Next Issue
Volume 17, May
Previous Issue
Volume 17, March
 
 

Pharmaceuticals, Volume 17, Issue 4 (April 2024) – 139 articles

Cover Story (view full-size image): The scope of this research includes biotechnological, phytochemical, and biological studies of Schisandra henryi, including research on its in vitro microshoot culture grown in PlantForm bioreactors, as well as extracts from the leaves of the parent plant, with a particular emphasis on its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Phytochemical analysis included the isolation as well as quantification of dibenzocyclooctadiene, aryltetralin lignans, and neolignan compounds using CPC, HPLC-DAD, and UHPLC-MS/MS methods. A higher content of compounds was found in microshoot extracts with a dominance of schisantherin B. The microshoot extracts showed similar or stronger effects in biological activity tests than the leaves of the parent plant. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 911 KiB  
Systematic Review
Advancing Postoperative Pain Management in Oral Cancer Patients: A Systematic Review
by Angelo Michele Inchingolo, Gianna Dipalma, Alessio Danilo Inchingolo, Irene Palumbo, Mariafrancesca Guglielmo, Roberta Morolla, Antonio Mancini and Francesco Inchingolo
Pharmaceuticals 2024, 17(4), 542; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040542 - 22 Apr 2024
Viewed by 308
Abstract
The goal of this review is to shed light on the management of orofacial discomfort after a cancer diagnosis in the head and neck region. A search was conducted on PubMed, Scopus, and Web of Science to identify studies on postoperative pain control [...] Read more.
The goal of this review is to shed light on the management of orofacial discomfort after a cancer diagnosis in the head and neck region. A search was conducted on PubMed, Scopus, and Web of Science to identify studies on postoperative pain control in oral cancer. The review included open-access research, investigations into pain management, randomized clinical trials, retrospective studies, case-control studies, prospective studies, English-written studies, and full-text publications. Exclusion criteria included animal studies; in vitro studies; off-topic studies; reviews, case reports, letters, or comments; and non-English language. Three reviewers independently accessed databases and assigned a quality rating to the chosen articles. The review explores postoperative pain management in oral cancer patients; highlighting persistent opioid use; the efficacy of adjuvant drugs, such as gabapentin; and a multimodal approach. It emphasizes the need for personalized pain management, recognizing individual pain perception and tailoring interventions. Integrating pharmacological and non-pharmacological strategies is crucial for comprehensive pain management. The review also serves as a guide for future research, emphasizing the need for standardized methodologies and diverse participant populations. Full article
Show Figures

Figure 1

19 pages, 5779 KiB  
Article
A Holographic-Type Model in the Description of Polymer–Drug Delivery Processes
by Irina Nica, Constantin Volovat, Diana Boboc, Ovidiu Popa, Lacramioara Ochiuz, Decebal Vasincu, Vlad Ghizdovat, Maricel Agop, Cristian Constantin Volovat, Corina Lupascu Ursulescu, Cristian Virgil Lungulescu and Simona Ruxandra Volovat
Pharmaceuticals 2024, 17(4), 541; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040541 - 22 Apr 2024
Viewed by 221
Abstract
A unitary model of drug release dynamics is proposed, assuming that the polymer–drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable [...] Read more.
A unitary model of drug release dynamics is proposed, assuming that the polymer–drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be “mimicked” (via period doubling, damped oscillations, modulated and “chaotic” regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions). In conclusion, we propose a unitary model for describing release dynamics in polymer–drug systems. In the model proposed, the polymer–drug dynamics can be described by employing the Scale Relativity Theory in the monofractal case or also in the multifractal one. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

1 pages, 1136 KiB  
Correction
Correction: Nasrullah et al. Omeprazole Prevents Colistin-Induced Nephrotoxicity in Rats: Emphasis on Oxidative Stress, Inflammation, Apoptosis and Colistin Accumulation in Kidneys. Pharmaceuticals 2022, 15, 782
by Mohammed Z. Nasrullah, Khalid Eljaaly, Thikryat Neamatallah, Usama A. Fahmy, Abdulmohsin J. Alamoudi, Hussain T. Bakhsh and Ashraf B. Abdel-Naim
Pharmaceuticals 2024, 17(4), 540; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040540 - 22 Apr 2024
Viewed by 127
Abstract
Error in Figure [...] Full article
17 pages, 2685 KiB  
Article
Nature-Inspired 1-Phenylpyrrolo[2,1-a]isoquinoline Scaffold for Novel Antiproliferative Agents Circumventing P-Glycoprotein-Dependent Multidrug Resistance
by Alisa A. Nevskaya, Rosa Purgatorio, Tatiana N. Borisova, Alexey V. Varlamov, Lada V. Anikina, Arina Yu. Obydennik, Elena Yu. Nevskaya, Mauro Niso, Nicola A. Colabufo, Antonio Carrieri, Marco Catto, Modesto de Candia, Leonid G. Voskressensky and Cosimo D. Altomare
Pharmaceuticals 2024, 17(4), 539; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040539 - 22 Apr 2024
Viewed by 213
Abstract
Previous studies have shown that some lamellarin-resembling annelated azaheterocyclic carbaldehydes and related imino adducts, sharing the 1-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinoline (1-Ph-DHPIQ) scaffold, are cytotoxic in some tumor cells and may reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp). Herein, several novel substituted 1-Ph-DHPIQ derivatives [...] Read more.
Previous studies have shown that some lamellarin-resembling annelated azaheterocyclic carbaldehydes and related imino adducts, sharing the 1-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinoline (1-Ph-DHPIQ) scaffold, are cytotoxic in some tumor cells and may reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp). Herein, several novel substituted 1-Ph-DHPIQ derivatives were synthesized which carry carboxylate groups (COOH, COOEt), nitrile (CN) and Mannich bases (namely, morpholinomethyl derivatives) in the C2 position, as replacements of the already reported aldehyde group. They were evaluated for antiproliferative activity in four tumor cell lines (RD, HCT116, HeLa, A549) and for the ability of selectively inhibiting P-gp-mediated MDR. Lipophilicity descriptors and molecular docking calculations helped us in rationalizing the structure–activity relationships in the P-gp inhibition potency of the investigated 1-Ph-DHPIQs. As a main outcome, a morpholinomethyl Mannich base (8c) was disclosed which proved to be cytotoxic to all the tested tumor cell lines in the low micromolar range (IC50 < 20 μM) and to inhibit in vitro the efflux pumps P-gp and MRP1 responsible for MDR, with IC50s of 0.45 and 12.1 μM, respectively. Full article
Show Figures

Figure 1

13 pages, 1569 KiB  
Article
Development of Syringaldehyde as an Agonist of the GLP-1 Receptor to Alleviate Diabetic Disorders in Animal Models
by Jenpei Lee, Yingxiao Li, Juei-Tang Cheng, I-Min Liu and Kai-Chun Cheng
Pharmaceuticals 2024, 17(4), 538; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040538 - 22 Apr 2024
Viewed by 287
Abstract
The phenolic aldehyde syringaldehyde (SA) has been shown to have an antihyperglycemic effect in diabetic rats due to increased glucose utilization and insulin sensitivity. To understand the direct effect of SA on the GLP-1 receptor, STZ-induced diabetic rats were used. The levels of [...] Read more.
The phenolic aldehyde syringaldehyde (SA) has been shown to have an antihyperglycemic effect in diabetic rats due to increased glucose utilization and insulin sensitivity. To understand the direct effect of SA on the GLP-1 receptor, STZ-induced diabetic rats were used. The levels of pro-inflammatory cytokines, liver enzymes, and renal function were measured using specific ELISA kits. The mechanisms of SA effects were investigated using CHO-K1 cells, pancreatic Min-6 cells, and cardiomyocyte H9c2 cells. The results indicated that the antihyperglycemic effect of SA in diabetic rats was abolished by blocking the GLP-1 receptor with an antagonist. SA has a direct effect on the GLP-1 receptor when using CHO-K1 cells transfected with the exogenous GLP-1 receptor gene. In addition, SA stimulated insulin production in Min-6 cells by activating GLP-1 receptors. SA caused a dose-dependent rise in GLP-1 receptor mRNA levels in cardiac H9c2 cells. These in vitro results support the notion that SA has a direct effect on the GLP-1 receptor. Otherwise, SA inhibited the increase of pro-inflammatory cytokines, including interleukins and tumor TNF-α, in type 1 diabetic rats in a dose-dependent manner. Moreover, as with liraglutide, SA reduced plasma lipid profiles, including total cholesterol and triglyceride, in mixed diet-induced type 2 diabetic rats. Intriguingly, chronic treatment with SA (as with liraglutide) reversed the functions of both the liver and the kidney in these diabetic rats. SA displayed less efficiency in reducing body weight and food consumption compared to liraglutide. In conclusion, SA effectively activates GLP-1 receptors, resulting in a reduction in diabetic-related complications in rats. Therefore, it is beneficial to develop SA as a chemical agonist for clinical applications in the future. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

25 pages, 1277 KiB  
Review
Illicit Drugs in Surface Waters: How to Get Fish off the Addictive Hook
by Halina Falfushynska, Piotr Rychter, Anastasiia Boshtova, Yuliia Faidiuk, Nadiia Kasianchuk and Piotr Rzymski
Pharmaceuticals 2024, 17(4), 537; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040537 - 22 Apr 2024
Viewed by 587
Abstract
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the [...] Read more.
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds. Full article
(This article belongs to the Special Issue Zebrafish as a Powerful Tool for Drug Discovery 2023)
Show Figures

Graphical abstract

12 pages, 3522 KiB  
Article
Synthesis and Pharmacological Characterization of New Photocaged Agonists for Histamine H3 and H4 Receptors
by Yang Zheng, Meichun Gao, Maikel Wijtmans, Henry F. Vischer and Rob Leurs
Pharmaceuticals 2024, 17(4), 536; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040536 - 21 Apr 2024
Viewed by 319
Abstract
The modulation of biological processes with light-sensitive chemical probes promises precise temporal and spatial control. Yet, the design and synthesis of suitable probes is a challenge for medicinal chemists. This article introduces a photocaging strategy designed to modulate the pharmacology of histamine H [...] Read more.
The modulation of biological processes with light-sensitive chemical probes promises precise temporal and spatial control. Yet, the design and synthesis of suitable probes is a challenge for medicinal chemists. This article introduces a photocaging strategy designed to modulate the pharmacology of histamine H3 receptors (H3R) and H4 receptors (H4R). Employing the photoremovable group BODIPY as the caging entity for two agonist scaffolds—immepip and 4-methylhistamine—for H3R and H4R, respectively, we synthesized two BODIPY-caged compounds, 5 (VUF25657) and 6 (VUF25678), demonstrating 10–100-fold reduction in affinity for their respective receptors. Notably, the caged H3R agonist, VUF25657, exhibits approximately a 100-fold reduction in functional activity. The photo-uncaging of VUF25657 at 560 nm resulted in the release of immepip, thereby restoring binding affinity and potency in functional assays. This approach presents a promising method to achieve optical control of H3R receptor pharmacology. Full article
(This article belongs to the Special Issue Histamine Receptor Ligands in Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 1333 KiB  
Article
Investigating the Effectiveness of Brexpiprazole in Subjects with Schizophrenia Spectrum Illness and Co-Occurring Substance Use Disorder: A Prospective, Multicentric, Real-World Study
by Stefania Chiappini, Clara Cavallotto, Alessio Mosca, Francesco Di Carlo, Tommaso Piro, Giulia Giovannetti, Arianna Pasino, Mariachiara Vicinelli, Chiara Lorenzini, Mariapia Di Paolo, Maria Pepe, Marco Di Nicola, Valerio Ricci, Mauro Pettorruso and Giovanni Martinotti
Pharmaceuticals 2024, 17(4), 535; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040535 - 21 Apr 2024
Viewed by 222
Abstract
Background: Dual disorders (DDs) involve the coexistence of a substance use disorder (SUD) with another mental illness, often from the psychotic and affective categories. They are quite common in clinical practice and present significant challenges for both diagnosis and treatment. This study explores [...] Read more.
Background: Dual disorders (DDs) involve the coexistence of a substance use disorder (SUD) with another mental illness, often from the psychotic and affective categories. They are quite common in clinical practice and present significant challenges for both diagnosis and treatment. This study explores the effectiveness of brexpiprazole, a third-generation antipsychotic, in an Italian sample of individuals diagnosed with schizophrenia spectrum disorder and a comorbid SUD. Methods: Twenty-four patients, diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and enrolled in several Italian hospitals, underwent a psychometric assessment at baseline (T0) and one month (T1) after starting brexpiprazole treatment administered at a mean dosage of 2 mg/day. Results: Brexpiprazole demonstrated significant reductions in psychopathological burden (Positive and Negative Syndrome Scale/PANSS total score: p < 0.001). Positive (p = 0.003) and negative (p = 0.028) symptoms, substance cravings (VAS craving: p = 0.039), and aggression (MOAS scale: p = 0.003) were notably reduced. Quality of life improved according to the 36-item Short Form Health Survey (SF-36) subscales (p < 0.005). Conclusions: This study provides initial evidence supporting brexpiprazole’s efficacy and safety in this complex patient population, with positive effects not only on psychopathology and quality of life, but also on cravings. Further studies involving larger cohorts of subjects and extended follow-up periods are needed. Full article
(This article belongs to the Special Issue Psychiatric Drug Treatment and Drug Addiction)
Show Figures

Figure 1

17 pages, 3796 KiB  
Article
An Effective Method to Prepare Curcumin-Loaded Soy Protein Isolate Nanoparticles Co-Stabilized by Carrageenan and Fucoidan
by Yaxin Chen, Shuyun Cai, Niaoniao He, Xiaomei Huang, Zhuan Hong, Jianlin He, Hui Chen and Yiping Zhang
Pharmaceuticals 2024, 17(4), 534; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040534 - 21 Apr 2024
Viewed by 269
Abstract
In this study, a novel and simple strategy is proposed based on 3D network formed by easily blending polysaccharide carrageenan (Car) and fucoidan (Fuc) without a crosslinker. The Fuc/Car dual coating effectively assists the self-assembly of soy protein-isolated (SPI)/curcumin (Cur, C) composite microcapsules [...] Read more.
In this study, a novel and simple strategy is proposed based on 3D network formed by easily blending polysaccharide carrageenan (Car) and fucoidan (Fuc) without a crosslinker. The Fuc/Car dual coating effectively assists the self-assembly of soy protein-isolated (SPI)/curcumin (Cur, C) composite microcapsules (SPI/C) and achieves an excellent curcumin encapsulation efficiency (EE) up to 95.28% with a 4.16% loading capacity (LC) under optimal conditions. The resulting nanocomposites achieved a satisfying redispersibility in aqueous solution and enhanced the water solubility with a lower size dispersity index (PDI) of 0.12 and a larger zeta potential of −29.67 mV. The Fuc/Car double-layer network not only dramatically improved its thermal stability and photostability, but also provided controlled release and enhanced antioxidant activity in in vitro conditions. The underlying mechanism of the self-assembly of the curcumin-loaded nanoparticles was also addressed. The results proved the feasibility of the encapsulation of unstable hydrophobic bioactive substances (curcumin) with the dual anionic polysaccharide Fuc/Car co-stabilized SPI nanoparticles. This study paves the way for an alternative way of developing novel curcumin delivery systems and will have broad prospects in the pharmaceutical industries. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

73 pages, 4574 KiB  
Review
Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective
by David Danielpour
Pharmaceuticals 2024, 17(4), 533; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040533 - 20 Apr 2024
Viewed by 342
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell [...] Read more.
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs’ pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies. Full article
Show Figures

Figure 1

19 pages, 3604 KiB  
Article
Synergistic Biomedical Potential and Molecular Docking Analyses of Coumarin–Triazole Hybrids as Tyrosinase Inhibitors: Design, Synthesis, In Vitro Profiling, and In Silico Studies
by Rukhsana Kausar, Ameer Fawad Zahoor, Hina Tabassum, Shagufta Kamal and Mashooq Ahmad Bhat
Pharmaceuticals 2024, 17(4), 532; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040532 - 20 Apr 2024
Viewed by 237
Abstract
The tyrosinase enzyme has a vital role in the browning of vegetables and fruits and the biosynthesis of melanin. In this work, we synthesized a diverse library of coumarin–triazole hybrids, and these compounds were characterized by using suitable analytical techniques. Our research work [...] Read more.
The tyrosinase enzyme has a vital role in the browning of vegetables and fruits and the biosynthesis of melanin. In this work, we synthesized a diverse library of coumarin–triazole hybrids, and these compounds were characterized by using suitable analytical techniques. Our research work extends beyond the synthetic effort to explore the therapeutic potential of these compounds. We put the synthesized compounds through meticulous in vitro screening against the tyrosinase enzyme, and these coumarin derivatives evinced good IC50 values in the range of 0.339 ± 0.25 µM to 14.06 ± 0.92 µM. In the library of synthesized compounds, six compounds were found to be more potent than standard ascorbic acid (IC50 = 11.5 ± 1.00), and among them, 17e and 17f, being the most active, exhibited remarkable anti-tyrosinase potential, with IC50 values of 0.339 ± 0.25 μM and 3.148 ± 0.23 μM, respectively. Furthermore, an in silico modeling study was carried out to determine the key interactions of these compounds with the tyrosinase protein (PDB ID: 2Y9X) and thus to authenticate our experimental findings. The quantitative SAR studies exhibited a good correlation between the synthesized derivatives of coumarin and their anti-tyrosinase activity. The docking studies verified the experimental results, and ligand 17e showed good interaction with the core residues of tyrosinase. This study not only expands the field of coumarin–triazole hybrid synthesis but also provides valuable insights for the development of novel tyrosinase inhibitors. Full article
Show Figures

Figure 1

10 pages, 3177 KiB  
Article
The Role of α-Enolase on the Production of Interleukin (IL)-32 in Con A-Mediated Inflammation and Rheumatoid Arthritis (RA)
by Hyejung Jo, Seulgi Shin, Tomoyo Agura, Seoyoun Jeong, Hyovin Ahn, Junmyung Lee, Yejin Kim and Jae Seung Kang
Pharmaceuticals 2024, 17(4), 531; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040531 - 20 Apr 2024
Viewed by 290
Abstract
Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 [...] Read more.
Interleukin (IL)-32 is produced by T lymphocytes, natural killer cells, monocytes, and epithelial cells. IL-32 induces the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8, and IL-32 expression is highly increased in rheumatoid arthritis (RA) patients. Enolase-1 (ENO1) is a glycolytic enzyme and the stimulation of ENO1 induces high levels of pro-inflammatory cytokines in concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and macrophages in RA patients. In addition, there are many reports that anti-ENO1 antibody is correlated with the disease progression of RA. It implies that ENO1 could regulate IL-32 production during inflammation related to the pathogenesis of RA. Therefore, we investigated the role of ENO1 in IL-32 production using Con A-activated PBMCs and RA PBMCs. IL-32 expression is increased by ENO1 stimulation using real-time PCR and ELISA. In addition, we confirmed that IL-32 production was decreased in Con A-activated PBMCs and RA PBMCs pre-treated with NF-κB or p38 MAPK pathway inhibitors. Taken together, these results suggest that ENO1 plays an important role in inflammation through the induction of IL-32 production by the activation of the NF-κB and p38 MAPK pathways. Full article
(This article belongs to the Special Issue Inflammatory Cytokines as New Therapeutic Targets)
Show Figures

Graphical abstract

17 pages, 4701 KiB  
Article
Exploring Cannabinoids with Enhanced Binding Affinity for Targeting the Expanded Endocannabinoid System: A Promising Therapeutic Strategy for Alzheimer’s Disease Treatment
by Gabriela Dumitrita Stanciu, Daniela-Carmen Ababei, Carmen Solcan, Cristina-Mariana Uritu, Vlad-Constantin Craciun, Cosmin-Vasilica Pricope, Andrei Szilagyi and Bogdan-Ionel Tamba
Pharmaceuticals 2024, 17(4), 530; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040530 - 19 Apr 2024
Viewed by 299
Abstract
Despite decades of rigorous research and numerous clinical trials, Alzheimer’s disease (AD) stands as a notable healthcare challenge of this century, with effective therapeutic solutions remaining elusive. Recently, the endocannabinoid system (ECS) has emerged as an essential therapeutic target due to its regulatory [...] Read more.
Despite decades of rigorous research and numerous clinical trials, Alzheimer’s disease (AD) stands as a notable healthcare challenge of this century, with effective therapeutic solutions remaining elusive. Recently, the endocannabinoid system (ECS) has emerged as an essential therapeutic target due to its regulatory role in different physiological processes, such as neuroprotection, modulation of inflammation, and synaptic plasticity. This aligns with previous research showing that cannabinoid receptor ligands have the potential to trigger the functional structure of neuronal and brain networks, potentially impacting memory processing. Therefore, our study aims to assess the effects of prolonged, intermittent exposure (over 90 days) to JWH-133 (0.2 mg/kg) and an EU-GMP certified Cannabis sativa L. (Cannabixir® Medium Flos, 2.5 mg/kg) on recognition memory, as well as their influence on brain metabolism and modulation of the expanded endocannabinoid system in APP/PS1 mice. Chronic therapy with cannabinoid receptor ligands resulted in reduced anxiety-like behavior and partially reversed the cognitive deficits. Additionally, a reduction was observed in both the number and size of Aβ plaque deposits, along with decreased cerebral glucose metabolism, as well as a decline in the expression of mTOR and CB2 receptors. Furthermore, the study revealed enlarged astrocytes and enhanced expression of M1 mAChR in mice subjected to cannabinoid treatment. Our findings highlight the pivotal involvement of the extended endocannabinoid system in cognitive decline and pathological aspects associated with AD, presenting essential preclinical evidence to support the continued exploration and assessment of cannabinoid receptor ligands for AD treatment. Full article
(This article belongs to the Special Issue Pharmacotherapy for Alzheimer’s Disease)
Show Figures

Figure 1

11 pages, 4429 KiB  
Article
Comparison of Glioblastoma Cell Culture Platforms Based on Transcriptional Similarity with Paired Tissue
by Junseong Park, Ilkyoo Koh, Junghwa Cha, Yoojung Oh, Jin-Kyoung Shim, Hyejin Kim, Ju Hyung Moon, Eui Hyun Kim, Jong Hee Chang, Pilnam Kim and Seok-Gu Kang
Pharmaceuticals 2024, 17(4), 529; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040529 - 19 Apr 2024
Viewed by 237
Abstract
No standardized in vitro cell culture models for glioblastoma (GBM) have yet been established, excluding the traditional two-dimensional culture. GBM tumorspheres (TSs) have been highlighted as a good model platform for testing drug effects and characterizing specific features of GBM, but a detailed [...] Read more.
No standardized in vitro cell culture models for glioblastoma (GBM) have yet been established, excluding the traditional two-dimensional culture. GBM tumorspheres (TSs) have been highlighted as a good model platform for testing drug effects and characterizing specific features of GBM, but a detailed evaluation of their suitability and comparative performance is lacking. Here, we isolated GBM TSs and extracellular matrices (ECM) from tissues obtained from newly diagnosed IDH1 wild-type GBM patients and cultured GBM TSs on five different culture platforms: (1) ordinary TS culture liquid media (LM), (2) collagen-based three-dimensional (3D) matrix, (3) patient typical ECM-based 3D matrix, (4) patient tumor ECM-based 3D matrix, and (5) mouse brain. For evaluation, we obtained transcriptome data from all cultured GBM TSs using microarrays. The LM platform exhibited the most similar transcriptional program to paired tissues based on GBM genes, stemness- and invasiveness-related genes, transcription factor activity, and canonical signaling pathways. GBM TSs can be cultured via an easy-to-handle and cost- and time-efficient LM platform while preserving the transcriptional program of the originating tissues without supplementing the ECM or embedding it into the mouse brain. In addition to applications in basic cancer research, GBM TSs cultured in LM may also serve as patient avatars in drug screening and pre-clinical evaluation of targeted therapy and as standardized and clinically relevant models for precision medicine. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Graphical abstract

21 pages, 3529 KiB  
Article
Investigation on the Combined Effect of Hydroxypropyl Beta-Cyclodextrin (HPβCD) and Polysorbate in Monoclonal Antibody Formulation
by Jiayi Huang, Shiqi Hong, Lucas Yuan Hao Goh, Hailong Zhang, Tao Peng, Keat Theng Chow, Rajeev Gokhale and Vinod Tuliani
Pharmaceuticals 2024, 17(4), 528; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040528 - 19 Apr 2024
Viewed by 231
Abstract
Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPβCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations [...] Read more.
Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPβCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations in our previous research. The current study investigates the collaborative impact of combining polysorbates and HPβCD as excipients in protein formulations. The introduction of HPβCD in formulations showed it considerably reduced aggregation in two model proteins, bevacizumab and ipilimumab, following exposure to various stress conditions. The diffusion interaction parameter revealed a reduction in protein–protein interactions by HPβCD. In bevacizumab formulations, the subvisible particle counts per 0.4 mL of samples in commercial formulations vs. formulations containing both HPβCD and polysorbates subjected to distinct stressors were as follows: agitation, 87,308 particles vs. 15,350 particles; light, 25,492 particles vs. 6765 particles; and heat, 1775 particles vs. 460 particles. Isothermal titration calorimetry (ITC) measurement indicated a weak interaction between PS 80 and HPβCD, with a KD value of 74.7 ± 7.5 µM and binding sites of 5 × 10–3. Surface tension measurements illustrated that HPβCD enhanced the surface activity of polysorbates. The study suggests that combining these excipients can improve mAb stability in formulations, offering an alternative for the biopharmaceutical industry. Full article
Show Figures

Graphical abstract

20 pages, 3874 KiB  
Article
Potential Antitumor Activity of Combined Lycopene and Sorafenib against Solid Ehrlich Carcinoma via Targeting Autophagy and Apoptosis and Suppressing Proliferation
by Thanaa A. El-Masry, Maysa M. F. El-Nagar, Nageh A. El Mahdy, Fatemah A. Alherz, Reham Taher and Enass Y. Osman
Pharmaceuticals 2024, 17(4), 527; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040527 - 19 Apr 2024
Viewed by 261
Abstract
An FDA-approved kinase inhibitor called sorafenib (SOR) is used to treat primary kidney and liver cancer as well as to stop the spread of advanced breast cancer. Side effects from SOR, such as palmar–plantar erythrodysesthesia syndrome, can negatively impact an individual’s quality of [...] Read more.
An FDA-approved kinase inhibitor called sorafenib (SOR) is used to treat primary kidney and liver cancer as well as to stop the spread of advanced breast cancer. Side effects from SOR, such as palmar–plantar erythrodysesthesia syndrome, can negatively impact an individual’s quality of life. There are a lot of data supporting the importance of lycopene (LYC) in preventing cancer. The antitumor properties of the combination of sorafenib and lycopene were examined in this study. A viability test against MDA-MB-231 was used to assess the anticancer efficacy of sorafenib, lycopene, and their combination in vitro. Moreover, a cell cycle analysis and Annexin-V/PI double staining were performed by using flow cytometry. In addition, the protein level of JNK-1, ERK-1, Beclin-1, P38, and P53 of the MDA-MB-231 cell line was estimated using ELISA kits. In addition, mice with SEC were divided into four equal groups at random (n = 10) to investigate the possible processes underlying the in vivo antitumor effect. Group IV (SEC-SOR-LYC) received SOR (30 mg/kg/day, p.o.) and LYC (20 mg/kg/day, p.o.); Group I received the SEC control; Group II received SEC-SOR (30 mg/kg/day, p.o.); and Group III received SEC-LYC (20 mg/kg/day, p.o.). The findings demonstrated that the combination of sorafenib and lycopene was superior to sorafenib and lycopene alone in causing early cell cycle arrest, suppressing the viability of cancer cells, and increasing cell apoptosis and autophagy. Likewise, the combination of sorafenib and lycopene demonstrated inhibition of the levels of Bcl-2, Ki-67, VEGF, IL-1β, and TNF-α protein. Otherwise, the quantities of the proteins BAX, P53, and caspase 3 were amplified. Furthermore, the combined treatment led to a substantial increase in TNF-α, caspase 3, and VEGF gene expression compared to the equivalent dosages of monotherapy. The combination of sorafenib and lycopene enhanced apoptosis and reduced inflammation, as seen by the tumor’s decreased weight and volume, hence demonstrating its potential anticancer effect. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment)
Show Figures

Figure 1

22 pages, 2071 KiB  
Article
Development and Validation of a Capillary Zone Electrophoresis–Tandem Mass Spectrometry Method for Simultaneous Quantification of Eight β-Lactam Antibiotics and Two β-Lactamase Inhibitors in Plasma Samples
by Ivana Cizmarova, Peter Mikus, Martin Svidrnoch and Juraj Piestansky
Pharmaceuticals 2024, 17(4), 526; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040526 - 19 Apr 2024
Viewed by 249
Abstract
Monitoring plasma concentrations of β-lactam antibiotics is crucial, particularly in critically ill patients, where variations in concentrations can lead to treatment failure or adverse events. Standardized antimicrobial regimens may not be effective for all patients, especially in special groups with altered physiological parameters. [...] Read more.
Monitoring plasma concentrations of β-lactam antibiotics is crucial, particularly in critically ill patients, where variations in concentrations can lead to treatment failure or adverse events. Standardized antimicrobial regimens may not be effective for all patients, especially in special groups with altered physiological parameters. Pharmacokinetic/pharmacodynamic (PK/PD) studies highlight the time-dependent antibacterial activity of these antibiotics, emphasizing the need for personalized dosing. Therapeutic drug monitoring (TDM) is essential, requiring rapid and accurate analytical methods for precise determination of drugs in biological material (typically plasma or serum). This study presents a novel capillary zone electrophoresis–tandem mass spectrometry (CZE-MS/MS) method designed for the simultaneous quantification of five penicillin antibiotics, two cephalosporins, one carbapenem, and two β-lactamase inhibitors in a single run. The method involves a simple sample pretreatment—precipitation with organic solvent—and has a run time of 20 min. Optimization of CZE separation conditions revealed that 20 mM ammonium hydrogen carbonate (NH4HCO3) serves as the optimal background electrolyte (BGE). Positive electrospray ionization (ESI) mode, with isopropyl alcohol (IP)/10 mM ammonium formate water solution (50/50, v/v) as the sheath liquid, was identified as the optimal condition for MS detection. Method validation according to the Food and Drug Administration (FDA) guideline for development of bioanalytical methods demonstrated satisfactory selectivity, linearity, recovery, robustness, and stability. The method’s practicality was evaluated using the Blue Applicability Grade Index (BAGI), yielding a score of 77.5. Moreover, the greenness of the proposed method was evaluated by two commonly used metric tools—Analytical GREEnness (AGREE) and Green Analytical Procedure Index (GAPI). The developed CZE-MS/MS method offers a practical and reliable approach for quantifying a broad spectrum of β-lactam antibiotics in plasma. Its ability to simultaneously quantify multiple analytes in a single run, coupled with a straightforward sample pretreatment, positions it as a valuable and prospective tool for TDM in critically ill patients. Full article
Show Figures

Figure 1

19 pages, 44609 KiB  
Article
Effect of GLP-1 Receptor Agonist on Ischemia Reperfusion Injury in Rats with Metabolic Syndrome
by Marko Ravic, Ivan Srejovic, Jovana Novakovic, Marijana Andjic, Jasmina Sretenovic, Maja Muric, Marina Nikolic, Sergey Bolevich, Kirill Alekseevich Kasabov, Vladimir Petrovich Fisenko, Aleksandra Stojanovic and Vladimir Jakovljevic
Pharmaceuticals 2024, 17(4), 525; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040525 - 19 Apr 2024
Viewed by 294
Abstract
Metabolic syndrome (MetS) represents an important factor that increases the risk of myocardial infarction, and more severe complications. Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs) exhibit cardioprotective potential, but their efficacy in MetS-related myocardial dysfunction has not been fully explored. Therefore, we aimed to [...] Read more.
Metabolic syndrome (MetS) represents an important factor that increases the risk of myocardial infarction, and more severe complications. Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs) exhibit cardioprotective potential, but their efficacy in MetS-related myocardial dysfunction has not been fully explored. Therefore, we aimed to assess the effects of exenatide and dulaglutide on heart function and redox balance in MetS-induced rats. Twenty-four Wistar albino rats with induced MetS were divided into three groups: MetS, exenatide-treated (5 µg/kg), dulaglutide-treated (0.6 mg/kg). After 6 weeks of treatment, in vivo heart function was assessed via echocardiography, while ex vivo function was evaluated using a Langendorff apparatus to simulate ischemia-reperfusion injury. Heart tissue samples were analyzed histologically, and oxidative stress biomarkers were measured spectrophotometrically from the coronary venous effluent. Both exenatide and dulaglutide significantly improved the ejection fraction by 3% and 7%, respectively, compared to the MetS group. Histological analyses corroborated these findings, revealing a reduction in the cross-sectional area of cardiomyocytes by 11% in the exenatide and 18% in the dulaglutide group, indicating reduced myocardial damage in GLP-1RA-treated rats. Our findings suggest strong cardioprotective potential of GLP-1RAs in MetS, with dulaglutide showing a slight advantage. Thus, both exenatide and dulaglutide are potentially promising targets for cardioprotection and reducing mortality in MetS patients. Full article
Show Figures

Figure 1

20 pages, 9362 KiB  
Article
The Therapeutic Potential of Four Main Compounds of Zanthoxylum nitidum (Roxb.) DC: A Comprehensive Study on Biological Processes, Anti-Inflammatory Effects, and Myocardial Toxicity
by Xiaohan Li, Qi Wang, Ling Liu, Yang Shi, Yang Hong, Wanqing Xu, Henghui Xu, Jing Feng, Minzhen Xie, Yang Li, Baofeng Yang and Yong Zhang
Pharmaceuticals 2024, 17(4), 524; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040524 - 19 Apr 2024
Viewed by 373
Abstract
Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential [...] Read more.
Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential therapeutic effects and cardiac toxicity of Z. nitidum remain uncertain. The aim of this research was to investigate the potential therapeutic properties of the four main compounds of Z. nitidum in cardiovascular diseases, their impact on the electrical activity of cardiomyocytes, and the underlying mechanism of their anti-inflammatory effects. We selected the four compounds from Z. nitidum with a high concentration and specific biological activity: nitidine chloride (NC), chelerythrine chloride (CHE), magnoflorine chloride (MAG), and hesperidin (HE). A proteomic analysis was conducted on the myocardial tissues of beagle dogs following the administration of NC to investigate the role of NC in vivo and the associated biological processes. A bioinformatic analysis was used to predict the in vivo biological processes that MAG, CHE, and HE were involved in. Molecular docking was used to simulate the binding between compounds and their targets. The effect of the compounds on ion channels in cardiomyocytes was evaluated through a patch clamp experiment. Organ-on-a-chip (OOC) technology was developed to mimic the physiological conditions of the heart in vivo. Proteomic and bioinformatic analyses demonstrated that the four compounds of Z. nitidum are extensively involved in various cardiovascular-related biological pathways. The findings from the patch clamp experiments indicate that NC, CHE, MAG, and HE elicit a distinct activation or inhibition of the IK1 and ICa-L in cardiomyocytes. Finally, the anti-inflammatory effects of the compounds on cardiomyocytes were verified using OOC technology. NC, CHE, MAG, and HE demonstrate anti-inflammatory effects through their specific interactions with prostaglandin-endoperoxide synthase 2 (PTGS2) and significantly influence ion channels in cardiomyocytes. Our study provides a foundation for utilizing NC, CHE, MAG, and HE in the treatment of cardiovascular diseases. Full article
Show Figures

Figure 1

22 pages, 2465 KiB  
Project Report
Overview of Research on Leishmaniasis in Africa: Current Status, Diagnosis, Therapeutics, and Recent Advances Using By-Products of the Sargassaceae Family
by Fatouma Mohamed Abdoul-Latif, Khadija Oumaskour, Nadira Abdallah, Ayoub Ainane, Ibrahim Houmed Aboubaker, Ali Merito, Houda Mohamed and Tarik Ainane
Pharmaceuticals 2024, 17(4), 523; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040523 - 18 Apr 2024
Viewed by 492
Abstract
Leishmaniasis in Africa, which has been designated as a priority neglected tropical disease by various global organizations, exerts its impact on millions of individuals, primarily concentrated within this particular region of the world. As a result of the progressively grave epidemiological data, numerous [...] Read more.
Leishmaniasis in Africa, which has been designated as a priority neglected tropical disease by various global organizations, exerts its impact on millions of individuals, primarily concentrated within this particular region of the world. As a result of the progressively grave epidemiological data, numerous governmental sectors and civil organizations have concentrated their endeavors on this widespread outbreak with the objective of devising appropriate remedies. This comprehensive examination delves into multiple facets of this parasitic ailment, scrutinizing the associated perils, diagnostic intricacies, and deficiencies within the existing therapeutic protocols. Despite the established efficacy of current treatments, they are not immune to deleterious incidents, particularly concerning toxicity and the emergence of parasitic resistance, thus accentuating the necessity of exploring alternative avenues. Consequently, this research not only encompasses conventional therapeutic approaches, but also extends its scope to encompass complementary and alternative medicinal techniques, thereby striving to identify innovative solutions. A particularly auspicious dimension of this study lies in the exploration of natural substances and by-products derived from some brown algae of the Sargassaceae family. These resources possess the potential to assume a pivotal role in the management of leishmaniasis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

12 pages, 1937 KiB  
Article
A Population Pharmacokinetic Study to Compare a Novel Empagliflozin L-Proline Formulation with Its Conventional Formulation in Healthy Subjects
by Xu Jiang, Kyung-Sang Yu, Dong Hyuk Nam and Jaeseong Oh
Pharmaceuticals 2024, 17(4), 522; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040522 - 18 Apr 2024
Viewed by 312
Abstract
Empagliflozin is a sodium–glucose cotransporter 2 (SGLT2) inhibitor that is commonly used for the treatment of type 2 diabetes mellitus (T2DM). CKD-370 was newly developed as a cocrystal formulation of empagliflozin with co-former L-proline, which has been confirmed to be bioequivalent in South [...] Read more.
Empagliflozin is a sodium–glucose cotransporter 2 (SGLT2) inhibitor that is commonly used for the treatment of type 2 diabetes mellitus (T2DM). CKD-370 was newly developed as a cocrystal formulation of empagliflozin with co-former L-proline, which has been confirmed to be bioequivalent in South Korea. This study aimed to quantify the differences in the absorption phase and pharmacokinetic (PK) parameters of two empagliflozin formulations in healthy subjects by using population PK analysis. The plasma concentration data of empagliflozin were obtained from two randomized, open-label, crossover, phase 1 clinical studies in healthy Korean subjects after a single-dose administration. A population PK model was constructed by using a nonlinear mixed-effects (NLME) approach (Monolix Suite 2021R1). Interindividual variability (IIV) and interoccasion variability (IOV) were investigated. The final model was evaluated by goodness-of-fit (GOF) diagnostic plots, visual predictive checks (VPCs), prediction errors, and bootstrapping. The PK of empagliflozin was adequately described with a two-compartment combined transit compartment model with first-order absorption and elimination. Log-transformed body weight significantly influenced systemic clearance (CL) and the volume of distribution in the peripheral compartment (V2) of empagliflozin. GOF plots, VPCs, prediction errors, and the bootstrapping of the final model suggested that the proposed model was adequate and robust, with good precision at different dose strengths. The cocrystal form did not affect the absorption phase of the drug, and the PK parameters were not affected by the different treatments. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

26 pages, 1052 KiB  
Review
Melanin Biopolymers in Pharmacology and Medicine—Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy
by Marta Karkoszka, Jakub Rok and Dorota Wrześniok
Pharmaceuticals 2024, 17(4), 521; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040521 - 18 Apr 2024
Viewed by 522
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their [...] Read more.
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug–melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation—determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation—different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article. Full article
(This article belongs to the Special Issue Novel Therapies for the Treatment of Skin Diseases)
Show Figures

Figure 1

11 pages, 287 KiB  
Review
The Epidemiology of Newly Recognized Causes of Drug-Induced Liver Injury: An Update
by Einar Stefan Björnsson
Pharmaceuticals 2024, 17(4), 520; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040520 - 18 Apr 2024
Viewed by 385
Abstract
The incidence and prevalence of drug-induced liver injury appear to be increasing globally, for example, with the introduction of checkpoint inhibitors. Several reviews have been published in the last decade on the epidemiology of DILI, both among hospitalized patients and in the general [...] Read more.
The incidence and prevalence of drug-induced liver injury appear to be increasing globally, for example, with the introduction of checkpoint inhibitors. Several reviews have been published in the last decade on the epidemiology of DILI, both among hospitalized patients and in the general population, as well as from retrospective and prospective studies on DILI. Most of these reviews have not focused on newly recognized agents that have recently changed the landscape of DILI. Apart from liver injury associated with antibiotics, oncological agents, particularly checkpoint inhibitors, are increasingly being recognized as causing liver injury. The type of liver injury associated with these agents is not idiosyncratic but rather an indirect type of injury. Furthermore, recently, COVID-19 vaccines and green tea extract have been found to lead to liver injury. Checkpoint inhibitors have revolutionized the treatment of many malignancies, such as malignant melanoma, lung cancer, and renal cancer. Via the activation of T cells, they can increase immune activity against malignant cells, but at the same time, they can decrease immune tolerance and therefore lead to immune-related adverse effects in many organs. The most common adverse effect in clinical practice is liver injury. A recent prospective study demonstrated an 8% frequency of DILI due to the use of checkpoint inhibitors among patients with malignant melanoma and renal cancer. This rate is much higher than observed with drugs, leading to idiosyncratic liver injury. Shortly after the implementation of the worldwide vaccination program against COVID-19, several case reports were published on suspected vaccination-induced autoimmune-like hepatitis occurring shortly after the vaccination. At first, these reports were met with skepticism, but currently, around 100 reports have been published, and cases of positive recurrence have been reported. The clinical, biochemical, immunological, and histological features are indistinguishable from classic autoimmune hepatitis (AIH). These reactions are very similar to drug-induced autoimmune-like hepatitis (DI-ALH) due to drugs such as nitrofurantoin, minocycline, and infliximab, which do not relapse after a short course of corticosteroids, which is the general rule in classic autoimmune hepatitis (AIH). Green tea extract has been found to be a well-documented cause of acute hepatocellular liver injury with jaundice. A strong HLA association has been reported, showing a high prevalence of HLA-B*35:01 among patients suffering from green tea-induced liver injury. Overall, 3% of patients recruited in the DILIN study were supplemented with green tea extract as one of the ingredients. In a prospective population-based study from Iceland, green tea was implicated in approximately 8% of patients with DILI. Full article
(This article belongs to the Section Pharmacology)
11 pages, 1406 KiB  
Article
Sustained Effectiveness of Upadacitinib in Moderate-to-Severe Atopic Dermatitis: A 48-Week Real-World Study
by Teppei Hagino, Risa Hamada, Mai Yoshida, Hidehisa Saeki, Eita Fujimoto and Naoko Kanda
Pharmaceuticals 2024, 17(4), 519; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040519 - 18 Apr 2024
Viewed by 353
Abstract
Clinical trials and real-world studies have shown the effectiveness of upadacitinib for treating rash and pruritus in patients with atopic dermatitis (AD). This study aimed to determine whether the early reduction in rash or pruritus at week 12 of upadacitinib treatment could be [...] Read more.
Clinical trials and real-world studies have shown the effectiveness of upadacitinib for treating rash and pruritus in patients with atopic dermatitis (AD). This study aimed to determine whether the early reduction in rash or pruritus at week 12 of upadacitinib treatment could be maintained at later treatment stages. This retrospective study involved 227 and 73 patients with moderate-to-severe AD treated with 15 and 30 mg upadacitinib daily, respectively. The eczema area and severity index (EASI) scores, peak pruritus numerical rating scale (PP-NRS), and investigator’s global assessment (IGA) were analyzed. At week 12, patients were divided into achievers and non-achievers of EASI 75, 90, 100, absolute EASI ≤ 2, IGA0/1, PP-NRS4, or absolute PP-NRS ≤ 1. Achievement rates for each endpoint were assessed at later time points (weeks 24, 36, and 48) in both groups. Week 12 achievers largely maintained their endpoint achievements until week 48, regardless of dosage (15 mg or 30 mg). Week 12 non-achievers saw an increasing achievement rate of EASI 75 until week 48. The initial reduction in rash and pruritus at week 12 persisted until week 48 with upadacitinib treatment, suggesting potential benefits for patients requiring prolonged treatment despite not achieving EASI 75 at week 12. Full article
(This article belongs to the Special Issue Drug Candidates for Allergic Diseases)
Show Figures

Figure 1

39 pages, 2992 KiB  
Article
Phytochemical Analysis, Biological Activities, and Molecular Docking Studies of Root Extracts from Paeonia Species in Serbia
by Petar Batinić, Aleksandra Jovanović, Dejan Stojković, Gökhan Zengin, Ilija Cvijetić, Uroš Gašić, Natalija Čutović, Mirjana B. Pešić, Danijel D. Milinčić, Tamara Carević, Aleksandar Marinković, Branko Bugarski and Tatjana Marković
Pharmaceuticals 2024, 17(4), 518; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040518 - 17 Apr 2024
Viewed by 415
Abstract
Without being aware of their chemical composition, many cultures have used herbaceous peony roots for medicinal purposes. Modern phytopreparations intended for use in human therapy require specific knowledge about the chemistry of peony roots and their biological activities. In this study, ethanol–water extracts [...] Read more.
Without being aware of their chemical composition, many cultures have used herbaceous peony roots for medicinal purposes. Modern phytopreparations intended for use in human therapy require specific knowledge about the chemistry of peony roots and their biological activities. In this study, ethanol–water extracts were prepared by maceration and microwave- and ultrasound-assisted extractions (MAE and UAE, respectively) in order to obtain bioactive molecules from the roots of Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L. wild growing in Serbia. Chemical characterization; polyphenol and flavonoid content; antioxidant, multianti-enzymatic, and antibacterial activities of extracts; and in vitro gastrointestinal digestion (GID) of hot water extracts were performed. The strongest anti-cholinesterase activity was observed in PT extracts. The highest anti-ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical potential was observed in PP extracts, whereas against DPPH (2,2-diphenyl-1-picrylhydrazyl radicals), the best results were achieved with PO extracts. Regarding antibacterial activity, extracts were strongly potent against Bacillus cereus. A molecular docking simulation was conducted to gather insights into the binding affinity and interactions of polyphenols and other Paeonia-specific molecules in the active sites of tested enzymes. In vitro GID of Paeonia teas showed a different recovery and behavior of the individual bioactives, with an increased recovery of methyl gallate and digallate and a decreased recovery of paeoniflorin and its derivatives. PT (Gulenovci) and PP (Pirot) extracts obtained by UAE and M were more efficient in the majority of the bioactivity assays. This study represents an initial step toward the possible application of Paeonia root extracts in pharmacy, medicine, and food technologies. Full article
Show Figures

Figure 1

19 pages, 2710 KiB  
Article
PolySialic Acid Nanoparticles Actuate Complement-Factor-H-Mediated Inhibition of the Alternative Complement Pathway: A Safer Potential Therapy for Age-Related Macular Degeneration
by Sheri L. Peterson, Anitha Krishnan, Diyan Patel, Ali Khanehzar, Amit Lad, Jutamas Shaughnessy, Sanjay Ram, David Callanan, Derek Kunimoto, Mohamed A. Genead and Michael J. Tolentino
Pharmaceuticals 2024, 17(4), 517; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040517 - 17 Apr 2024
Viewed by 350
Abstract
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) [...] Read more.
The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization. Full article
(This article belongs to the Special Issue Novel Treatments and Technologies for Retinal Diseases)
Show Figures

Figure 1

27 pages, 2619 KiB  
Article
FRET Assays for the Identification of C. albicans HSP90-Sba1 and Human HSP90α-p23 Binding Inhibitors
by Philip Kohlmann, Sergey N. Krylov, Pascal Marchand and Joachim Jose
Pharmaceuticals 2024, 17(4), 516; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040516 - 17 Apr 2024
Viewed by 322
Abstract
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to [...] Read more.
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to characterize the binding of C. albicans HSP90 to its co-chaperone Sba1, as well as that of the homologous human HSP90α to p23. The assay for human HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of C. albicans HSP90 to Sba1 without affecting the physiological activity of human HSP90α. The combination of the two assays is important for antifungal drug development, while the assay for human HSP90α can potentially be used on its own for anticancer drug discovery. Since ATP binding of HSP90 is a prerequisite for HSP90-Sba1/p23 binding, ATP-competitive inhibitors can be identified with the assays. The specificity of binding of fusion protein constructs—HSP90-mNeonGreen (donor) and Sba1-mScarlet-I (acceptor)—to each other in our assay was confirmed via competitive inhibition by both non-labeled Sba1 and known ATP-competitive inhibitors. We utilized the developed assays to characterize the stability of both HSP90–Sba1 and HSP90α–p23 affinity complexes quantitatively. Kd values were determined and assessed for their precision and accuracy using the 95.5% confidence level. For HSP90-Sba1, the precision confidence interval (PCI) was found to be 70–120 (100 ± 20) nM while the accuracy confidence interval (ACI) was 100–130 nM. For HSP90α-p23, PCI was 180–260 (220 ± 40) nM and ACI was 200–270 nM. The developed assays were used to screen a nucleoside-mimetics library of 320 compounds for inhibitory activity against both C. albicans HSP90-Sba1 and human HSP90α-p23 binding. No novel active compounds were identified. Overall, the developed assays exhibited low data variability and robust signal separation, achieving Z factors > 0.5. Full article
Show Figures

Figure 1

19 pages, 6916 KiB  
Article
Chrysin Inhibits TAMs-Mediated Autophagy Activation via CDK1/ULK1 Pathway and Reverses TAMs-Mediated Growth-Promoting Effects in Non-Small Cell Lung Cancer
by Xinglinzi Tang, Xiaoru Luo, Xiao Wang, Yi Zhang, Jiajia Xie, Xuan Niu, Xiaopeng Lu, Xi Deng, Zheng Xu and Fanwei Wu
Pharmaceuticals 2024, 17(4), 515; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040515 - 17 Apr 2024
Viewed by 334
Abstract
The natural flavonoid compound chrysin has promising anti-tumor effects. In this study, we aimed to investigate the mechanism by which chrysin inhibits the growth of non-small cell lung cancer (NSCLC). Through in vitro cell culture and animal models, we explored the impact of [...] Read more.
The natural flavonoid compound chrysin has promising anti-tumor effects. In this study, we aimed to investigate the mechanism by which chrysin inhibits the growth of non-small cell lung cancer (NSCLC). Through in vitro cell culture and animal models, we explored the impact of chrysin on the growth of NSCLC cells and the pro-cancer effects of tumor-associated macrophages (TAMs) and their mechanisms. We observed that M2-TAMs significantly promoted the growth and migration of NSCLC cells, while also markedly activating the autophagy level of these cells. Chrysin displayed a significant inhibitory effect on the growth of NSCLC cells, and it could also suppress the pro-cancer effects of M2-TAMs and inhibit their mediated autophagy. Furthermore, combining network pharmacology, we found that chrysin inhibited TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 signaling pathway, rather than the classical mTOR/ULK1 signaling pathway. Our study reveals a novel mechanism by which chrysin inhibits TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 pathway, thereby suppressing NSCLC growth. This discovery not only provides new therapeutic strategies for NSCLC but also opens up new avenues for further research on chrysin. Full article
Show Figures

Graphical abstract

12 pages, 2843 KiB  
Article
Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities
by Thomas Wanek, Marco Raabe, Md Noor A Alam, Thomas Filip, Johann Stanek, Mathilde Loebsch, Christian Laube, Severin Mairinger, Tanja Weil and Claudia Kuntner
Pharmaceuticals 2024, 17(4), 514; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040514 - 17 Apr 2024
Viewed by 397
Abstract
Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting [...] Read more.
Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting efficacy of octreotide-functionalized 68Ga-radiolabelled NDs for cancer imaging and compared it with the tumor uptake using [68Ga]Ga-DOTA-TOC. In vivo studies in mice bearing AR42J tumors demonstrated the highest accumulation of the radiolabeled functionalized NDs in the liver and spleen, with relatively low tumor uptake compared to [68Ga]Ga-DOTA-TOC. Our findings suggest that, within the scope of this study, functionalization did not enhance the tumor-targeting capabilities of NDs. Full article
Show Figures

Figure 1

22 pages, 2988 KiB  
Article
Comprehensive Analysis of Bioactive Compounds in Wild Ganoderma applanatum Mushroom from Kerala, South India: Insights into Dietary Nutritional, Mineral, Antimicrobial, and Antioxidant Activities
by Akbar Rijia, Raman Krishnamoorthi, Madhusoodhanan Rasmi, Pambayan Ulagan Mahalingam and Kwang-sun Kim
Pharmaceuticals 2024, 17(4), 509; https://0-doi-org.brum.beds.ac.uk/10.3390/ph17040509 - 17 Apr 2024
Viewed by 551
Abstract
The present study focused on the mushroom Ganoderma, which has been used in Eastern countries for centuries as a food and medicinal source. Specifically, the fruiting bodies of Ganoderma applanatum from the Kerala Forest Research Institute in Thirussur, Kerala, India, were analyzed for [...] Read more.
The present study focused on the mushroom Ganoderma, which has been used in Eastern countries for centuries as a food and medicinal source. Specifically, the fruiting bodies of Ganoderma applanatum from the Kerala Forest Research Institute in Thirussur, Kerala, India, were analyzed for their nutritional and medicinal properties. The methanolic extracts of G. applanatum were used to examine secondary metabolites and proximate profiles, revealing the presence of various phytochemicals such as terpenoids, phenolics, glycosides, alkaloids, flavonoids, and saponins. Further analysis revealed the presence of significant amounts of calcium, sodium, phosphorus, and manganese. The compounds were characterized using chromatographic analysis, FTIR, and GC-MS, which revealed potential therapeutic compounds with C-H and C-O bonds in the amide group, β-glycosides, and C-C/C-O vibrations of phenolic substances. Mushroom extract at a concentration of 100 µg mL−1 exhibited potent antimicrobial activity against various pathogens. This study suggests that G. applanatum has a rich biochemical composition and pharmacological potential, making it a promising candidate for drug development and traditional medicine, and contributes valuable insights into its diverse therapeutic applications. Full article
(This article belongs to the Topic Challenges and Future Prospects of Antibacterial Therapy)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop