Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Article
Nature-Based Coastal Protection by Large Woody Debris as Compared to Seawalls: A Physical Model Study of Beach Morphology and Wave Reflection
Water 2021, 13(15), 2020; https://0-doi-org.brum.beds.ac.uk/10.3390/w13152020 - 23 Jul 2021
Abstract
Anchored Large Woody Debris (LWD) is increasingly being used as one of several nature-based coastal protection strategies along the north-western coasts of Canada and the US. As an alternative to conventional hard armoring (e.g., seawalls), its usage is widely considered to be less [...] Read more.
Anchored Large Woody Debris (LWD) is increasingly being used as one of several nature-based coastal protection strategies along the north-western coasts of Canada and the US. As an alternative to conventional hard armoring (e.g., seawalls), its usage is widely considered to be less harmful to the coastal ecosystem while maintaining the ability to protect the beaches against wave attack and erosion. The effects of seawalls on beaches have been extensively studied; however, the performance and efficacy of LWD and its potential as a suitable alternative to seawalls (and other shoreline protection structures) are still understudied in current research. This paper presents and compares the effects of a conventional vertical seawall with two different LWD structures on beach morphology and wave reflection through large-scale physical modeling in a wave flume at a 1:5 scale. An assessment of techniques used to measure beach morphology and an assessment of model effects were included in the study. It was found that the wave reflection could be reduced by using a single log instead of a wall structure, while changes in the beach morphology response largely depended on the type of the LWD structure. A stacked log wall showed near-identical behavior as a conventional seawall. Visible model effects from the experiments, including the effect of the flume sidewalls on the beach morphology, were quantified and analyzed to inform future research. Full article
(This article belongs to the Special Issue Advances in Coastal and Ocean Engineering)
Show Figures

Figure 1

Article
Performance Assessment System for Energy Efficiency in Wastewater Systems
Water 2021, 13(13), 1807; https://0-doi-org.brum.beds.ac.uk/10.3390/w13131807 - 29 Jun 2021
Abstract
Performance assessment is essential to effectively evaluate and monitor the activity of water utilities, support decision making, and encourage continuous improvement. Performance assessment systems (PAS), covering several service objectives and criteria, have been successfully applied in water supply and wastewater systems. Tailored approaches [...] Read more.
Performance assessment is essential to effectively evaluate and monitor the activity of water utilities, support decision making, and encourage continuous improvement. Performance assessment systems (PAS), covering several service objectives and criteria, have been successfully applied in water supply and wastewater systems. Tailored approaches focusing on the assessment of the energy use and efficiency in wastewater systems are still limited. This paper aims at the development and demonstration of a comprehensive PAS for energy efficiency, tailored for wastewater systems, incorporating criteria related to energy consumption, operation and maintenance (O&M) costs, and environmental impacts, such as untreated discharges and greenhouse gases emissions, among others. Management and control of excessive or undue inflows to these systems is specifically addressed by several novel criteria and metrics. The proposed PAS should be adapted by each utility to be aligned with the objectives of the organisation and with the implemented asset management strategy. The proposed approach and the resulting consolidated PAS are thoroughly described. Results from the application of the PAS to several Portuguese utilities are discussed. This PAS aims at contributing to a reliable and replicable process to assess energy efficiency in wastewater systems and to encourage a more rational energy management. Full article
(This article belongs to the Special Issue Infrastructure Asset Management of Urban Water Systems)
Show Figures

Figure 1

Article
Exploring the Spatial Impact of Green Infrastructure on Urban Drainage Resilience
Water 2021, 13(13), 1789; https://0-doi-org.brum.beds.ac.uk/10.3390/w13131789 - 28 Jun 2021
Abstract
This paper explores the spatial impact of green infrastructure (GI) location on the resilience of urban drainage systems by the application of exploratory spatial data analysis (ESDA). A framework that integrates resilience assessment, location sensitivity analysis and ESDA is presented and applied to [...] Read more.
This paper explores the spatial impact of green infrastructure (GI) location on the resilience of urban drainage systems by the application of exploratory spatial data analysis (ESDA). A framework that integrates resilience assessment, location sensitivity analysis and ESDA is presented and applied to an urban catchment in the United Kingdom. Three types of GI, namely a bioretention cell, permeable pavement, and green roof, are evaluated separately and simultaneously. Resilience is assessed using stress-strain tests, which measure the system performance based on the magnitude and duration of sewer flooding and combined sewer overflows. Based on the results of a location sensitivity analysis, ESDA is applied to determine if there is spatial autocorrelation, spatial clusters, and spatial outliers. Results show a stronger spatial dependency using sewer flooding indicators. Different GI measures present differences in spatial autocorrelation and spatial cluster results, highlighting the differences in their underlying mechanisms. The finding of conflicting spatial clusters indicates that there are trade-offs in the placement of GI in certain locations. The proposed framework can be used as a tool for GI spatial planning, helping in the development of a systematic approach for resilience-performance orientated GI design and planning. Full article
(This article belongs to the Special Issue Resilience of Interdependent Urban Water Systems)
Show Figures

Figure 1

Article
3D-CNN-Based Sky Image Feature Extraction for Short-Term Global Horizontal Irradiance Forecasting
Water 2021, 13(13), 1773; https://0-doi-org.brum.beds.ac.uk/10.3390/w13131773 - 27 Jun 2021
Abstract
The instability and variability of solar irradiance induces great challenges for the management of photovoltaic water pumping systems. Accurate global horizontal irradiance (GHI) forecasting is a promising technique to solve this problem. To improve short-term GHI forecasting accuracy, ground-based sky image is valuable [...] Read more.
The instability and variability of solar irradiance induces great challenges for the management of photovoltaic water pumping systems. Accurate global horizontal irradiance (GHI) forecasting is a promising technique to solve this problem. To improve short-term GHI forecasting accuracy, ground-based sky image is valuable due to its correlation with solar generation. In previous studies, great efforts have been made to extract numerical features from sky image for data-driven solar irradiance forecasting methods, e.g., based on pixel-value color information, and based on the cloud motion detection method. In this work, we propose a novel feature extracting method for GHI forecasting that a three-dimensional (3D) convolutional neural network (CNN) is developed to extract features from sky images with efficient training strategies. Popular machine learning algorithms are introduced as GHI forecasting models and corresponding forecasting accuracy is fully explored with different input features on a large dataset. The numerical experiment illustrates that the minimum average root mean square error (RMSE) of 62 W/m2 is achieved by the proposed method with 15.2% improvement in Skill score against baseline forecasting method. Full article
(This article belongs to the Special Issue New Perspectives in Agricultural Water Management)
Show Figures

Figure 1

Article
Water Footprint and Virtual Water Trade of Maize in the Province of Buenos Aires, Argentina
Water 2021, 13(13), 1769; https://0-doi-org.brum.beds.ac.uk/10.3390/w13131769 - 26 Jun 2021
Abstract
Agriculture is the largest fresh water consuming sector, and maize is the most produced and consumed crop worldwide. The water footprint (WF) methodology quantifies and evaluates the water volumes consumed and polluted by a given crop, as well as its impacts. In this [...] Read more.
Agriculture is the largest fresh water consuming sector, and maize is the most produced and consumed crop worldwide. The water footprint (WF) methodology quantifies and evaluates the water volumes consumed and polluted by a given crop, as well as its impacts. In this work, we quantified for the first time the green WF (soil water from precipitation that is evapotranspired) and the green virtual water exports of maize from Buenos Aires province, Argentina, during 2016–2017, due to the relevance of this region in the world maize trade. Furthermore, at local level, we quantified the green, blue (evapotranspired irrigation), and grey (volume of water needed to assimilate a pollution load) WF of maize in a pilot basin. The green WF of maize in the province of Buenos Aires ranged between 170 and 730 m3/ton, with the highest values in the south following a pattern of yields. The contribution of this province in terms of green virtual water to the international maize trade reached 2213 hm3/year, allowing some water-scarce nations to ensure water and water-dependent food security and avoid further environmental impacts related to water. At the Napaleofú basin scale, the total WF of rainfed maize was 358 m3/ton (89% green and 11% grey) and 388 m3/ton (58% green, 25% blue, and 17% grey) for the irrigated crop, showing that there is not only a green WF behind the exported maize, but also a Nitrogen-related grey WF. Full article
Show Figures

Figure 1

Article
Analysis of Virtual Water Trade Flow and Driving Factors in the European Union
Water 2021, 13(13), 1771; https://0-doi-org.brum.beds.ac.uk/10.3390/w13131771 - 26 Jun 2021
Abstract
The inefficient application of water resources has become an urgent problem restricting the world’s sustainable development. Virtual Water Trade opens a new perspective on improving water resource utilization efficiency. Based on a multi-regional input–output model and the logarithmic mean Divisia index, the virtual [...] Read more.
The inefficient application of water resources has become an urgent problem restricting the world’s sustainable development. Virtual Water Trade opens a new perspective on improving water resource utilization efficiency. Based on a multi-regional input–output model and the logarithmic mean Divisia index, the virtual water flows between 2000–2014 in 43 countries and regions have been evaluated, and the driving forces of changes in virtual water flows for the European Union were revealed. During the study period, the total amount of virtual water flow continued to increase. The United Kingdom is a net virtual water importer that depends on the European Union significantly. There was a large amount of virtual water flow from the European Union to the United States during 2000–2012. However, China gradually seized the share of virtual water from European Union exports after 2012. Economic effects and virtual water intensity effects are the most significant drivers of virtual water flows. The difference is that the economic effect positively drives virtual water flows, while the virtual water intensity effect negatively influences. The results reveal the nature of the United Kingdom in the virtual water trade and can provide post-Brexit recommendations. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

Article
Identifying Storm Hotspots and the Most Unsettled Areas in Barcelona by Analysing Significant Rainfall Episodes from 2013 to 2018
Water 2021, 13(13), 1730; https://0-doi-org.brum.beds.ac.uk/10.3390/w13131730 - 22 Jun 2021
Abstract
Urban floods repeatedly threaten Barcelona, damaging the city infrastructure and endangering the safety of the population. The urban planning of the city, the socioeconomic distribution, its topography, and the characteristics of precipitation systems translate into these flood events having a heterogeneous effect across [...] Read more.
Urban floods repeatedly threaten Barcelona, damaging the city infrastructure and endangering the safety of the population. The urban planning of the city, the socioeconomic distribution, its topography, and the characteristics of precipitation systems translate into these flood events having a heterogeneous effect across the city. It means that the coping capacity has a strong dependence on local factors that must be considered when management plans are developed by the municipality. This work aims to contribute to the better knowledge of precipitation structures associated with heavy rainfall events and floods in Barcelona based on radar data and an urban rain gauge network. Radar data have been provided by the Meteorological Service of Catalonia (SMC), while precipitation data, impact data, and early warnings, have been provided by Barcelona Cicle de l’Aigua S.A. (BCASA), for the period 2013–2018. A new radar-based methodology has been developed to identify convective rainfall structures from radar reflectivity volumes (CAPPI and TOP products) to make the analysis easier. The high computing speed of the procedure allows efficient analysis of a large set of convective cells without scarifying temporal resolution of radar data. Both rainfall fields (radar and rain gauge, respectively) have been compared. Then through the identified rainfall convective structures, thunderstorm hotspots have been identified. Considering an alert indicator from BCASA and the reported incidents, episodes with the highest impact have been analysed in depth. Results show 207 significant rainfall episodes in the ROI for the six years, which are mainly concentrated between September and November. The fact that significant episodes are usually produced by highly convective rain corroborates the advantage of using radar images as a tool to detect any maxima even when no rain gauge is there. In 64 of the episodes, the level of pre-alert was achieved with a maximum frequency between August and September. The proposed algorithm shows more than 8000 centroids of convective cells from 189 cases. Whilst maximum surface reflectivity over 45 dBZ is more prone to occur near the coastline, the centroids of storm cells tend to concentrate more inland. The final objective is to improve the actions taken by the organisation responsible for managing urban floods, which have seen Barcelona recognised as a model city for flood resilience by the United Nations. Full article
(This article belongs to the Special Issue Management of Hydro-Meteorological Hazards)
Show Figures

Figure 1

Article
Note on the Application of Transient Wave Packets for Wave–Ice Interaction Experiments
Water 2021, 13(12), 1699; https://0-doi-org.brum.beds.ac.uk/10.3390/w13121699 - 19 Jun 2021
Abstract
This paper presents the transient wave packet (TWP) technique as an efficient method for wave–ice interaction experiments. TWPs are deterministic wave groups, where both the amplitude spectrum and the associated phases are tailor-made and manipulated, being well established for efficient wave–structure interaction experiments. [...] Read more.
This paper presents the transient wave packet (TWP) technique as an efficient method for wave–ice interaction experiments. TWPs are deterministic wave groups, where both the amplitude spectrum and the associated phases are tailor-made and manipulated, being well established for efficient wave–structure interaction experiments. One major benefit of TWPs is the possibility to determine the response amplitude operator (RAO) of a structure in a single test run compared to the classical approach by investigating regular waves of different wave lengths. Thus, applying TWPs for wave–ice interaction offers the determination of the RAO of the ice at specific locations. In this context, the determination of RAO means that the ice characteristics in terms of wave damping over a wide frequency range are obtained. Besides this, the wave dispersion of the underlying wave components of the TWP can be additionally investigated between the specific locations with the same single test run. For the purpose of this study, experiments in an ice tank, capable of generating tailored waves, were performed with a solid ice sheet. Besides the generation of one TWP, regular waves of different wave lengths were generated as a reference to validate the TWP results for specific wave periods. It is shown that the TWP technique is not only applicable for wave–ice interaction investigations, but is also an efficient alternative to investigations with regular waves. Full article
(This article belongs to the Special Issue The Occurrence, Physics and Impact of Wave–Ice Interaction)
Show Figures

Figure 1

Article
The Story of a Steep River: Causes and Effects of the Flash Flood on 24 July 2017 in Western Norway
Water 2021, 13(12), 1688; https://0-doi-org.brum.beds.ac.uk/10.3390/w13121688 - 18 Jun 2021
Abstract
Flash floods can cause great geomorphological changes in ephemeral fluvial systems and result in particularly severe damages for the unprepared population exposed to it. The flash flood in the Storelva river in Utvik (western Norway) on 24 July 2017 was witnessed and documented. [...] Read more.
Flash floods can cause great geomorphological changes in ephemeral fluvial systems and result in particularly severe damages for the unprepared population exposed to it. The flash flood in the Storelva river in Utvik (western Norway) on 24 July 2017 was witnessed and documented. This study assessed the causes and effects of the 2017 flood and provides valuable information for the calibration and validation of future modelling studies. The flooded area at peak discharge, maximum wetted and dry areas during the entire event, critical points and main flow paths were reconstructed using on-site and post-event (i) visual documentation, such as photographs and videos, and (ii) aerial surveying, such as orthophotographs and laser scanning, of the lowermost reach. The steep longitudinal slope together with the loose material forming the valley and riverbed contributed to a large amount of sediment transport during this extreme event. Steep rivers such as the Storelva river have very short response times to extreme hydrologic conditions, which calls for exhaustive monitoring and data collection in case of future events, as well as modelling tools that can emulate the hydro-morphodynamics observed during events such as the 2017 flash flood. Full article
(This article belongs to the Special Issue Recent Advances in Flood Hazard and Risk Science)
Show Figures

Figure 1

Article
An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation
Water 2021, 13(12), 1693; https://0-doi-org.brum.beds.ac.uk/10.3390/w13121693 - 18 Jun 2021
Abstract
An analytical review of physical blue and green water scarcity in terms of agricultural use, and its amenability to economic interpretation, is presented, employing more than 600 references. The main definitions and classifications involved and information about reserves and resources are critically analyzed, [...] Read more.
An analytical review of physical blue and green water scarcity in terms of agricultural use, and its amenability to economic interpretation, is presented, employing more than 600 references. The main definitions and classifications involved and information about reserves and resources are critically analyzed, blue and green water scarcity are examined along with their interchange, while their causal connection with climate in general is analyzed along with the particular instances of Europe, Africa, Asia and the WANA region. The role of teleconnections and evaporation/moisture import-export is examined as forms of action at a distance. The human intervention scarcity driver is examined extensively in terms of land use land cover change (LULCC), as well as population increase. The discussion deals with following critical problems: green and blue water availability, inadequate accessibility, blue water loss, unevenly distributed precipitation, climate uncertainty and country level over global level precedence. The conclusion singles out, among others, problems emerging from the inter-relationship of physical variables and the difficulty to translate them into economic instrumental variables, as well as the lack of imbedding uncertainty in the underlying physical theory due to the fact that country level measurements are not methodically assumed to be the basic building block of regional and global water scarcity. Full article
Show Figures

Figure 1

Article
Land Use Change Influences Ecosystem Function in Headwater Streams of the Lowland Amazon Basin
Water 2021, 13(12), 1667; https://0-doi-org.brum.beds.ac.uk/10.3390/w13121667 - 15 Jun 2021
Abstract
Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function [...] Read more.
Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function in these areas of rapid tropical agricultural development has not been well studied. To address these gaps, we conducted a study in the lowland Brazilian Amazon, an area undergoing rapid cropland expansion, to assess the effects of land use change on organic matter dynamics (OM), ecosystem metabolism, and nutrient concentrations and uptake (nitrate and phosphate) in 11 first order streams draining forested (n = 4) or cropland (n = 7) watersheds with intact riparian forests. We found that streams had similar terrestrial litter inputs, but OM biomass was lower in cropland streams. Gross primary productivity was low and not different between land uses, but ecosystem respiration and net ecosystem production showed greater seasonality in cropland streams. Although we found no difference in stream concentrations of dissolved nutrients, phosphate uptake exceeded nitrate uptake in all streams and was higher in cropland than forested streams. This indicates that streams will be more retentive of phosphorus than nitrogen and that if fertilizer nitrogen reaches streams, it will be exported in stream networks. Overall, we found relatively subtle differences in stream function, indicating that riparian buffers have thus far provided protection against major functional shifts seen in other systems. However, the changes we did observe were linked to watershed scale shifts in hydrology, water temperature, and light availability resulting from watershed deforestation. This has implications for the conservation of tens of thousands of stream kilometers across the expanding Amazon cropland region. Full article
Show Figures

Figure 1

Article
Development of a Multi-Methodological Approach to Support the Management of Water Supply Systems
Water 2021, 13(12), 1655; https://0-doi-org.brum.beds.ac.uk/10.3390/w13121655 - 13 Jun 2021
Abstract
The benefits provided by a model of system dynamics are directly related to its correct construction. One of the main challenges in the process of building such models is that they must be able to effectively represent a specific problematic situation. Thus, the [...] Read more.
The benefits provided by a model of system dynamics are directly related to its correct construction. One of the main challenges in the process of building such models is that they must be able to effectively represent a specific problematic situation. Thus, the main objective of this study is to develop a multi-methodological approach, adapting the problem structuring method of strategic options development and analysis (SODA) in the initial stage of the system dynamics (SD) model. The role of each of them clearly represents the contribution of this study: the SODA in the structuring (representation) phase of the problem and proposition of alternatives and the SD in the evaluation phase of these alternatives. To illustrate its application, the multimethodological approach developed was used to simulate scenarios considering management strategies, and the various variables affecting a water supply system, including population growth, in order to evaluate more “assertive” water management strategy(s) that could have been adopted to address the water crisis (2012–2017) and analysis future scenarios. The results show that, based on the vision of specialists with enough experience for the case studied, it was possible to structure the problem, and therefore propose a set of strategies (alternatives), which were: water loss control, wastewater reuse, application of more efficient tariffs to reduce water waste, inter-basin water transfer, and awareness regarding the use of water resources. After the survey of alternatives, scenarios were simulated considering these water management strategies. Simulation results showed that actions taken on the demand side would only be effective for a short period of water scarcity, (for example, the impact of the scarcity-based tariff on water consumption reduction). For severe drought scenarios and with a water producing system heavily dependent on rainfall, such action would no longer be efficient. However, water supply management-oriented strategies, e.g., inter-basin water transfers (PISF) and wastewater reuse, are highly effective in securing water supply and preventing water supply collapse in the region. The development of this multi-methodological approach is expected to be useful to support managers in the decision-making and implementation of water management strategies. Full article
(This article belongs to the Special Issue System Dynamics Modelling for Water–Energy–Climate Nexus)
Show Figures

Figure 1

Article
The Effect of Wall Shear Stress on Two Phase Fluctuating Flow of Dusty Fluids by Using Light Hill Technique
Water 2021, 13(11), 1587; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111587 - 04 Jun 2021
Abstract
Due to the importance of wall shear stress effect and dust fluid in daily life fluid problems. This paper aims to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is considered between two parallel plates that [...] Read more.
Due to the importance of wall shear stress effect and dust fluid in daily life fluid problems. This paper aims to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is considered between two parallel plates that are non-conducting. Due to the transformation of heat, the fluid flow is generated. We consider every dust particle having spherical uniformly disperse in the base fluid. The perturb solution is obtained by applying the Poincare-Lighthill perturbation technique (PLPT). The fluid velocity and shear stress are discussed for the different parameters like Grashof number, magnetic parameter, radiation parameter, and dusty fluid parameter. Graphical results for fluid and dust particles are plotted through Mathcad-15. The behavior of base fluid and dusty fluid is matching for different embedded parameters. Full article
(This article belongs to the Special Issue Gas-Liquid Two-Phase Flow in the Pipe or Channel)
Show Figures

Figure 1

Article
Improving Urban Flood Mapping by Merging Synthetic Aperture Radar-Derived Flood Footprints with Flood Hazard Maps
Water 2021, 13(11), 1577; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111577 - 02 Jun 2021
Cited by 1
Abstract
Remotely sensed flood extents obtained in near real-time can be used for emergency flood incident management and as observations for assimilation into flood forecasting models. High-resolution synthetic aperture radar (SAR) sensors have the potential to detect flood extents in urban areas through clouds [...] Read more.
Remotely sensed flood extents obtained in near real-time can be used for emergency flood incident management and as observations for assimilation into flood forecasting models. High-resolution synthetic aperture radar (SAR) sensors have the potential to detect flood extents in urban areas through clouds during both day- and night-time. This paper considers a method for detecting flooding in urban areas by merging near real-time SAR flood extents with model-derived flood hazard maps. This allows a two-way symbiosis, whereby currently available SAR urban flood extent improves future model flood predictions, while flood hazard maps obtained after the SAR overpasses improve the SAR estimate of urban flood extents. The method estimates urban flooding using SAR backscatter only in rural areas adjacent to urban ones. It was compared to an existing method using SAR returns in both rural and urban areas. The method using SAR solely in rural areas gave an average flood detection accuracy of 94% and a false positive rate of 9% in the urban areas and was more accurate than the existing method. Full article
(This article belongs to the Special Issue Improving Flood Detection and Monitoring through Remote Sensing)
Show Figures

Figure 1

Article
Interactive Visualisation of Sustainability Indicators for Water, Energy and Food Innovations
Water 2021, 13(11), 1571; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111571 - 01 Jun 2021
Abstract
The Water-Energy-Food (WEF) nexus describes the synergies and trade-offs between water, energy and food. Despite the significant attention that the WEF nexus has received in recent years, challenges remain, primarily related to gaps in integrated data, information and knowledge related to the most [...] Read more.
The Water-Energy-Food (WEF) nexus describes the synergies and trade-offs between water, energy and food. Despite the significant attention that the WEF nexus has received in recent years, challenges remain, primarily related to gaps in integrated data, information and knowledge related to the most critical inter-linkages and their dynamics. These WEF nexus complexities and uncertainty make decision-making and future forecasting extremely difficult. Policy makers and other stakeholders are currently faced with the task of understanding longer term environmental impacts and tJhe benefits and limitations of innovations that could be potentially beneficial, such as Anaerobic Digestion as a waste solution or insect protein production. This paper describes an approach to support decision making for local-level innovations within the WEF nexus by creating a set of sustainability indicators and an accompanying interactive visualisation. The indicators were derived from stakeholder consultation processes and workshops, and they were selected to include a much broader assessment than just financial aspects when considering the viability of such innovations. By taking this bottom-up approach and placing stakeholders at the heart of the project, we produced a visualisation tool to support sustainable decision making when considering the implementation of WEF innovations. Considering other, often overlooked factors and giving greater priority to these deepens knowledge and the recognition of influential issues that in conventional processes may be overlooked. This visualisation tool is designed to support decision makers to engage in a exploration of the different interlinkages, and to be the basis of stakeholder dialogue around sustainability. The visualisation tool developed was designed to be easily modifiable in order to be updated with new insights and to include other future innovations. Full article
(This article belongs to the Special Issue The Water-Energy-Food Nexus: Sustainable Development)
Show Figures

Figure 1

Article
Observations of Tidal Flat Sedimentation within a Native and an Exotic Spartina Species
Water 2021, 13(11), 1566; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111566 - 01 Jun 2021
Abstract
Field measurements of bed elevation and related wave events were performed within a tidal marsh, on two cordgrass species, Spartina anglica (exotic) and Spartina maritima (native), in the Bay of Arcachon (SW France). Bed- and water-level time series were used to infer on [...] Read more.
Field measurements of bed elevation and related wave events were performed within a tidal marsh, on two cordgrass species, Spartina anglica (exotic) and Spartina maritima (native), in the Bay of Arcachon (SW France). Bed- and water-level time series were used to infer on the sediment behavior patterns from short to long term. A consistent response was found between the bed-level variation and the wave forcing, with erosion occurring during storms and accretion during low energy periods. Such behavior was observed within the two species, but the magnitude of bed-level variation was higher within the native than the exotic Spartina. These differences, in the order of millimeters, were explained by the opposite allocation of biomass of the two species. On the long term, the sedimentation/erosion patterns were dominated by episodic storm events. A general sediment deficit was observed on the site, suggested by an overall bed-level decrease registered within both species. However, further verification of within species variation needs to be considered when drawing conclusions. Despite possible qualitative limitations of the experimental design, due to single point survey, this work provides original and considerable field data to the understanding the different species ability to influence bed sediment stabilization and their potential to build marsh from the mudflat pioneer stage. Such information is valuable for coastal management in the context of global change. Full article
Show Figures

Figure 1

Article
Suspended-Sediment Distribution Patterns in Tide-Dominated Estuaries on the Eastern Amazon Coast: Geomorphic Controls of Turbidity-Maxima Formation
Water 2021, 13(11), 1568; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111568 - 01 Jun 2021
Abstract
In tide-dominated estuaries, maximum-turbidity zones (MTZs) are common and prominent features, characterized by a peak in suspended-sediment concentration (SSC) associated with estuarine processes. The Brazilian Amazon coast includes many estuaries, experiencing macrotidal conditions. MTZs are expected to occur and are crucial for sediment [...] Read more.
In tide-dominated estuaries, maximum-turbidity zones (MTZs) are common and prominent features, characterized by a peak in suspended-sediment concentration (SSC) associated with estuarine processes. The Brazilian Amazon coast includes many estuaries, experiencing macrotidal conditions. MTZs are expected to occur and are crucial for sediment delivery to the longest continuous mangrove belt of the world. The area is under influence of the Amazon River plume (ARP), the main SSC source, as local rivers do not deliver substantial sediment supply. To assess the processes that allow the ARP to supply sediment to the estuaries and mangrove belt along the Amazon coast, the results from previous individual studies within five Amazon estuaries (Mocajuba, Taperaçu, Caeté, Urumajó and Gurupi) were compared with regards to SSC, salinity, morphology and tidal propagation. This comparison reinforces that these estuaries are subject to similar regional climate and tidal variations, but that their dynamics differ in terms of distance from the Amazon River mouth, importance of the local river sediment source, and morphology of the estuarine setting. The Urumajó, Caeté and Gurupi are hypersynchronous estuaries where perennial, classic MTZs are observed with SSC > 1 g·L−1. This type of estuary results in transport convergence and MTZ formation, which are suggested to be the main processes promoting mud accumulation in the Amazonian estuaries and therefore the main means of mud entrapment in the mangrove belt. The Mocajuba and the Taperaçu estuaries showed synchronous and hyposynchronous processes, respectively, and do not present classic MTZs. In these cases, the proximity to the ARP for the Mocajuba and highly connected tidal channels for the Taperaçu estuary, assure substantial mud supply into these estuaries. This study shows the strong dependence of the estuaries and mangrove belt on sediment supply from the ARP, helping to understand the fate of Amazon River sediments and providing insights into the mechanisms providing sediment to estuaries and mangroves around the world, especially under the influence of big rivers. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

Article
Research on the Measurement and Influencing Factors of Implicit Water Resources in Import and Export Trade from the Perspective of Global Value Chains
Water 2021, 13(11), 1498; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111498 - 27 May 2021
Abstract
In this study, China’s virtual water trade was measured on the basis of multi-region input/output tables, and its influencing factors of change were decomposed. The results revealed that virtual water export and import increased from 161.5 billion tons and 114.07 billion tons in [...] Read more.
In this study, China’s virtual water trade was measured on the basis of multi-region input/output tables, and its influencing factors of change were decomposed. The results revealed that virtual water export and import increased from 161.5 billion tons and 114.07 billion tons in 2007 to 193.31 billion tons and 157.1 billion tons in 2014, respectively. Eight economies accounted for more than 50% of China’s total virtual water export and import, whereby the total of the United States, Japan, and Europe reached 44% (export) and 31.3% (import). The export scale, export of intermediate products, export industry structure, domestic water consumption coefficient, and domestic intermediate input structure were the main factors of the change in virtual water export. The growth of export scale was the primary reason for the growth of virtual water export. A decline in the domestic water consumption coefficient was the primary reason for the restrained growth of virtual water export. The import scale, import of intermediate products, import industry structure, water consumption coefficient of foreign countries, and the correlation among domestic industries were the main factors affecting the change in virtual water import. The growth of import scale was the primary reason for the growth of virtual water import in most sectors. A decline in the water consumption coefficient abroad was the primary reason for the restrained growth of virtual water import. Full article
(This article belongs to the Special Issue Research on the Economic Value of Virtual Water)
Show Figures

Figure 1

Article
Removal of Fluorides from Aqueous Solutions Using Exhausted Coffee Grounds and Iron Sludge
Water 2021, 13(11), 1512; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111512 - 27 May 2021
Abstract
Many countries are confronted with a striking problem of morbidity of fluorosis that appears because of an increased concentration of fluorides in drinking water. The objective of this study is to explore opportunities for removal of fluoride from aqueous solutions using cheap and [...] Read more.
Many countries are confronted with a striking problem of morbidity of fluorosis that appears because of an increased concentration of fluorides in drinking water. The objective of this study is to explore opportunities for removal of fluoride from aqueous solutions using cheap and easily accessible adsorbents, such as exhaustive coffee grounds and iron sludge and to establish the efficiency of fluoride removal. Twelve doses (1, 2, 3, 4, 5, 6, 10, 20, 30, 40, 50 and 60 g/L) of adsorbents were used and five durations of the sorption process (30, 60, 90, 120 and 150 min). The results showed that the most optimum dose of iron sludge for 3 mg/L of fluoride removal was 30 g/L and the contact time was 30 min, the efficiency of fluoride removal achieved 62.92%; the most optimum dose of exhausted coffee grounds was 60 g/L with the most optimum contact time of 60 min; at a dose of 50 g/L with contact time of 90 min, the efficiency of fluoride removal achieved 56.67%. Findings demonstrate that adsorbents have potential applicability in fluoride removal up to the permissible norms. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

Article
Occurrence of Cryptosporidium Oocysts in Leisure Pools in the UK, 2017, and Modelling of Oocyst Contamination Events
Water 2021, 13(11), 1503; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111503 - 27 May 2021
Abstract
Cryptosporidium is a major cause of diarrhoea outbreaks linked to swimming pools, but little is known about the frequency of contamination. The primary aim was to investigate the occurrence and concentration, through sampling and modelling, of Cryptosporidium oocysts in leisure pools. Secondary aims [...] Read more.
Cryptosporidium is a major cause of diarrhoea outbreaks linked to swimming pools, but little is known about the frequency of contamination. The primary aim was to investigate the occurrence and concentration, through sampling and modelling, of Cryptosporidium oocysts in leisure pools. Secondary aims were to compare detections with operational parameters, provide the evidence-base for guidance, and improve sampling capacity and interpretation for public health investigations. Up to 1000 L pool water was sampled during swim sessions once weekly for 10 weeks from 8 August 2017 at six volunteer pools. Oocysts were detected by microscopy in 12/59 (20%) pool water samples, at least once in each pool; 8/12 (66%) detections were in August when bather loads were highest. At three pools, 1 L filter backwash was sampled weekly and oocysts were detected in 2/29 (7%) samples, following detections in pool water. The probabilities of a bather contaminating the pool ranged from 1 in 1000 to over 1 in 10,000. Monte Carlo analysis showed that when high bather numbers caused contamination on over 70% of days, multiple events per day were more likely than single events. In these generally well-managed leisure pools, Cryptosporidium risk related to high bather loads. We conclude that public awareness campaigns for bather hygiene, and reminding pool operators of current guidance for managing faecal accidents, should be ahead of peak swim season. Full article
(This article belongs to the Special Issue Healthy Recreational Waters: Sanitation and Safety Issues)
Show Figures

Figure 1

Article
The Role of Faults in Groundwater Circulation before and after Seismic Events: Insights from Tracers, Water Isotopes and Geochemistry
Water 2021, 13(11), 1499; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111499 - 27 May 2021
Cited by 1
Abstract
The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, [...] Read more.
The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses. Full article
Show Figures

Figure 1

Article
Analysis of the Spatiotemporal Annual Rainfall Variability in the Wadi Cheliff Basin (Algeria) over the Period 1970 to 2018
Water 2021, 13(11), 1477; https://0-doi-org.brum.beds.ac.uk/10.3390/w13111477 - 25 May 2021
Cited by 1
Abstract
In the context of climate variability and hydrological extremes, especially in arid and semi-arid zones, the issue of natural risks and more particularly the risks related to rainfall is a topical subject in Algeria and worldwide. In this direction, the spatiotemporal variability of [...] Read more.
In the context of climate variability and hydrological extremes, especially in arid and semi-arid zones, the issue of natural risks and more particularly the risks related to rainfall is a topical subject in Algeria and worldwide. In this direction, the spatiotemporal variability of precipitation in the Wadi Cheliff basin (Algeria) has been evaluated by means of annual time series of precipitation observed on 150 rain gauges in the period 1970–2018. First, in order to identify the natural year-to-year variability of precipitation, for each series, the coefficient of variation (CV) has been evaluated and spatially distributed. Then, the precipitation trend at annual scale has been analyzed using two nonparametric tests. Finally, the presence of possible change points in the data has been investigated. The results showed an inverse spatial pattern between CV and the annual rainfall, with a spatial gradient between the southern and the northern sides of the basin. Results of the trend analysis evidenced a marked negative trend of the annual rainfall (22% of the rain gauges for a significant level equal to 95%) involving mainly the northern and the western-central area of the basin. Finally, possible change points have been identified between 1980 and 1985. Full article
(This article belongs to the Special Issue Hydrology in Water Resources Management)
Show Figures

Figure 1

Article
Detecting Groundwater Temperature Shifts of a Subsurface Urban Heat Island in SE Germany
Water 2021, 13(10), 1417; https://0-doi-org.brum.beds.ac.uk/10.3390/w13101417 - 19 May 2021
Cited by 1
Abstract
The subsurface beneath cities commonly shows a temperature anomaly, a so-called Subsurface Urban Heat Island (SUHI), due to anthropogenic heat input. This excess heat has multiple effects on groundwater and energy resources, such as groundwater chemistry or the efficiency of geothermal systems, which [...] Read more.
The subsurface beneath cities commonly shows a temperature anomaly, a so-called Subsurface Urban Heat Island (SUHI), due to anthropogenic heat input. This excess heat has multiple effects on groundwater and energy resources, such as groundwater chemistry or the efficiency of geothermal systems, which makes it necessary to investigate the temporal development of a SUHI. For this purpose, temperature profiles of 38 observation wells in the German city of Nuremberg were evaluated from 2015 to 2020 and the measured temperature changes were linked to the surface sealing. The results show that the groundwater temperatures changed between −0.02 K/a and +0.21 K/a, on average by +0.07 K/a during this period. A dependence between the temperature increase and the degree of sealing of the land surface was also observed. In areas with low surface sealing of up to 30% the warming amounts were 0.03 K/a on average, whereas in areas with high sealing of over 60% significantly higher temperature increases of 0.08 K/a on average were found. The results clearly emphasize that the subsurface urban heat island in its current state does not represent a completed process, but that more heat energy continues to enter the subsoil within the city than is the case with near-natural land surfaces. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

Article
A Geographical Information Approach for Forest Maintenance Operations with Emphasis on the Drainage Infrastructure and Culverts
Water 2021, 13(10), 1408; https://0-doi-org.brum.beds.ac.uk/10.3390/w13101408 - 18 May 2021
Abstract
Forest operations engineering deals with all the essential infrastructure operations aiming at the efficient management of forested areas, which constitutes a prerequisite for the development of mountainous economies. Thus, the need for addressing this objective in an effective way, in conjunction with other [...] Read more.
Forest operations engineering deals with all the essential infrastructure operations aiming at the efficient management of forested areas, which constitutes a prerequisite for the development of mountainous economies. Thus, the need for addressing this objective in an effective way, in conjunction with other issues associated with the protection and preservation of forest wealth, is of utmost importance. There are a whole range of forest operations for which a decision-making web-tool can potentially be utilized. This paper introduces an online decision-making tool for managing forest roads, which uses information derived from rainfall-runoff simulation. The proposed tool can be used to provide information about forest works maintenance and damage prevention in a forest environment. Furthermore, the tool assists in visualizing forest operations and achieves the optimization of their management. The development of the decision-making tool is also described, and a real case study (the Koupa watershed) is presented in detail to demonstrate its application and resulting advantages. The rainfall-runoff simulation was conducted for ten sub-basins in order to evaluate the efficiency of the corresponding culverts in the Koupa watershed. Full article
Show Figures

Figure 1

Article
Sediment Balance Estimation of the ‘Cuvette Centrale’ of the Congo River Basin Using the SWAT Hydrological Model
Water 2021, 13(10), 1388; https://0-doi-org.brum.beds.ac.uk/10.3390/w13101388 - 16 May 2021
Abstract
In this study, the SWAT hydrological model was used to estimate the sediment yields in the principal drainage basins of the Congo River Basin. The model was run for the 2000–2012 period and calibrated using measured values obtained at the basins principal gauging [...] Read more.
In this study, the SWAT hydrological model was used to estimate the sediment yields in the principal drainage basins of the Congo River Basin. The model was run for the 2000–2012 period and calibrated using measured values obtained at the basins principal gauging station that controls 98% of the basin area. Sediment yield rates of 4.01, 5.91, 7.88 and 8.68 t km−2 yr−1 were estimated for the areas upstream of the Ubangi at Bangui, Sangha at Ouesso, Lualaba at Kisangani, and Kasai at Kuto-Moke, respectively—the first three of which supply the Cuvette Centrale. The loads contributed into the Cuvette Centrale by eight tributaries were estimated to be worth 0.04, 0.07, 0.09, 0.18, 0.94, 1.50, 1.60, and 26.98 × 106 t yr−1 from the Likouala Mossaka at Makoua, Likouala aux Herbes at Botouali, Kouyou at Linnegue, Alima at Tchikapika, Sangha at Ouesso, Ubangi at Mongoumba, Ruki at Bokuma and Congo at Mbandaka, respectively. The upper Congo supplies up to 85% of the fluxes in the Cuvette Centrale, with the Ubangi and the Ruki contributing approximately 5% each. The Cuvette Centrale acts like a big sink trapping up to 23 megatons of sediment produced upstream (75%) annually. Full article
(This article belongs to the Special Issue Modelling of River Flows, Sediment and Contaminants Transport)
Show Figures

Figure 1

Article
PATs Behavior in Pressurized Irrigation Hydrants towards Sustainability
Water 2021, 13(10), 1359; https://0-doi-org.brum.beds.ac.uk/10.3390/w13101359 - 13 May 2021
Abstract
Sustainability and efficiency in irrigation are essential in the management of the water–energy–food nexus to reach the Sustainable Development Goals in 2030. In irrigation systems, the reduction of energy consumption is required to improve the system efficiency and consequently the sustainability indicators of [...] Read more.
Sustainability and efficiency in irrigation are essential in the management of the water–energy–food nexus to reach the Sustainable Development Goals in 2030. In irrigation systems, the reduction of energy consumption is required to improve the system efficiency and consequently the sustainability indicators of the water network. The use of pumps working as turbines (PATs) has been a feasible solution to recover the excess of energy where pressure reduction valves are installed. This research demonstrates the use of PATs under steady and unsteady conditions by analyzing the application in a real irrigation networks located in Vallada (Valencia, Spain). The study shows the possibility of recovering 44 MWh/year using PATs installed upstream of the irrigation hydrants. The real behavior of the PAT operation in a stand-alone recovery energy solution allowed analysis of the flow, head and efficiency variation as a function of the rotational speed, as well as the minimum capacitance to self-excite the generator and the resistive load of the electrical circuit. The PAT limit is examined in terms of the overpressure induced by a fast closure manoeuvre of hydrants, and the runaway conditions due to the disconnection from the electrical load. Full article
(This article belongs to the Special Issue Energy Recovery and Hybrid Solutions in the Water Sector)
Show Figures

Figure 1

Article
Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System
Water 2021, 13(10), 1341; https://0-doi-org.brum.beds.ac.uk/10.3390/w13101341 - 12 May 2021
Abstract
River deltas have received considerable attention due to coastal land loss issues caused by subsidence, storms, and sea level rise. Improved understanding of deltaic processes and dynamics is vital to coastal restoration efforts. This paper describes the application of process-based morphodynamic models to [...] Read more.
River deltas have received considerable attention due to coastal land loss issues caused by subsidence, storms, and sea level rise. Improved understanding of deltaic processes and dynamics is vital to coastal restoration efforts. This paper describes the application of process-based morphodynamic models to a prograding river delta. The analysis focuses on the flow and sediment dynamics amongst the interconnected channel network of the delta. The models were validated against observations of velocity and sediment concentrations for the Wax Lake Delta (WLD) of the Atchafalaya River system in Louisiana, USA. The WLD provides an opportunity as a natural laboratory for studying the processes associated with river dominated deltaic growth. It includes a network of bifurcated channels that self-organize and dynamically adjust, as the delta grows seaward to the Gulf of Mexico. The model results for a flood event show that 47% of the flow exits the system as channelized flow and the remaining 53% exits as overbank flow. The fine sediment (silt and clay) distribution was proportional with water fluxes throughout the channel network, whereas sand distribution was influenced by geometric attributes (size, invert elevation, and alignment) of the distributary channels. The long-term deltaic growth predicted by the model compares well with the observations for the period 1998–2012. This paper provides insights on how the distribution of flow and sediment amongst the interconnected delta channels influences the morphodynamics of the delta to reach a dynamic equilibrium within this relatively young deltaic system. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

Article
Energy Dissipation in Stilling Basins with Side Jets from Highly Convergent Chutes
Water 2021, 13(10), 1343; https://0-doi-org.brum.beds.ac.uk/10.3390/w13101343 - 12 May 2021
Abstract
Spillways with Highly Converging Chutes (HCCs) are a non-conventional alternative that can be applied to achieve a higher outflow capacity when the weir length exceeds the width of the valley at the toe of gravity or arch dams. This kind of spillway has [...] Read more.
Spillways with Highly Converging Chutes (HCCs) are a non-conventional alternative that can be applied to achieve a higher outflow capacity when the weir length exceeds the width of the valley at the toe of gravity or arch dams. This kind of spillway has been used in the past, but no general studies have yet been published. This article summarizes experimental research work aiming to increase the knowledge of the effect of some design parameters of HCCs on the energy dissipation in the stilling basin at the toe of the dam. As a comparison reference, we use the Type I stilling basins, widely known by the technical dam engineering community. The obtained results show that spillways with HCCs are a promising alternative to traditional designs, combining the ability to increase the weir length with a high capacity to dissipate energy through the impingement effect of the frontal and the side jets inside the stilling basin. Full article
(This article belongs to the Special Issue Dam Safety. Overtopping and Geostructural Risks)
Show Figures

Figure 1

Article
Micropollutants in Urban Stormwater Runoff of Different Land Uses
Water 2021, 13(9), 1312; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091312 - 07 May 2021
Cited by 2
Abstract
The main aim of this study was a survey of micropollutants in stormwater runoff of Berlin (Germany) and its dependence on land-use types. In a one-year monitoring program, event mean concentrations were measured for a set of 106 parameters, including 85 organic micropollutants [...] Read more.
The main aim of this study was a survey of micropollutants in stormwater runoff of Berlin (Germany) and its dependence on land-use types. In a one-year monitoring program, event mean concentrations were measured for a set of 106 parameters, including 85 organic micropollutants (e.g., flame retardants, phthalates, pesticides/biocides, polycyclic aromatic hydrocarbons (PAH)), heavy metals and standard parameters. Monitoring points were selected in five catchments of different urban land-use types, and at one urban river. We detected 77 of the 106 parameters at least once in stormwater runoff of the investigated catchment types. On average, stormwater runoff contained a mix of 24 µg L−1 organic micropollutants and 1.3 mg L−1 heavy metals. For organic micropollutants, concentrations were highest in all catchments for the plasticizer diisodecyl phthalate. Concentrations of all but five parameters showed significant differences among the five land-use types. While major roads were the dominant source of traffic-related substances such as PAH, each of the other land-use types showed the highest concentrations for some substances (e.g., flame retardants in commercial area, pesticides in catchment dominated by one family homes). Comparison with environmental quality standards (EQS) for surface waters shows that 13 micropollutants in stormwater runoff and 8 micropollutants in the receiving river exceeded German quality standards for receiving surface waters during storm events, highlighting the relevance of stormwater inputs for urban surface waters. Full article
(This article belongs to the Special Issue Research on Urban Runoff Pollution)
Show Figures

Graphical abstract

Article
Unraveling the Water-Energy-Food-Environment Nexus for Climate Change Adaptation in Iran: Urmia Lake Basin Case-Study
Water 2021, 13(9), 1282; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091282 - 01 May 2021
Cited by 2
Abstract
A holistic approach to the management of water, energy, food, and the environment is required to both meet the socioeconomic demands of the future as well as sustainable development of these limited resources. The Urmia Lake Basin has faced environmental, social, and economic [...] Read more.
A holistic approach to the management of water, energy, food, and the environment is required to both meet the socioeconomic demands of the future as well as sustainable development of these limited resources. The Urmia Lake Basin has faced environmental, social, and economic challenges in recent years, and this situation is likely to worsen under the impacts of climate change. For this study, an adaptability analysis of this region is proposed for the 2040 horizon year. Two models, the water evaluation and planning (WEAP (Stockholm Environmental Institute, Stockholm, Sweden)) and the low emissions analysis platform (LEAP (Stockholm Environmental Institute, Boston, MA, USA)), are integrated to simulate changes in water, energy, food, and the environment over these 20 years. Two climate scenarios and nine policy scenarios are combined to assess sustainable development using a multi-criteria decision analysis (MCDA) approach. Results show that, through pursuing challenging goals in agricultural, potable water, energy, and industrial sectors, sustainable development will be achieved. In this scenario, the Lake Urmia water level will reach its ecological water level in 2040. However, social, technical, and political challenges are considered obstacles to implementing the goals of this scenario. In addition, industry growth and industry structure adjustment have the most impact on sustainable development achievement. Full article
(This article belongs to the Special Issue Water Systems Using Affordable and Clean Energy)
Show Figures

Graphical abstract

Article
A Flood Inundation Modeling Approach for Urban and Rural Areas in Lake and Large-Scale River Basins
Water 2021, 13(9), 1264; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091264 - 30 Apr 2021
Cited by 1
Abstract
Fluvial floods are one of the primary natural hazards to our society, and the associated flood risk should always be evaluated for present and future conditions. The European Union’s (EU) Floods Directive highlights the importance of flood mapping as a key stage for [...] Read more.
Fluvial floods are one of the primary natural hazards to our society, and the associated flood risk should always be evaluated for present and future conditions. The European Union’s (EU) Floods Directive highlights the importance of flood mapping as a key stage for detecting vulnerable areas, assessing floods’ impacts, and identifying damages and compensation plans. The implementation of the EU Flood Directive in Greece is challenging because of its geophysical and climatic variability and diverse hydrologic and hydraulic conditions. This study addressed this challenge by modeling of design rainfall at the sub-watershed level and subsequent estimation of flood design hydrographs using the Natural Resources Conservation Service (NRCS) Unit Hydrograph Procedure. The HEC-RAS 2D model was used for flood routing, estimation of flood attributes (i.e., water depths and flow velocities), and mapping of inundated areas. The modeling approach was applied at two complex and ungauged representative basins: The Lake Pamvotida basin located in the Epirus Region of the wet Western Greece, and the Pinios River basin located in the Thessaly Region of the drier Central Greece, a basin with a complex dendritic hydrographic system, expanding to more than 1188 river-km. The proposed modeling approach aimed at better estimation and mapping of flood inundation areas including relative uncertainties and providing guidance to professionals and academics. Full article
(This article belongs to the Special Issue Management of Hydro-Meteorological Hazards)
Show Figures

Graphical abstract

Article
Characterization of PVDF/Graphene Nanocomposite Membranes for Water Desalination with Enhanced Antifungal Activity
Water 2021, 13(9), 1279; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091279 - 30 Apr 2021
Cited by 4
Abstract
Seawater desalination is a worldwide concern for the sustainable production of drinking water. In this regard, membrane distillation (MD) has shown the potential for effective brine treatment. However, the lack of appropriate MD membranes limits its industrial expansion since they experience fouling and [...] Read more.
Seawater desalination is a worldwide concern for the sustainable production of drinking water. In this regard, membrane distillation (MD) has shown the potential for effective brine treatment. However, the lack of appropriate MD membranes limits its industrial expansion since they experience fouling and wetting issues. Therefore, hydrophobic membranes are promising candidates to successfully deal with such phenomena that are typical for commercially available membranes. Here, several graphene/polyvinylidene (PVDF_G) membranes with different graphene loading (0–10 wt%) were prepared through a phase inversion method. After full characterization of the resulting membranes, the surface revealed that the well-dispersed graphene in the polymer matrix (0.33 and 0.5 wt% graphene loading) led to excellent water repellence together with a rough structure, and a large effective surface area. Importantly, antifungal activity tests of films indicated an increase in the inhibition percentage for PVDF_G membranes against the Curvularia sp. fungal strain. However, the antifungal surface properties were found to be the synergistic result of graphene toxicity and surface topography. Full article
Show Figures

Figure 1

Article
Roadmap for Determining Natural Background Levels of Trace Metals in Groundwater
Water 2021, 13(9), 1267; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091267 - 30 Apr 2021
Cited by 3
Abstract
Determining natural background levels (NBLs) is a fundamental step in assessing the chemical status of groundwater bodies in the EU, as stipulated by the Water Framework and Groundwater Directives. The major challenges in deriving NBLs for trace metals are understanding the interaction of [...] Read more.
Determining natural background levels (NBLs) is a fundamental step in assessing the chemical status of groundwater bodies in the EU, as stipulated by the Water Framework and Groundwater Directives. The major challenges in deriving NBLs for trace metals are understanding the interaction of natural and anthropogenic processes and identifying the boundary between pristine and polluted groundwater. Thus, the purpose of this paper is to present a roadmap guiding the process of method selection for setting meaningful NBLs of trace metals in groundwater. To develop the roadmap, we compared and critically assessed how three methods for excluding polluted sampling points affect the NBLs for As, Cd, Cr, Cu, Ni, and Zn in Danish aquifers. These methods exclude sampling points based on (1) the primary use of the well (or sampling purpose), (2) the dominating anthropogenic pressure in the vicinity of the well, or (3) a combination of pollution indicators (NO3, pesticides, organic micropollutants). Except for Ni, the NBLs derived from the three methods did not differ significantly, indicating that the data pre-selection based on the primary use of the wells is an important step in assuring the removal of anthropogenically influenced points. However, this pre-selection could limit the data representativity with respect to the different groundwater types. The roadmap (a step-by-step guideline) can be used at the national scale in countries with varying data availability. Full article
(This article belongs to the Special Issue Natural Background Levels in Groundwater)
Show Figures

Figure 1

Article
Worldwide Research on Socio-Hydrology: A Bibliometric Analysis
Water 2021, 13(9), 1283; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091283 - 30 Apr 2021
Cited by 12
Abstract
The technical and scientific analysis regarding studies of the water surface or groundwater has increasingly taken on a great social impact, which has led to the creation of the term socio-hydrology. Since decision making has a greater weight, considering the social perspective, its [...] Read more.
The technical and scientific analysis regarding studies of the water surface or groundwater has increasingly taken on a great social impact, which has led to the creation of the term socio-hydrology. Since decision making has a greater weight, considering the social perspective, its study has become more important in the past 20 years. This article aims to carry out a bibliometric analysis related to socio-hydrology using the Scopus database and the application of VOSviewer software for the evaluation of the intellectual structure of socio-hydrology, its conceptual evolution, and its tendencies. The methodology considers (i) search criteria of the research field, (ii) search and document selection, (iii) software and data extraction, and (iv) analysis of results and trends. The results show us the term socio-hydrology as a new scientific discipline that has traces in the Scopus database in the past two decades. However, its application stems from recognising ancestral knowledge alongside other forms of knowledge. Socio-hydrology practice requires participatory models, where the community has a great influence, and for the most part, it guarantees results for the common good. The trend of this topic is growing and open to the criteria of sustainability. Full article
Show Figures

Figure 1

Article
Integrative Approach for Groundwater Pollution Risk Assessment Coupling Hydrogeological, Physicochemical and Socioeconomic Conditions in Southwest of the Damascus Basin
Water 2021, 13(9), 1220; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091220 - 28 Apr 2021
Abstract
Groundwater is the main resource for irrigation and drinking supply in most parts of Syria, as for most Mediterranean countries, however this resource suffers from mismanagement. In the study area (northeast of Mt. Hermon), the lack of information makes water management in this [...] Read more.
Groundwater is the main resource for irrigation and drinking supply in most parts of Syria, as for most Mediterranean countries, however this resource suffers from mismanagement. In the study area (northeast of Mt. Hermon), the lack of information makes water management in this area extremely difficult. Assessing groundwater pollution risk is the most essential issue for water resources management, especially in the regions where complex interaction between climate, geology, geomorphology, hydrogeology, water scarcity and water resource mismanagement exist. This complexity leads to significant complication in determining pollution risk of studied system. In the present work, we adopted an integrative approach to assess groundwater pollution risk in the study area. This methodology is based on the analysis of hydrogeological characteristics of aquifer systems and the available information about socioeconomic context and physiochemical groundwater conditions that might affect this system. This approach allowed us to delineate the groundwater pollution risk map based on the analysis of concerning parameters/indicators. The degree of risk was assessed as the sum and average of rating of these parameters and indicators for each subarea. Typically, very high pollution risk index was identified over the Quaternary/Neogene horizon, i.e., shallow and unconfined aquifer and in the lower part of Jurassic aquifer. In these two parts, the majority of anthropogenic activities are concentrated. Low pollution risk index was found for the outcropping of low permeable Quaternary basalt at the Southern part of the study area. A moderate pollution index was identified for the low/moderate permeability of silt, clay and marly limestone-rich horizons of the major part of Neogene aquifer outside of the intersected zones with Quaternary aquifer and for the Paleogene formations. The spatial analysis shows that about 50% of the study area is characterized as being at very high and high pollution risk index. Hence, the overall natural protective capacity of this area is still poor. This study demonstrates the flexibility of the proposed approach to assess groundwater pollution risk in local complex aquifer system characterized by lack of information and data in order to reduce the risk of future groundwater pollution. Full article
(This article belongs to the Special Issue Application of Smart Technologies in Water Resources Management)
Show Figures

Figure 1

Article
Comparing Evapotranspiration Estimates from the GEOframe-Prospero Model with Penman–Monteith and Priestley-Taylor Approaches under Different Climate Conditions
Water 2021, 13(9), 1221; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091221 - 28 Apr 2021
Cited by 3
Abstract
Evapotranspiration (ET) is a key variable in the hydrological cycle and it directly impacts the surface balance and its accurate assessment is essential for a correct water management. ET is difficult to measure, since the existing methods for its direct estimate, such as [...] Read more.
Evapotranspiration (ET) is a key variable in the hydrological cycle and it directly impacts the surface balance and its accurate assessment is essential for a correct water management. ET is difficult to measure, since the existing methods for its direct estimate, such as the weighing lysimeter or the eddy-covariance system, are often expensive and require well-trained research personnel. To overcome this limit, different authors developed experimental models for indirect estimation of ET. However, since the accuracy of ET prediction is crucial from different points of view, the continuous search for more and more precise modeling approaches is encouraged. In light of this, the aim of the present work is to test the efficiency in predicting ET fluxes in a newly introduced physical-based model, named Prospero, which is based on the ability to compute the ET using a multi-layer canopy model, solving the energy balance both for the sunlight and shadow vegetation, extending the recently developed Schymanski and Or method to canopy level. Additionally, Prospero is able to compute the actual ET using a Jarvis-like model. The model is integrated as a component in the hydrological modelling system GEOframe. Its estimates were validated against observed data from five Eddy covariance (EC) sites with different climatic conditions and the same vegetation cover. Then, its performances were compared with those of two already consolidated models, the Priestley–Taylor model and Penman FAO model, using four goodness-of-fit indices. Subsequently a calibration of the three methods has been carried out using LUCA calibration within GEOframe, with the purpose of prediction errors. The results showed that Prospero is more accurate and precise with respect to the other two models, even if no calibrations were performed, with better performances in dry climatic conditions. In addition, Prospero model turned to be the least affected by the calibration procedure and, therefore, it can be effectively also used in a context of data scarcity. Full article
Show Figures

Figure 1

Article
The Effect of Social Behavior on Residential Water Consumption
Water 2021, 13(9), 1184; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091184 - 25 Apr 2021
Abstract
We analyze how residential water consumption is influenced by the consumption of households belonging to the same social group (peer effect). Analyses are based on household-level data provided by the Brazilian Household Budget Survey and use an innovative strategy that estimates the spatial [...] Read more.
We analyze how residential water consumption is influenced by the consumption of households belonging to the same social group (peer effect). Analyses are based on household-level data provided by the Brazilian Household Budget Survey and use an innovative strategy that estimates the spatial dependence of water consumption while simultaneously controlling for potential sources of sample selectivity and endogeneity. The estimates of our quantile regression models highlight that, conditional on household characteristics, the greater the household water consumption, the greater the peer effect. In other words, the overconsumption of residential water seems to be influenced mainly by the behavior of social peers. Full article
(This article belongs to the Special Issue Urban Water Economics)
Show Figures

Figure 1

Article
Tide Prediction in the Venice Lagoon Using Nonlinear Autoregressive Exogenous (NARX) Neural Network
Water 2021, 13(9), 1173; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091173 - 24 Apr 2021
Cited by 3
Abstract
In the Venice Lagoon some of the highest tides in the Mediterranean occur, which have influenced the evolution of the city of Venice and the surrounding lagoon for centuries. The forecast of “high waters” in the lagoon has always been a matter of [...] Read more.
In the Venice Lagoon some of the highest tides in the Mediterranean occur, which have influenced the evolution of the city of Venice and the surrounding lagoon for centuries. The forecast of “high waters” in the lagoon has always been a matter of considerable practical interest. In this study, tide prediction models were developed for the entire lagoon based on Nonlinear Autoregressive Exogenous (NARX) neural networks. The NARX-based model development was performed in two different stages. The first stage was the training and testing of the NARX network, performed on data collected in a given time interval at the tide gauge of Punta della Salute, at the end of Canal Grande. The second stage consisted of a comprehensive validation of the model in the entire Venice Lagoon, with a detailed analysis of data from three measuring stations located in points of the lagoon with different characteristics. Good predictions were achieved regardless of whether the meteorological parameters were considered among input parameters, even with considerable time advance. Furthermore, the forecasting model based on NARX has proved capable of predicting even exceptional high tides. The proposed model could be a useful support tool for the management of the MOSE system, which will protect Venice from high waters. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Article
Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data
Water 2021, 13(9), 1162; https://0-doi-org.brum.beds.ac.uk/10.3390/w13091162 - 22 Apr 2021
Cited by 2
Abstract
A comprehensive hydrogeological understanding of the deep Upper Jurassic carbonate aquifer, which represents an important geothermal reservoir in the South German Molasse Basin (SGMB), is crucial for improved and sustainable groundwater resource management. Water chemical data and environmental isotope analyses of δD, δ [...] Read more.
A comprehensive hydrogeological understanding of the deep Upper Jurassic carbonate aquifer, which represents an important geothermal reservoir in the South German Molasse Basin (SGMB), is crucial for improved and sustainable groundwater resource management. Water chemical data and environmental isotope analyses of δD, δ18O and 87Sr/86Sr were obtained from groundwater of 24 deep Upper Jurassic geothermal wells and coupled with a few analyses of noble gases (3He/4He, 40Ar/36Ar) and noble gas infiltration temperatures. Hierarchical cluster analysis revealed three major water types and allowed a hydrochemical zoning of the SGMB, while exploratory factor analyses identified the hydrogeological processes affecting the water chemical composition of the thermal water. Water types 1 and 2 are of Na-[Ca]-HCO3-Cl type, lowly mineralised and have been recharged under meteoric cold climate conditions. Both water types show 87Sr/86Sr signatures, stable water isotopes values and calculated apparent mean residence times, which suggest minor water-rock interaction within a hydraulically active flow system of the Northeastern and Southeastern Central Molasse Basin. This thermal groundwater have been most likely subglacially recharged in the south of the SGMB in close proximity to the Bavarian Alps with a delineated northwards flow direction. Highly mineralised groundwater of water type 3 (Na-Cl-HCO3 and Na-Cl) occurs in the Eastern Central Molasse Basin. In contrast to water types 1 and 2, this water type shows substantial water-rock interaction with terrestrial sediments and increasing 40Ar/36Ar ratios, which may also imply a hydraulic exchange with fossil formation waters of overlying Tertiary sediments. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

Article
Evaluating the Collaborative Security of Water–Energy–Food in China on the Basis of Symbiotic System Theory
Water 2021, 13(8), 1112; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081112 - 17 Apr 2021
Abstract
Water, energy, and food are essential resources for humanity. The growing shortages of these resources and serious deterioration of river environments are having a big impact on the sustainable development of the economy and society in China. Water, energy, and food support human [...] Read more.
Water, energy, and food are essential resources for humanity. The growing shortages of these resources and serious deterioration of river environments are having a big impact on the sustainable development of the economy and society in China. Water, energy, and food support human life and yet coexist in different ways, and therefore it is critical to find a way for all three key elements to be secured in order to support high standards of sustainable development in China. We used the criteria of stability, coordination, and sustainability of symbiotic systems to select 33 indexes that were then used to establish an index system. The weight of index was determined by using the entropy weight method combined with Analytic Hierarchy Process. The fuzzy comprehensive evaluation method was used to calculate the collaborative security index, which was the basis of our evaluation of the collaborative water–energy–food security of China in time and space. The results show that North China and Northwest China are at high water–food–energy security risk, while East, Central, and South China are at moderate risk. With the exception of Southwest China and South China, risk in most parts of the country has risen over the past decades, while it has fallen in Shandong, Henan, Sichuan, and Yunnan provinces. Full article
(This article belongs to the Special Issue The Water-Energy-Food Nexus: Sustainable Development)
Show Figures

Figure 1

Article
Water ‘Apartheid’ and the Significance of Human Rights Principles of Affirmative Action in South Africa
Water 2021, 13(8), 1104; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081104 - 16 Apr 2021
Abstract
Water is an essential necessity for human beings; however, South Africa has a long history of inequalities dating back to apartheid politics and legislation which denied access to water to disadvantaged black populations mostly residing in rural areas. Although apartheid has officially ended, [...] Read more.
Water is an essential necessity for human beings; however, South Africa has a long history of inequalities dating back to apartheid politics and legislation which denied access to water to disadvantaged black populations mostly residing in rural areas. Although apartheid has officially ended, whether the lack of access to water by such populations who still cannot afford it exists and aligns with international human rights principles of equality and non-discrimination merits an examination. To redress the injustices of the apartheid regime, the right to have access to sufficient water is entrenched in section 27(1)(b) of the 1996 South African Constitution. In addition to embracing equality and non-discrimination, the Constitution informs other instruments and measures such as free basic water policy and pre-paid meters meant to ensure access to water. However, the plight of these populations persists in post-apartheid South Africa, but it is rarely a subject of academic scrutiny how the notion of affirmative action as grounded in the principles of equality and non-discrimination under human rights law can be deployed as a response. Using a doctrinal research approach, this article argues that the continuing struggle of disadvantaged communities with access to water does not only constitute water apartheid, it negates the human rights principles of equality and non-discrimination. The principle of affirmative action is useful in responding to inadequate access to sufficient water by disadvantaged populations in post-apartheid South Africa. Full article
(This article belongs to the Special Issue The Politics of the Human Right to Water)
Article
An Empirical Analysis of Sediment Export Dynamics from a Constructed Landform in the Wet Tropics
Water 2021, 13(8), 1087; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081087 - 15 Apr 2021
Abstract
Although plot-scale erosion experiments are numerous, there are few studies on constructed landforms. This limits the understanding of their long-term stability, which is especially important for planning mined land rehabilitation. The objective of this study was to gain insight into the erosion processes [...] Read more.
Although plot-scale erosion experiments are numerous, there are few studies on constructed landforms. This limits the understanding of their long-term stability, which is especially important for planning mined land rehabilitation. The objective of this study was to gain insight into the erosion processes in a 30 × 30 m trial plot on a mine waste rock dump in tropical northern Australia. The relationships between rainfall, runoff and suspended and bedload sediment export were assessed at annual, seasonal, inter-event and intra-event timescales. During a five-year study period, 231 rainfall–runoff–sediment export events were examined. The measured bedload and suspended sediments (mainly represented in nephelometric turbidity units (NTU)) showed the dominance of the wet season and heavy rainfall events. The bedload dominated the total mass, although the annual bedload diminished by approximately 75% over the five years, with greater flow energy required over time to mobilise the same bedload. The suspended load was more sustained, though it also exhibited an exhaustion process, with equal rainfall and runoff volumes and intensities, leading to lower NTU values over time. Intra-event NTU dynamics, including runoff-NTU time lags and hysteretic behaviours, were somewhat random from one event to the next, indicating the influence of the antecedent distribution of mobilisable sediments. The value of the results for supporting predictive modelling is discussed. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

Article
Laboratory Investigations of the Bending Rheology of Floating Saline Ice and Physical Mechanisms of Wave Damping in the HSVA Hamburg Ship Model Basin Ice Tank
Water 2021, 13(8), 1080; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081080 - 14 Apr 2021
Cited by 2
Abstract
An experimental investigation of flexural-gravity waves was performed in the Hamburg Ship Model Basin HSVA ice tank. Physical characteristics of the water-ice system were measured in several locations of the tank with a few sensors deployed in the water and on the ice [...] Read more.
An experimental investigation of flexural-gravity waves was performed in the Hamburg Ship Model Basin HSVA ice tank. Physical characteristics of the water-ice system were measured in several locations of the tank with a few sensors deployed in the water and on the ice during the tests. The three-dimensional motion of ice was measured with the optical system Qualisys; water pressure was measured by several pressure sensors mounted on the tank wall, in-plane deformations of the ice and the temperatures of the ice and water were measured by fiber optic sensors; and acoustic emissions were recorded with compressional crystal sensors. The experimental setup and selected results of the tests are discussed in this paper. Viscous-elastic model (Burgers material) is adopted to describe the dispersion and attenuation of waves propagating below the ice. The elastic modulus and the coefficient of viscosity are calculated using the experimental data. The results of the measurements demonstrated the dependence of wave characteristics from the variability of ice properties during the experiment caused by the brine drainage. We showed that the cyclic motion of the ice along the tank, imitating ice drift, and the generation of under ice turbulence cause an increase of wave damping. Recorded acoustic emissions demonstrated cyclic microcracking occurring with wave frequencies and accompanying bending deformations of the ice. This explains the viscous and anelastic rheology of the model ice. Full article
(This article belongs to the Special Issue The Occurrence, Physics and Impact of Wave–Ice Interaction)
Show Figures

Figure 1

Article
Experimental Investigations of a Solar Water Treatment System for Remote Desert Areas of Pakistan
Water 2021, 13(8), 1070; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081070 - 13 Apr 2021
Cited by 2
Abstract
Pakistan is among the countries that have already crossed the water scarcity line, and the situation is worsened due to the recent pandemic. This is because the major budget of the country is shifted to primary healthcare activities from other development projects that [...] Read more.
Pakistan is among the countries that have already crossed the water scarcity line, and the situation is worsened due to the recent pandemic. This is because the major budget of the country is shifted to primary healthcare activities from other development projects that included water treatment and transportation infrastructure. Consequently, water-borne diseases have increased drastically in the past few months. Therefore, there is a dire need to address this issue on a priority basis to ameliorate the worsening situation. One possible solution is to shift the focus/load from mega-projects that require a plethora of resources, money, and time to small domestic-scale systems for water treatment. For this purpose, domestic-scale solar stills are designed, fabricated, and tested in one of the harshest climatic condition areas of Pakistan, Rahim Yar Khan. A comprehensive overview of the regional climatology, including wind speed, solar potential, and ambient temperature is presented for the whole year. The analysis shows that the proposed system can adequately resolve the drinking water problems of deprived areas of Pakistan. The average water productivity of 1.5 L/d/m2 is achieved with a total investment of PKR 3000 (<$20). This real site testing data will serve as a guideline for similar system design in other arid areas globally. Full article
Show Figures

Figure 1

Article
Pricing Strategy for Residential Water in Drought Years. Application to the City of Tianjin, China
Water 2021, 13(8), 1073; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081073 - 13 Apr 2021
Abstract
In drought years, most residents fail to improve water use efficiency due to residential water supply normally being prioritized in many regions, which makes other low-priority industrial water users suffer more from water shortage. This paper proposes a Pricing Strategy for Residential Water [...] Read more.
In drought years, most residents fail to improve water use efficiency due to residential water supply normally being prioritized in many regions, which makes other low-priority industrial water users suffer more from water shortage. This paper proposes a Pricing Strategy for Residential Water (PSRW), a water tariff that changes on annual time scale, based on the scarcity value of water resources, aiming to promote residential water conservation and reallocate water resources across the residential and industrial sectors during droughts. An optimization model to maximize the total benefit of residents and industrial sectors is introduced based on marginal benefit and price elasticity. The water shortage of industrial sectors is used to reflect the scarcity of water resources, and the lowest water supply standard for households and the maximum proportion of household water fee expenditure (HWFE) to household disposable income (HDI) are used to ensure the residents’ acceptability to price raising. It shows an “S-type” relationship between the optimal price raising coefficient and industrial water shortage, and two turning points are found in the curve, which are the starting and stopping points of price raising. The appearance of starting point depends on the non-negative net benefit, and the stopping point is affected by the factors that represent the residents’ acceptability to price raising. The application to Tianjin, a city in northern China with the rapid growth of population and economy but scarce water resources, shows PSRW is a potential means to improve water efficiency and optimize water resource allocation in water scarcity situations. Full article
Show Figures

Figure 1

Article
Solution Selection from a Pareto Optimal Set of Multi-Objective Reservoir Operation via Clustering Operation Processes and Objective Values
Water 2021, 13(8), 1046; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081046 - 10 Apr 2021
Abstract
Multi-objective evolutionary algorithms (MOEAs) are widely used to optimize multi-purpose reservoir operations. Considering that most outcomes of MOEAs are Pareto optimal sets with a large number of incomparable solutions, it is not a trivial task for decision-makers (DMs) to select a compromise solution [...] Read more.
Multi-objective evolutionary algorithms (MOEAs) are widely used to optimize multi-purpose reservoir operations. Considering that most outcomes of MOEAs are Pareto optimal sets with a large number of incomparable solutions, it is not a trivial task for decision-makers (DMs) to select a compromise solution for application purposes. Due to the increasing popularity of data-driven decision-making, we introduce a clustering-based decision-making method into the multi-objective reservoir operation optimization problem. Traditionally, solution selection has been conducted based on trade-off ranking in objective space, and solution characteristics in decision space have been ignored. In our work, reservoir operation processes were innovatively clustered into groups with unique properties in decision space, and the trade-off surfaces were analyzed via clustering in objective space. To attain a suitable performance, a new similarity measure, referred to as the Mei–Wang fluctuation similarity measure (MWFSM), was tailored to reservoir operation processes. This method describes time series in terms of both their shape and quantitative variation. Then, a compromise solution was selected via the joint use of two clustering results. A case study of the Three Gorges cascade reservoirs system under small and medium floods was investigated to verify the applicability of the proposed method. The results revealed that the MWFSM effectively distinguishes reservoir operation processes. Two more operation patterns with similar positions but different shapes were identified via MWFSM when compared with Euclidean distance and the dynamic time warping method. Furthermore, the proposed method decreased the selection range from the whole Pareto optimal set to a set containing relatively few solutions. Finally, a compromise solution was selected. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

Article
Phosphorus Transport in a Lowland Stream Derived from a Tracer Test with 32P
Water 2021, 13(8), 1030; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081030 - 09 Apr 2021
Abstract
Small streams in urbanized rural areas receive loads of P from various, often episodic, sources. This paper addresses, through a tracer test with 32P, retention and transport of a pulse input of phosphorus in a 2.6 km long stretch of a channelized [...] Read more.
Small streams in urbanized rural areas receive loads of P from various, often episodic, sources. This paper addresses, through a tracer test with 32P, retention and transport of a pulse input of phosphorus in a 2.6 km long stretch of a channelized second-order lowland stream. Tritiated water was introduced alongside the 32P-labelled ortophosphate in order to isolate the influence of the hydrodynamic factors on P behavior. Tracer concentrations in unfiltered water samples were measured by liquid scintillation counting. Four in-stream and five hyporheic breakthrough curves were collected at four points along the stream, two of which encompass a beaver dam impoundment. The overall retention efficiency of 32P along the studied reach was 46%. The transient storage transport model OTIS-P provided reasonable fits for in-stream breakthrough curves (BTCs) but failed at reproducing the hyporheic BTCs. The overall small effect of transient storage on solute transport was higher in the stretch with a more pronounced surface storage. Transient storage and phosphorus retention were not enhanced in the beaver dam impoundment. Full article
Show Figures

Figure 1

Article
Introducing Non-Stationarity Into the Development of Intensity-Duration-Frequency Curves under a Changing Climate
Water 2021, 13(8), 1008; https://0-doi-org.brum.beds.ac.uk/10.3390/w13081008 - 07 Apr 2021
Cited by 2
Abstract
Intensity-duration-frequency (IDF) relationships are traditional tools in water infrastructure planning and design. IDFs are developed under a stationarity assumption which may not be realistic, neither in the present nor in the future, under a changing climatic condition. This paper introduces a framework for [...] Read more.
Intensity-duration-frequency (IDF) relationships are traditional tools in water infrastructure planning and design. IDFs are developed under a stationarity assumption which may not be realistic, neither in the present nor in the future, under a changing climatic condition. This paper introduces a framework for generating non-stationary IDFs under climate change, assuming that probability of occurrence of quantiles changes over time. Using Extreme Value Theory, eight trend combinations in Generalized Extreme Value (GEV) parameters using time as covariate are compared with a stationary GEV, to identify the best alternative. Additionally, a modified Equidistance Quantile Matching (EQMNS) method is implemented to develop IDFs for future conditions, introducing non-stationarity where justified, based on the Global Climate Models (GCM). The methodology is applied for Moncton and Shearwater gauges in Northeast Canada. From the results, it is observed that EQMNS is able to capture the trends in the present and to translate them to estimated future rainfall intensities. Comparison of present and future IDFs strongly suggest that return period can be reduced by more than 50 years in the estimates of future rainfall intensities (e.g., historical 100-yr return period extreme rainfall may have frequency smaller than 50-yr under future conditions), raising attention to emerging risks to water infrastructure systems. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

Article
Nexus Thinking at River Basin Scale: Food, Water and Welfare
Water 2021, 13(7), 1000; https://0-doi-org.brum.beds.ac.uk/10.3390/w13071000 - 05 Apr 2021
Abstract
Water resources face an unparalleled confluence of pressures, with agriculture and urban growth as the most relevant human-related stressors. In this context, methodologies using a Nexus framework seem to be suitable to address these challenges. However, the urban sector has been commonly ignored [...] Read more.
Water resources face an unparalleled confluence of pressures, with agriculture and urban growth as the most relevant human-related stressors. In this context, methodologies using a Nexus framework seem to be suitable to address these challenges. However, the urban sector has been commonly ignored in the Nexus literature. We propose a Nexus framework approach, considering the economic dimensions of the interdependencies and interconnections among agriculture (food production) and the urban sector as water users within a common basin. Then, we assess the responses of both sectors to climatic and demographic stressors. In this setting, the urban sector is represented through an economic water demand at the household level, from which economic welfare is derived. Our results show that the Nexus components here considered (food, water, and welfare) will be negatively affected under the simulated scenarios. However, when these components are decomposed to their particular elements, we found that the less water-intensive sector—the urban sector—will be better off since food production will leave significant amounts of water available. Moreover, when addressing uncertainty related to climate-induced shocks, we could identify the basin resilience threshold. Our approach shows the compatibilities and divergences between food production and the urban sector under the Nexus framework. Full article
(This article belongs to the Special Issue The Water-Energy-Food Nexus: Sustainable Development)
Show Figures

Figure 1

Article
Time Series Analysis of Monthly and Annual Precipitation in The State of Texas Using High-Resolution Radar Products
Water 2021, 13(7), 982; https://0-doi-org.brum.beds.ac.uk/10.3390/w13070982 - 02 Apr 2021
Cited by 1
Abstract
Precipitation is the main source for replenishing groundwater stored in aquifers for a myriad of beneficial purposes, especially in arid and semi-arid regions. A significant portion of the municipal and agricultural water demand is satisfied through groundwater withdrawals in Texas. These withdrawals have [...] Read more.
Precipitation is the main source for replenishing groundwater stored in aquifers for a myriad of beneficial purposes, especially in arid and semi-arid regions. A significant portion of the municipal and agricultural water demand is satisfied through groundwater withdrawals in Texas. These withdrawals have to be monitored and regulated to be in balance with the recharge amount from precipitation in order to ensure water security. The main goal of this study is to understand the spatio-temporal variability of precipitation in the 21st century using high spatial resolution stage-IV radar data over the state of Texas and examine some climatic controls behind this variability. The results will shed light on the trends of precipitation and hence will contribute to improving water resources management strategies and policies. Pettit’s test and Standard Normal Homogeneity Test (SNHT), tools for detecting change-point in the monthly precipitation, suggested change-points have occurred across the state around the years 2013 and 2014. The test for the homogeneity of the data before and after 2013 revealed that, in over 64% of the state, the precipitation means were significantly different. The Panhandle region (northern part) is the only part of the state that did not show a significant difference in the mean precipitation before and after 2013. Theil-Sen’s slope test, Correlated Seasonal Mann-Kendall Test, and Cox and Stuart Trend Test all indicated that there were no significant trends in the monthly precipitation after 2013 in over 98% of the area of the state. Texas precipitation was found to be influenced significantly by the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). A significant correlation in more than 82% and 60% of the state was found with ENSO at two-month and with PDO at four-month lag, respectively. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Article
Testing the Efficiency of Parameter Disaggregation for Distributed Rainfall-Runoff Modelling
Water 2021, 13(7), 972; https://0-doi-org.brum.beds.ac.uk/10.3390/w13070972 - 01 Apr 2021
Cited by 1
Abstract
A variety of hydrological models is currently available. Many of those employ physically based formulations to account for the complexity and spatial heterogeneity of natural processes. In turn, they require a substantial amount of spatial data, which may not always be available at [...] Read more.
A variety of hydrological models is currently available. Many of those employ physically based formulations to account for the complexity and spatial heterogeneity of natural processes. In turn, they require a substantial amount of spatial data, which may not always be available at sufficient quality. Recently, a top-down approach for distributed rainfall-runoff modelling has been developed, which aims at combining accuracy and simplicity. Essentially, a distributed model with uniform model parameters (base model) is derived from a calibrated lumped conceptual model. Subsequently, selected parameters are disaggregated based on links with the available spatially variable catchment properties. The disaggregation concept is now adjusted to better account for non-linearities and extended to incorporate more model parameters (and, thus, larger catchment heterogeneity). The modelling approach is tested for a catchment including several flow gauging stations. The disaggregated model is shown to outperform the base model with respect to internal catchment dynamics, while performing similarly at the catchment outlet. Moreover, it manages to bridge on average 44% of the Nash–Sutcliffe efficiency difference between the base model and the lumped models calibrated for the internal gauging stations. Nevertheless, the aforementioned improvement is not necessarily sufficient for reliable model results. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Article
Mapping the Pollution Plume Using the Self-Potential Geophysical Method: Case of Oum Azza Landfill, Rabat, Morocco
Water 2021, 13(7), 961; https://0-doi-org.brum.beds.ac.uk/10.3390/w13070961 - 31 Mar 2021
Abstract
The main landfill in the city of Rabat (Morocco) is based on sandy material containing the shallow Mio-Pliocene aquifer. The presence of a pollution plume is likely, but its extent is not known. Measurements of spontaneous potential (SP) from the soil surface were [...] Read more.
The main landfill in the city of Rabat (Morocco) is based on sandy material containing the shallow Mio-Pliocene aquifer. The presence of a pollution plume is likely, but its extent is not known. Measurements of spontaneous potential (SP) from the soil surface were cross-referenced with direct measurements of the water table and leachates (pH, redox potential, electrical conductivity) according to the available accesses, as well as with an analysis of the landscape and the water table flows. With a few precautions during data acquisition on this resistive terrain, the results made it possible to separate the electrokinetic (~30%) and electrochemical (~70%) components responsible for the range of potentials observed (70 mV). The plume is detected in the hydrogeological downstream of the discharge, but is captured by the natural drainage network and does not extend further under the hills. Full article
(This article belongs to the Special Issue Modeling and Prediction of Groundwater Contaminant Plumes)
Show Figures

Figure 1

Article
Hydroclimatic Variability and Land Cover Transformations in the Central Italian Alps
Water 2021, 13(7), 963; https://0-doi-org.brum.beds.ac.uk/10.3390/w13070963 - 31 Mar 2021
Cited by 1
Abstract
Extreme streamflow nonstationarity has probably attracted more attention than mean streamflow nonstationarity in the assessment of the impacts of climate change on the water cycle. Nonetheless, a significant decrease in mean streamflow could lead to conditions of scarcity of freshwater in the long-term [...] Read more.
Extreme streamflow nonstationarity has probably attracted more attention than mean streamflow nonstationarity in the assessment of the impacts of climate change on the water cycle. Nonetheless, a significant decrease in mean streamflow could lead to conditions of scarcity of freshwater in the long-term period, seriously compromising the sustainability of the demand for civil, agricultural, and industrial uses. Regional analyses are useful to better characterize an area’s nonstationarity, since a clear trend at a global scale has not been detected yet. In this article, long-term and high-quality series of streamflow discharges observed in five rivers in the Central Italian Alps, including two multicentury series and two new precipitation and streamflow series not analyzed before, are investigated to statistically characterize individual trends of mean annual runoff volumes. Nonparametric pooled statistics are also introduced to assess the regional trend. Additional climatic and nonclimatic factors, namely, precipitation trends and land cover transformations, have also been considered as potential change drivers. Unlike precipitation, runoff volumes show a marked and statistically significant decrease of −1.45 mm/year, which appears to be homogeneous in the region. The land cover transformation analysis presented here revealed extensive woodland expansions of 510 km2 in 2018 out of the 2650 km2 area measured in 1954, representing 38% of the area investigated in this study: this anthropic driver of enhanced hydrologic losses can be recognized as an additional likely cause for the regional runoff volume decrease. Full article
(This article belongs to the Special Issue Climate Change Impact and Adaptation in Water Resources Management)
Show Figures

Figure 1

Article
Quantifying the Impact of Evapotranspiration at the Aquifer Scale via Groundwater Modelling and MODIS Data
Water 2021, 13(7), 950; https://0-doi-org.brum.beds.ac.uk/10.3390/w13070950 - 31 Mar 2021
Abstract
In shallow alluvial aquifers characterized by coarse sediments, the evapotranspiration rates from groundwater are often not accounted for due to their low capillarity. Nevertheless, this assumption can lead to errors in the hydrogeological balance estimation. To quantify such impacts, a numerical flow model [...] Read more.
In shallow alluvial aquifers characterized by coarse sediments, the evapotranspiration rates from groundwater are often not accounted for due to their low capillarity. Nevertheless, this assumption can lead to errors in the hydrogeological balance estimation. To quantify such impacts, a numerical flow model using MODFLOW was set up for the Tronto river alluvial aquifer (Italy). Different estimates of evapotranspiration rates were retrieved from the online Moderate Resolution Imaging Spectroradiometer (MODIS) database and used as input values. The numerical model was calibrated against piezometric heads collected in two snapshots (mid-January 2007 and mid-June 2007) in monitoring wells distributed along the whole alluvial aquifer. The model performance was excellent, with all the statistical parameters indicating very good agreement between calculated and observed heads. The model validation was performed using baseflow data of the Tronto river compared with the calculated aquifer–river exchanges in both of the simulated periods. Then, a series of numerical scenarios indicated that, although the model performance did not vary appreciably regardless of whether it included evapotranspiration from groundwater, the aquifer–river exchanges were influenced significantly. This study showed that evapotranspiration from shallow groundwater accounts for up to 21% of the hydrogeological balance at the aquifer scale and that baseflow observations are pivotal in quantifying the evapotranspiration impact. Full article
(This article belongs to the Special Issue Evapotranspiration Measurements and Modeling)
Show Figures

Figure 1

Article
Migration of 238U and 226Ra Radionuclides in Technogenic Permafrost Taiga Landscapes of Southern Yakutia, Russia
Water 2021, 13(7), 966; https://0-doi-org.brum.beds.ac.uk/10.3390/w13070966 - 31 Mar 2021
Abstract
This article describes the features and migration patterns of natural long-lived heavy radionuclides 238U and 226Ra in the major components of the environment including rocks, river waters, soils, and vegetation of permafrost taiga landscapes of Southern Yakutia, which helped us to [...] Read more.
This article describes the features and migration patterns of natural long-lived heavy radionuclides 238U and 226Ra in the major components of the environment including rocks, river waters, soils, and vegetation of permafrost taiga landscapes of Southern Yakutia, which helped us to understand the scale and levels of their radioactive contamination. Different methods have been used in this study to determine the content of 238U and 226Ra in various samples, including gamma-ray spectrometry, X-ray spectroscopy, laser excited luminescence, and emanation method. It was determined that the main source of radioactive pollution of soil and vegetation cover, as well as surface waters in these technogenic landscapes, are the dumps of radioactive rock that were formed here as the result of geological exploration carried out in this area during the last third of the 20th century. The rocks studied were initially characterized by a coarse, mainly stony gravelly composition and contrasting radiation parameters, where the gamma radiation exposure rate varied between 1.71 and 16.7 µSv/h, and the contents of 238U and 226Ra were within the range 126–1620 mg/kg and 428–5508 × 10−7 mg/kg, respectively, and the 226Ra: 238U ratio was 1.0. This ratio shifted later on from the equilibrium state towards the excess of either 238U or 226Ra, due to the processes of air, water, and biogenic migration. Two types of 238U and 226Ra radionuclides migration were observed in studied soils, namely aerotechnogenic and hydrotechnogenic, each of which results in a different intraprofile radionuclide distribution and different levels of radioactive contamination. In this study, we also identified plants capable of selective accumulation of certain radionuclides, including Siberian mountain ash (Sorbus sibiricus), which selectively absorbs 226Ra, and terrestrial green and aquatic mosses, which accumulate significant amounts of 238U. Full article
(This article belongs to the Special Issue Geochemistry of Landscape and Soil)
Show Figures

Figure 1

Article
Impact of Dataset Size on the Signature-Based Calibration of a Hydrological Model
Water 2021, 13(7), 970; https://0-doi-org.brum.beds.ac.uk/10.3390/w13070970 - 31 Mar 2021
Abstract
Many calibrated hydrological models are inconsistent with the behavioral functions of catchments and do not fully represent the catchments’ underlying processes despite their seemingly adequate performance, if measured by traditional statistical error metrics. Using such metrics for calibration is hindered if only short-term [...] Read more.
Many calibrated hydrological models are inconsistent with the behavioral functions of catchments and do not fully represent the catchments’ underlying processes despite their seemingly adequate performance, if measured by traditional statistical error metrics. Using such metrics for calibration is hindered if only short-term data are available. This study investigated the influence of varying lengths of streamflow observation records on model calibration and evaluated the usefulness of a signature-based calibration approach in conceptual rainfall-runoff model calibration. Scenarios of continuous short-period observations were used to emulate poorly gauged catchments. Two approaches were employed to calibrate the HBV model for the Brue catchment in the UK. The first approach used single-objective optimization to maximize Nash–Sutcliffe efficiency (NSE) as a goodness-of-fit measure. The second approach involved multiobjective optimization based on maximizing the scores of 11 signature indices, as well as maximizing NSE. In addition, a diagnostic model evaluation approach was used to evaluate both model performance and behavioral consistency. The results showed that the HBV model was successfully calibrated using short-term datasets with a lower limit of approximately four months of data (10% FRD model). One formulation of the multiobjective signature-based optimization approach yielded the highest performance and hydrological consistency among all parameterization algorithms. The diagnostic model evaluation enabled the selection of consistent models reflecting catchment behavior and allowed an accurate detection of deficiencies in other models. It can be argued that signature-based calibration can be employed for building adequate models even in data-poor situations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract