Enteric and Respiratory Viruses in Animals 2023

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: closed (15 June 2023) | Viewed by 14155

Special Issue Editor


E-Mail Website
Guest Editor
National Institute of Animal Health, NARO, Ibaraki 305-0856, Japan
Interests: reverse genetics technique; enteric virus; coronavirus; rotavirus; calicivirus; VLPs (virus-like particles); anti-IgY; animal coronaviruses; animal rotaviruses; pathogenicity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The main topic of this Special Issue is enteric and respiratory viruses, which cause severe and acute diarrhea and pneumonia in animals, especially in the agricultural and veterinary industries. Enteric and respiratory viruses include mainly Coronaviruses (PEDV, TGEV, PDCoV, SADS-CoV, Bovine CoV, and Equine CoV), Rotaviruses (RVA, RVB, RVC and RVH), and Caliciviruses (Norovirus, and Sapovirus), Toroviruses, Adenoviruses, Herpesviruses (BHV, and ADV), and Pestiviruses (BVDV, and CSFV). Diarrhea and pneumonia lead to the deterioration of health, insufficient body weight gain, and deaths of young animals, resulting in huge economic losses. However, the available information is still limited regarding enteric and respiratory viruses in animals, and hence, there are few effective strategies for the control and prevention of enteric and respiratory viruses, despite their significant economic impact. Therefore, this Special Issue welcomes all types of manuscripts (e.g., reviews, research articles, and short communications), including novel findings with respect to diagnostic approaches, experimental techniques, molecular mechanisms, pathogenicity, host-virus interactions, and the treatment of enteric and respiratory viruses.

Dr. Tohru Suzuki
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coronaviruses
  • rotaviruses
  • caliciviruses
  • toroviruses
  • adenoviruses
  • herpesviruses
  • pestiviruses
  • diagnosis
  • experimental techniques
  • pathogenicity
  • treatment

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

23 pages, 975 KiB  
Article
Development, Evaluation, and Clinical Application of PRRSV-2 Vaccine-like Real-Time RT-PCR Assays
by Gaurav Rawal, Karen M. Krueger, Wannarat Yim-im, Ganwu Li, Phillip C. Gauger, Marcelo N. Almeida, Ethan K. Aljets and Jianqiang Zhang
Viruses 2023, 15(11), 2240; https://0-doi-org.brum.beds.ac.uk/10.3390/v15112240 - 10 Nov 2023
Viewed by 1421
Abstract
In this study, we developed and validated (1) singleplex real-time RT-PCR assays for specific detection of five PRRSV-2 MLV vaccine viruses (Ingelvac MLV, Ingelvac ATP, Fostera, Prime Pac, and Prevacent) and (2) a four-plex real-time RT-PCR assay (IngelvacMLV/Fostera/Prevacent/XIPC) including the internal positive control [...] Read more.
In this study, we developed and validated (1) singleplex real-time RT-PCR assays for specific detection of five PRRSV-2 MLV vaccine viruses (Ingelvac MLV, Ingelvac ATP, Fostera, Prime Pac, and Prevacent) and (2) a four-plex real-time RT-PCR assay (IngelvacMLV/Fostera/Prevacent/XIPC) including the internal positive control XIPC for detecting and distinguishing the three most commonly used vaccines in the USA (Prevacent, Ingelvac MLV, and Fostera). The singleplex and 4-plex vaccine-like PCRs and the reference PCR (VetMAXTM PRRSV NA&EU, Thermo Fisher Scientific, Waltham, MA, USA) did not cross-react with non-PRRSV swine viral and bacterial pathogens. The limits of detection of vaccine-like PCRs ranged from 25 to 50 genomic copies/reactions. The vaccine-like PCRs all had excellent intra-assay and inter-assay repeatability. Based on the testing of 531 clinical samples and in comparison to the reference PCR, the diagnostic sensitivity, specificity, and agreement were in the respective range of 94.67–100%, 100%, and 97.78–100% for singleplex PCRs and 94.94–100%, 100%, and 97.78–100% for the 4-plex PCR, with a CT cutoff of 37. In addition, 45 PRRSV-2 isolates representing different genetic lineages/sublineages were tested with the vaccine-like PCRs and the results were verified with sequencing. In summary, the vaccine-like PCRs specifically detect the respective vaccine-like viruses with comparable performances to the reference PCR, and the 4-plex PCR allows to simultaneously detect and differentiate the three most commonly used vaccine viruses in the same sample. PRRSV-2 vaccine-like PCRs provide an additional tool for detecting and characterizing PRRSV-2. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

29 pages, 11411 KiB  
Article
In Vivo and In Vitro Characterization of the Recently Emergent PRRSV 1-4-4 L1C Variant (L1C.5) in Comparison with Other PRRSV-2 Lineage 1 Isolates
by Gaurav Rawal, Marcelo N. Almeida, Phillip C. Gauger, Jeffrey J. Zimmerman, Fangshu Ye, Christopher J. Rademacher, Betsy Armenta Leyva, Berenice Munguia-Ramirez, Grzegorz Tarasiuk, Loni L. Schumacher, Ethan K. Aljets, Joseph T. Thomas, Jin-Hui Zhu, Jolie B. Trexel and Jianqiang Zhang
Viruses 2023, 15(11), 2233; https://0-doi-org.brum.beds.ac.uk/10.3390/v15112233 - 09 Nov 2023
Viewed by 1337
Abstract
The recently emerged PRRSV 1-4-4 L1C variant (L1C.5) was in vivo and in vitro characterized in this study in comparison with three other contemporary 1-4-4 isolates (L1C.1, L1A, and L1H) and one 1-7-4 L1A isolate. Seventy-two 3-week-old PRRSV-naive pigs were divided into six [...] Read more.
The recently emerged PRRSV 1-4-4 L1C variant (L1C.5) was in vivo and in vitro characterized in this study in comparison with three other contemporary 1-4-4 isolates (L1C.1, L1A, and L1H) and one 1-7-4 L1A isolate. Seventy-two 3-week-old PRRSV-naive pigs were divided into six groups with twelve pigs/group. Forty-eight pigs (eight/group) were for inoculation, and 24 pigs (four/group) served as contact pigs. Pigs in pen A of each room were inoculated with the corresponding virus or negative media. At two days post inoculation (DPI), contact pigs were added to pen B adjacent to pen A in each room. Pigs were necropsied at 10 and 28 DPI. Compared to other virus-inoculated groups, the L1C.5-inoculated pigs exhibited more severe anorexia and lethargy, higher mortality, a higher fraction of pigs with fever (>40 °C), higher average temperature at several DPIs, and higher viremia levels at 2 DPI. A higher percentage of the contact pigs in the L1C.5 group became viremic at two days post contact, implying the higher transmissibility of this virus strain. It was also found that some PRRSV isolates caused brain infection in inoculation pigs and/or contact pigs. The complete genome sequences and growth characteristics in ZMAC cells of five PRRSV-2 isolates were further compared. Collectively, this study confirms that the PRRSV 1-4-4 L1C variant (L1C.5) is highly virulent with potential higher transmissibility, but the genetic determinants of virulence remain to be elucidated. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

19 pages, 3417 KiB  
Article
Sequence-Based Antigenic Analyses of H1 Swine Influenza A Viruses from Colombia (2008–2021) Reveals Temporal and Geographical Antigenic Variations
by Andres F. Ospina-Jimenez, Arlen P. Gomez, Maria A. Rincon-Monroy, Lucia Ortiz, Daniel R. Perez, Mario Peña and Gloria Ramirez-Nieto
Viruses 2023, 15(10), 2030; https://0-doi-org.brum.beds.ac.uk/10.3390/v15102030 - 30 Sep 2023
Viewed by 1113
Abstract
Swine influenza is a respiratory disease that affects the pork industry and is a public health threat. It is caused by type A influenza virus (FLUAV), which continuously undergoes genetic and antigenic variations. A large amount of information regarding FLUAV in pigs is [...] Read more.
Swine influenza is a respiratory disease that affects the pork industry and is a public health threat. It is caused by type A influenza virus (FLUAV), which continuously undergoes genetic and antigenic variations. A large amount of information regarding FLUAV in pigs is available worldwide, but it is limited in Latin America. The HA sequences of H1 subtype FLUAV-positive samples obtained from pigs in Colombia between 2008–2021 were analyzed using sequence-based antigenic cartography and N-Glycosylation analyses. Of the 12 predicted global antigenic groups, Colombia contained five: four corresponding to pandemic strains and one to the classical swine H1N1 clade. Circulation of these clusters was observed in some regions during specific years. Ca2 was the immunodominant epitope among Colombian viruses. The counts of N-Glycosylation motifs were associated with the antigenic cluster ranging from three to five. The results show for the first time the existence of antigenic diversity of FLUAV in Colombia and highlight the impact of spatial and temporal factors on this diversity. This study provides information about FLUAV variability in pigs under natural conditions in the absence of vaccination and emphasizes the need for surveillance of its phylogenetic and antigenic characteristics. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

13 pages, 6907 KiB  
Article
Genomic and Pathologic Characterization of the First FAdV-C Serotype 4 Isolate from Black-Necked Crane
by Xiaoyan Xue, Qinhong Yang, Ming J. Wu, Zhenxing Zhang, Jianling Song, Wei Wang, Jia Yang, Jia Ji, Yongxian Zhang, Hongyang Dai, Hongbin Yin and Suhua Li
Viruses 2023, 15(8), 1653; https://0-doi-org.brum.beds.ac.uk/10.3390/v15081653 - 29 Jul 2023
Cited by 2 | Viewed by 1058
Abstract
Fowl adenoviruses (FAdVs) are distributed worldwide in poultry and incriminated as the etiological agents for several health problems in fowls, and are capable of crossing species barriers between domestic and wild fowls. An FAdV strain was, for the first time, isolated from black-necked [...] Read more.
Fowl adenoviruses (FAdVs) are distributed worldwide in poultry and incriminated as the etiological agents for several health problems in fowls, and are capable of crossing species barriers between domestic and wild fowls. An FAdV strain was, for the first time, isolated from black-necked crane in this study, and was designated as serotype 4 Fowl aviadenovirus C (abbreviated as BNC2021) according to the phylogenetic analysis of its DNA polymerase and hexon gene. The viral genomic sequence analysis demonstrated that the isolate possessed the ORF deletions that are present in FAdV4 strains circulating in poultry fowls in China and the amino acid mutations associated with viral pathogenicity in the hexon and fiber 2 proteins. A viral challenge experiment with mallard ducks demonstrated systemic viral infection and horizontal transmission. BNC2021 induced the typical clinical signs of hepatitis–hydropericardium syndrome (HHS) with swelling and inflammation in multiple organs and showed significant viral replication in all eight organs tested in the virus-inoculated ducks and their contactees at 6 dpi. The findings highlight the importance of surveillance of FAdVs in wild birds. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

17 pages, 3545 KiB  
Article
Detection and Molecular Characterization of Adenoviruses in Captive and Free-Roaming African Green Monkeys (Chlorocebus sabaeus): Evidence for Possible Recombination and Cross-Species Transmission
by Diana M. Mancuso, Kerry Gainor, Kerry M. Dore, Christa A. Gallagher, Katalina Cruz, Amy Beierschmitt, Yashpal S. Malik and Souvik Ghosh
Viruses 2023, 15(7), 1605; https://0-doi-org.brum.beds.ac.uk/10.3390/v15071605 - 22 Jul 2023
Cited by 2 | Viewed by 1017
Abstract
In the present study, 31 samples (12 fecal, 9 nasal and 10 rectal swabs) from 28/92 (30.43%, 10 captive and 18 free-roaming African green monkeys (AGMs, Chlorocebus sabaeus)) apparently healthy AGMs in the Caribbean Island of St. Kitts tested positive for adenoviruses [...] Read more.
In the present study, 31 samples (12 fecal, 9 nasal and 10 rectal swabs) from 28/92 (30.43%, 10 captive and 18 free-roaming African green monkeys (AGMs, Chlorocebus sabaeus)) apparently healthy AGMs in the Caribbean Island of St. Kitts tested positive for adenoviruses (AdVs) by DNA-dependent DNA polymerase (pol)-, or hexon-based screening PCR assays. Based on analysis of partial deduced amino acid sequences of Pol- and hexon- of nine AGM AdVs, at least two AdV genetic variants (group-I: seven AdVs with a Simian mastadenovirus-F (SAdV-F)/SAdV-18-like Pol and hexon, and group-II: two AdVs with a SAdV-F/SAdV-18-like Pol and a Human mastadenovirus-F (HAdV-F)/HAdV-40-like hexon) were identified, which was corroborated by analysis of the nearly complete putative Pol, complete hexon, and partial penton base sequences of a representative group-I (strain KNA-08975), and -II (KNA-S6) AdV. SAdV-F-like AdVs were reported for the first time in free-roaming non-human primates (NHPs) and after ~six decades from captive NHPs. Molecular characterization of KNA-S6 (and the other group-II AdV) indicated possible recombination and cross-species transmission events involving SAdV-F-like and HAdV-F-like viruses, corroborating the hypothesis that the evolutionary pathways of HAdVs and SAdVs are intermingled, complicated by recombination and inter-species transmission events, especially between related AdV species, such as HAdV-F and SAdV-F. To our knowledge, this is the first report on detection and molecular characterization of AdVs in AGMs. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

11 pages, 4065 KiB  
Article
Antigenic Characterization of Infectious Bronchitis Virus in the South China during 2021–2022
by Weifeng Yuan, Ting Lv, Weiwei Jiang, Yuechi Hou, Qingyi Wang, Jinlian Ren, Lei Fan, Bin Xiang, Qiuyan Lin, Chan Ding, Tao Ren and Libin Chen
Viruses 2023, 15(6), 1273; https://0-doi-org.brum.beds.ac.uk/10.3390/v15061273 - 29 May 2023
Cited by 1 | Viewed by 1897
Abstract
Avian infectious bronchitis is a serious and highly contagious disease that is caused by the infectious bronchitis virus (IBV). From January 2021 to June 2022, 1008 chicken tissue samples were collected from various regions of southern China, and 15 strains of the IBV [...] Read more.
Avian infectious bronchitis is a serious and highly contagious disease that is caused by the infectious bronchitis virus (IBV). From January 2021 to June 2022, 1008 chicken tissue samples were collected from various regions of southern China, and 15 strains of the IBV were isolated. Phylogenetic analysis revealed that the strains mainly comprised the QX type, belonging to the same genotype as the currently prevalent LX4 type, and identified four recombination events in the S1 gene, among which lineages GI-13 and GI-19 were most frequently involved in recombination. Further study of seven selected isolates revealed that they caused respiratory symptoms, including coughing, sneezing, nasal discharge, and tracheal sounds, accompanied by depression. Inoculation of chicken embryos with the seven isolates resulted in symptoms such as curling, weakness, and bleeding. Immunization of specific pathogen-free (SPF) chickens with inactivated isolates produced high antibody levels that neutralized the corresponding strains; however, antibodies produced by vaccine strains were not effective in neutralizing the isolates. No unambiguous association was found between IBV genotypes and serotypes. In summary, a new trend in IBV prevalence has emerged in southern China, and currently available vaccines do not provide protection against the prevalent IBV strains in this region, facilitating the continued spread of IBV. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

6 pages, 219 KiB  
Communication
Investigation of the Frequency of Detection of Common Respiratory Pathogens in Nasal Secretions and Environment of Healthy Sport Horses Attending a Multi-Week Show Event during the Summer Months
by Nicola Pusterla, Madalyn Kalscheur, Duncan Peters, Lori Bidwell, Sara Holtz, Samantha Barnum, Kaila Lawton, Matt Morrissey and Stephen Schumacher
Viruses 2023, 15(6), 1225; https://0-doi-org.brum.beds.ac.uk/10.3390/v15061225 - 24 May 2023
Cited by 2 | Viewed by 839
Abstract
Little information is presently available regarding the frequency of the silent shedders of respiratory viruses in healthy sport horses and their impact on environmental contamination. Therefore, the aim of this study was to investigate the detection frequency of selected respiratory pathogens in nasal [...] Read more.
Little information is presently available regarding the frequency of the silent shedders of respiratory viruses in healthy sport horses and their impact on environmental contamination. Therefore, the aim of this study was to investigate the detection frequency of selected respiratory pathogens in nasal secretions and environmental stall samples of sport horses attending a multi-week equestrian event during the summer months. Six out of fifteen tents were randomly selected for the study with approximately 20 horse/stall pairs being sampled on a weekly basis. Following weekly collection for a total of 11 weeks, all samples were tested for the presence of common respiratory pathogens (EIV, EHV-1, EHV-4, ERAV, ERBV, and Streptococcus equi ss equi (S. equi)) using qPCR. A total of 19/682 nasal swabs (2.8%) and 28/1288 environmental stall sponges (2.2%) tested qPCR-positive for common respiratory pathogens. ERBV was the most common respiratory virus (17 nasal swabs, 28 stall sponges) detected, followed by EHV-4 (1 nasal swab) and S. equi (1 nasal swab). EIV, EHV-1, EHV-4 and ERAV were not detected in any of the study horses or stalls. Only one horse and one stall tested qPCR-positive for ERBV on two consecutive weeks. All the other qPCR-positive sample results were related to individual time points. Furthermore, only one horse/stall pair tested qPCR-positive for ERBV at a single time point. The study results showed that in a selected population of sport horses attending a multi-week equestrian event in the summer, the frequency of the shedding of respiratory viruses was low and primarily restricted to ERBV with little evidence of active transmission and environmental contamination. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
18 pages, 5919 KiB  
Article
Allicin Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection In Vitro and Alleviates Inflammatory Responses
by Jingbo Hu, Chenxi Li, Yanyang Zhou, Jingjing Ding, Xiangdong Li and Yanhua Li
Viruses 2023, 15(5), 1050; https://0-doi-org.brum.beds.ac.uk/10.3390/v15051050 - 25 Apr 2023
Cited by 2 | Viewed by 1852
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens to the swine industry worldwide over the past three decades. No approved effective antiviral drug is available to control this virus. The antiviral effects of allicin (diallyl thiosulfinate) [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens to the swine industry worldwide over the past three decades. No approved effective antiviral drug is available to control this virus. The antiviral effects of allicin (diallyl thiosulfinate) on many human and animal viruses have been documented. However, the antiviral effect of allicin on PRRSV infection remains unknown. In this study, we found that allicin exhibited an inhibitory effect on HP-PRRSV and NADC30-like PRRSV in a dose-dependent manner by interfering with viral entry, replication, and assembly. Furthermore, allicin alleviated the expression of pro-inflammatory cytokines (IFN-β, IL-6, and TNFα) induced by PRRSV infection. The pro-inflammatory signaling pathways, TNF signaling pathway and MAPK signaling pathway, up-regulated by PRRSV infection were restored by allicin treatment. Taken together, these results demonstrate that allicin has antiviral activity against PRRSV and ameliorates inflammatory responses induced by PRRSV infection, suggesting that allicin is a promising drug candidate for anti-PRRSV therapy in vivo. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

Review

Jump to: Research, Other

16 pages, 1918 KiB  
Review
Influenza D in Domestic and Wild Animals
by Malgorzata Kwasnik, Jerzy Rola and Wojciech Rozek
Viruses 2023, 15(12), 2433; https://0-doi-org.brum.beds.ac.uk/10.3390/v15122433 - 15 Dec 2023
Cited by 1 | Viewed by 1681
Abstract
Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, [...] Read more.
Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus’ tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

Other

Jump to: Research, Review

10 pages, 8204 KiB  
Brief Report
Detection and Molecular Characterization of Animal Adenovirus and Astrovirus from Western Maharashtra, India
by Pradeep M. Sawant, Rishabh B. Waghchaure, Pooja A. Shinde, Avani P. Palikondawar and Mallika Lavania
Viruses 2023, 15(8), 1679; https://0-doi-org.brum.beds.ac.uk/10.3390/v15081679 - 01 Aug 2023
Cited by 1 | Viewed by 1147
Abstract
Astroviruses (AstV) and adenoviruses (AdV) are associated with diarrhoea in young animals. However, the epidemiology and genetic diversity of AstVs and AdVs in animals is not well studied. Hence, the present study was conducted to detect and characterize AstVs and AdVs in calves, [...] Read more.
Astroviruses (AstV) and adenoviruses (AdV) are associated with diarrhoea in young animals. However, the epidemiology and genetic diversity of AstVs and AdVs in animals is not well studied. Hence, the present study was conducted to detect and characterize AstVs and AdVs in calves, piglets and puppies from Western Maharashtra, India. Out of the processed porcine (48), canine (80), and bovine (65) faecal samples, the porcine AstV (PAstV), bovine AstV (BAstV), canine AstV (CAstV), and porcine AdV (PAdV) were detected in 12.5%, 7.69%, 3.75% and 4.1% of samples, respectively. In the RNA-dependent RNA polymerase region-based phylogenetic analysis, the detected BAstV strains grouped with MAstV-28, MAstV-33, and MAstV-35, CAstV strains belonged to MAstV-5; PAstV strains belonged to MAstV-24, MAstV-26, and MAstV-31. However, in hexon gene-based phylogeny, both the detected PAdV were of genotype 3, exhibiting 91.9–92.5% nucleotide identity with Ivoirian and Chinese strains. The study reports first-time BAstVs from calves and PAdV-3 from piglets in India. The study revealed diversity in the circulation of AstVs in tested animals and AdVs in pigs, and suggested that they alone might be associated with other diarrhoea or in combination with other enteric pathogens, thus highlighting the necessity of extensive epidemiological investigations to develop diagnostic tools and control measures. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals 2023)
Show Figures

Figure 1

Back to TopTop