the key enzymes of the kynurenine pathway. Significantly, TDO emerges as a pivotal player in in vitro proliferation and capillary morphogenesis, suggesting a potential pathophysiological role in angiogenesis beyond its well-known immunomodulatory effects. Full article
(This article belongs to the Special Issue Pharmacological Treatments for Melanoma)
17 pages, 3185 KiB  
Review
Phytosterols and the Digestive System: A Review Study from Insights into Their Potential Health Benefits and Safety
by Edyta Miszczuk, Andrzej Bajguz, Łukasz Kiraga, Kijan Crowley and Magdalena Chłopecka
Pharmaceuticals 2024, 17(5), 557; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17050557 - 26 Apr 2024
Viewed by 323
Abstract
Phytosterols are a large group of substances belonging to sterols—compounds naturally occurring in the tissues of plants, animals, and humans. The most well-known animal sterol is cholesterol. Among phytosterols, the most significant compounds are β-sitosterol, stigmasterol, and campesterol. At present, they are mainly [...] Read more.
Phytosterols are a large group of substances belonging to sterols—compounds naturally occurring in the tissues of plants, animals, and humans. The most well-known animal sterol is cholesterol. Among phytosterols, the most significant compounds are β-sitosterol, stigmasterol, and campesterol. At present, they are mainly employed in functional food products designed to counteract cardiovascular disorders by lowering levels of ‘bad’ cholesterol, which stands as their most extensively studied purpose. It is currently understood that phytosterols may also alleviate conditions associated with the gastrointestinal system. Their beneficial pharmacological properties in relation to gastrointestinal tract include anti-inflammatory and hepatoprotective activity. Also, the anti-cancer properties as well as the impact on the gut microbiome could be a very interesting area of research, which might potentially lead to the discovery of their new application. This article provides consolidated knowledge on a new potential use of phytosterols, namely the treatment or prevention of gastrointestinal diseases. The cited studies indicate high therapeutic efficacy in conditions such as peptic ulcer disease, IBD or liver failure caused by hepatotoxic xenobiotics, however, these are mainly in vitro or in vivo studies. Nevertheless, studies to date indicate their therapeutic potential as adjunctive treatments to conventional therapies, which often exhibit unsatisfactory efficacy or serious side effects. Unfortunately, at this point there is a lack of significant clinical study data to use phytosterols in clinical practice in this area. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop