Design and Optimization of Fluid Machinery, 2nd Edition

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydraulics and Hydrodynamics".

Deadline for manuscript submissions: 25 November 2024 | Viewed by 886

Special Issue Editors

National Research Center for Pumps and Systems, Jiangsu University, Zhenjiang, China
Interests: fluid machinery design and optimization; computational fluid dynamics (CFD); cavitation of pump; rotating stall of mixed-flow pump; transient characteristics during the startup period; PIV measurement
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
Interests: computational fluid dynamics (CFD); computational magnetohydrodynamics (MHD); electromagnetics; computational aeroacoustics; multidisciplinary design and optimization; rarefied gas dynamics and hypersonic flows, bio-fluid dynamics; flow and flight control
Special Issues, Collections and Topics in MDPI journals
College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China
Interests: hydraulic model; computational fluid dynamics (CFD); electric submersible pump (ESP); unstable flow; pressure pulsation; energy characteristics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fluid machinery refers to fluid as the working medium for energy conversion machinery, including turbines, pumps, and compressors. Due to the wide application range, diverse applicable environment, and complex structure of fluid machinery, it is difficult to meet the changeable operating conditions through a fixed structure. Therefore, to maximize the structural performance of fluid machinery, it is necessary to optimize the structural parameters of fluid machinery on the basis of fully understanding the internal flow law of fluid machinery, so as to meet the development requirements of wide range, high efficiency, and energy saving in the current fluid machinery industry.

In recent years, with the emergence of artificial intelligence, machine learning, and various advanced optimization algorithms, the design and optimization of fluid machinery has re-emerged in the research community. In particular, with the help of CFD technology, people can observe the abnormal flow phenomenon in fluid machinery more intuitively and achieve rapid design and automatic optimization of fluid machinery structures by setting different optimization objectives.

This Special Issue seeks high-quality original research focusing on the latest novel advances regarding the design and optimization of fluid machinery. Original research and review articles are welcome.

Potential topics include but are not limited to the following:

  • Design and optimization of fluid machinery;
  • Cavitation performance and its control;
  • Numerical simulation of transient flow and instabilities;
  • Flow-induced vibration in fluid machinery;
  • Advanced optimization algorithm;
  • Application of artificial intelligence and machine learning in optimization;
  • Innovative technologies for flow control;
  • Suppression of unsteady flow.

Dr. Leilei Ji
Prof. Dr. Ramesh Agarwal
Dr. Yang Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • CFD
  • fluid machinery
  • design and optimization
  • shock and vibration
  • unsteady flow
  • cavitation
  • rotor dynamics

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 11702 KiB  
Article
Study on the Transient Flow Characteristics of Multistage Centrifugal Pumps during the Startup Process before System Operation
by Chao Chen, Hu Xu, Fanjie Deng, Kaipeng Wu, Zhen Zhang and Qiaorui Si
Water 2024, 16(13), 1876; https://0-doi-org.brum.beds.ac.uk/10.3390/w16131876 (registering DOI) - 29 Jun 2024
Abstract
Multistage pumps are essential in emergency water supply, irrigation, and other systems undergoing unavoidable hydraulic transitions like pump startup and valve operations. These transitions cause rapid changes in impeller speed, flow rate, and pressure, destabilizing the internal flow field and impacting system reliability. [...] Read more.
Multistage pumps are essential in emergency water supply, irrigation, and other systems undergoing unavoidable hydraulic transitions like pump startup and valve operations. These transitions cause rapid changes in impeller speed, flow rate, and pressure, destabilizing the internal flow field and impacting system reliability. To study transient flow characteristics, a numerical analysis of a three-stage pump was conducted, focusing on vortex identification, entropy production, and time–frequency pressure pulsation. Using the SST turbulence model, the simulation analyzed different start times and flow rate variations. Findings revealed that shorter startup times intensified transient effects, with the head increasing rapidly initially and then stabilizing. Vortex structures showed periodic development and dissipation. Entropy production rose with impeller speed, peaking higher with shorter startups. Blade passing frequency dominated pressure pulsations, with increased low-frequency pulsations as speed rose. During valve opening, flow stabilization accelerated with increasing flow rates, reducing amplitude and eliminating low-frequency components. This research aids the reliable operation of high-pressure pumping systems in energy storage. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 2nd Edition)
17 pages, 3694 KiB  
Article
Research on Internal Flow and Pressure Fluctuation Characteristics of Centrifugal Pumps as Turbines with Different Blade Wrap Angles
by Haibo Xu, Weizheng An, Erqinhu Ke, Yingyi Ma, Linlin Geng, Gang Yang and Desheng Zhang
Water 2024, 16(13), 1861; https://0-doi-org.brum.beds.ac.uk/10.3390/w16131861 (registering DOI) - 28 Jun 2024
Viewed by 168
Abstract
The use of pumps as turbines has been gaining more and more attention in recent years. The present work mainly investigates the influence of blade wrap angle on the internal flow and pressure fluctuation characteristics of centrifugal pumps as turbines. Five different wrap [...] Read more.
The use of pumps as turbines has been gaining more and more attention in recent years. The present work mainly investigates the influence of blade wrap angle on the internal flow and pressure fluctuation characteristics of centrifugal pumps as turbines. Five different wrap angles (35°,45°, 55°, 65°, and 75°) for a forward-curved impeller were numerically analyzed under multiple operating conditions. The accuracy of numerical simulation was validated by experimental results. The results show that maximum efficiency is achieved with a blade wrap angle of 35°, and the highest efficiency flow point gradually decreases as the blade wrap angle increases. It is found by conducting entropy production theory analysis that the high-entropy production rate regions in PATs are concentrated in the volute tongue and impeller blade inlet regions, and that the entropy production rate at the impeller inlet region increases and then decreases as the blade wrap angle decreases. In addition, pressure pulsation was affected not only by dynamic and static interference but also by an irregular vortex around the impeller; its magnitude under Qt is higher than 0.8Qt for blade wrap angles of 55° and 75°. The primary frequency of pressure pulsation within the impeller is the axial frequency fn and its multiples, and the frequency with the largest amplitude is 3fn. The periodicity of vortices is closely related to the periodicity of pressure pulsation. And it is suggested that a PAT with a 35° blade wrap angle is advantageous for improving the stability of a turbine. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 2nd Edition)
19 pages, 7347 KiB  
Article
The Influence of Different Working Fluid Temperatures on the Hydraulic Performance of Magnetic Vortex Pumps
by Yijia Cheng, Wei Li, Sizhuo Ma, Leilei Ji, Cui Xiao and Yongkang Li
Water 2024, 16(11), 1601; https://0-doi-org.brum.beds.ac.uk/10.3390/w16111601 - 3 Jun 2024
Viewed by 284
Abstract
Magnetic vortex pumps are characterized by their high performance and zero leakage, and in recent years, they have been applied for the transportation of antifreeze coolant in varying-temperature environments. This paper combines Computational Fluid Dynamics (CFD) with experimental verification to study the external [...] Read more.
Magnetic vortex pumps are characterized by their high performance and zero leakage, and in recent years, they have been applied for the transportation of antifreeze coolant in varying-temperature environments. This paper combines Computational Fluid Dynamics (CFD) with experimental verification to study the external and internal flow characteristics of magnetic vortex pumps when transporting working fluid at different temperatures, considering radial clearance flow. The results indicate that as the temperature of the medium increases, both the pump head and efficiency improve. Specifically, under the design flow rate condition, the pump head increases by 16.7% when transporting a medium at 90 °C compared to ambient-temperature conditions. Conversely, the pump head is only 16.8% of that observed under ambient-temperature conditions when transporting a medium at −30 °C. Analysis of the internal flow field reveals that the changes in pump hydraulic performance at different working fluid temperatures are primarily due to variations in the vorticity of the internal flow field. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 2nd Edition)
Show Figures

Figure 1

Back to TopTop