Next Issue
Volume 29, April-1
Previous Issue
Volume 29, March-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 29, Issue 6 (March-2 2024) – 227 articles

Cover Story (view full-size image): Egg yolk proteins are better substrates for pepsin, trypsin and proteinase K compared to those from egg white. On the other hand, pepsin and proteinase K are more efficient, compared to trypsin, in breaking the intramolecular peptide bonds of the high-molecular-weight egg proteins. The enzyme-assisted hydrolysis allows for a significant increase in antioxidant activity, suggesting that many bioactive peptides are encrypted in an inactive form in the parent egg proteins. The hydrolysates obtained with proteinase K exhibit the highest antioxidant activity and the lowest residual IgE-binding capacity. The bioinformatics tools revealed that proteinase K is able to break the integrity of the main linear IgE-binding epitopes from ovalbumin and ovomucoid. Proteinase K is a promising tool for modulating the intrinsic properties of egg proteins. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 3372 KiB  
Article
Construction of Uniform LiF Coating Layers for Stable High-Voltage LiCoO2 Cathodes in Lithium-Ion Batteries
by Ziyang Xiao, Xiangbing Zhu, Shuguang Wang, Yanhong Shi, Huimin Zhang, Baobin Xu, Changfeng Zhao and Yan Zhao
Molecules 2024, 29(6), 1414; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061414 - 21 Mar 2024
Viewed by 554
Abstract
Stabilizing LiCoO2 (LCO) at 4.5 V rather than the common 4.2 V is important for the high specific capacity. In this study, we developed a simple and efficient way to improve the stability of LiCoO2 at high voltages. After a simple [...] Read more.
Stabilizing LiCoO2 (LCO) at 4.5 V rather than the common 4.2 V is important for the high specific capacity. In this study, we developed a simple and efficient way to improve the stability of LiCoO2 at high voltages. After a simple sol–gel method, we introduced trifluoroacetic acid (TA) to the surface of LCO via an afterwards calcination. Meanwhile, the TA reacted with residual lithium on the surface of LCO, further leading to the formation of uniform LiF nanoshells. The LiF nanoshells could effectively restrict the interfacial side reaction, hinder the transition metal dissolution and thus achieve a stable cathode–electrolyte interface at high working-voltages. As a result, the LCO@LiF demonstrated a much superior cycling stability with a capacity retention ratio of 83.54% after 100 cycles compared with the bare ones (43.3% for capacity retention), as well as high rate performances. Notably, LiF coating layers endow LCO with excellent high-temperature performances and outstanding full-cell performances. This work provides a simple and effective way to prepare stable LCO materials working at a high voltage. Full article
(This article belongs to the Special Issue Physicochemical Research on Material Surfaces)
Show Figures

Figure 1

16 pages, 4983 KiB  
Article
Antibacterial Activities and Underlying Mechanisms of the Compound SYAUP-491 against Xanthomonas oryzae pv. oryzae
by Lina Li, Yuxin Wang, He Liu, Wei Liu, Xinchen Zhang, Mengnan An, Miao Yu, Yuanhua Wu, Xinghai Li and Jianzhong Wang
Molecules 2024, 29(6), 1413; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061413 - 21 Mar 2024
Viewed by 559
Abstract
SYAUP-491 is a novel alkyl sulfonamide. In this study, in vivo and in vitro tests were performed along with a proteomic analysis to determine the effects and underlying mechanisms of the antibacterial activity of SYAUP-491 against the causative agent of bacterial leaf blight [...] Read more.
SYAUP-491 is a novel alkyl sulfonamide. In this study, in vivo and in vitro tests were performed along with a proteomic analysis to determine the effects and underlying mechanisms of the antibacterial activity of SYAUP-491 against the causative agent of bacterial leaf blight in rice. The antibacterial test results suggested that SYAUP-491 exhibited significant activities against Xanthomonas oryzae pv. oryzae (Xoo) in vitro and in vivo. The minimal EC50 values reached 6.96 μg/mL and the curative activity reached 74.1%. Detailed studies demonstrated that SYAUP-491 altered membrane permeability and caused morphological changes. Based on proteomics results, SYAUP-491 might inhibit bacterial protein synthesis. SYAUP-491 may disrupt and alter cell membrane permeability and could further act on ribosomes in the bacterial body. Given the above results, SYAUP-491 could serve as a new lead compound in the research of antibacterial control of plant pathogenic bacterial disease. Full article
(This article belongs to the Special Issue Advances in Novel Pesticide Discovery, 2nd Edition)
Show Figures

Figure 1

17 pages, 1762 KiB  
Article
A Study on the Adsorption of Rhodamine B onto Adsorbents Prepared from Low-Carbon Fossils: Kinetic, Isotherm, and Thermodynamic Analyses
by Aleksandra Bazan-Wozniak, Aleksandra Jędrzejczak, Robert Wolski, Sławomir Kaczmarek, Agnieszka Nosal-Wiercińska, Judyta Cielecka-Piontek, Sultan Yagmur-Kabas and Robert Pietrzak
Molecules 2024, 29(6), 1412; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061412 - 21 Mar 2024
Viewed by 564
Abstract
The aim of this study was to obtain a series of activated carbon samples by the chemical activation of low-rank coal. The precursor was impregnated with a NaOH solution. Activated carbons were characterized by determining their textural parameters and content of surface oxygen [...] Read more.
The aim of this study was to obtain a series of activated carbon samples by the chemical activation of low-rank coal. The precursor was impregnated with a NaOH solution. Activated carbons were characterized by determining their textural parameters and content of surface oxygen functional groups and by using an elemental analysis. The carbons were tested as potential adsorbents for the removal of liquid pollutants represented by rhodamine B. The effectiveness of rhodamine B removal from water solutions depended on the initial concentration of the dye, the mass of rhodamine B, and the pH and temperature of the reaction. The isotherm examination followed the Langmuir isotherm model. The maximum adsorption capacity of the rhodamine B was 119 mg/g. The kinetic investigation favored the pseudo-second-order model, indicating a chemisorption mechanism. The thermodynamic assessment indicated spontaneous and endothermic adsorption, with decreased randomness at the solid–liquid interface. The experiment revealed that a 0.1 M HCl solution was the most effective regenerative agent. Full article
Show Figures

Figure 1

14 pages, 890 KiB  
Review
Nitric Oxide (NO) Synthase Inhibitors: Potential Candidates for the Treatment of Anxiety Disorders?
by Nikolaos Pitsikas
Molecules 2024, 29(6), 1411; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061411 - 21 Mar 2024
Viewed by 558
Abstract
Close to 19% of the world population suffers from anxiety. Current medications for this chronic mental disorder have improved treatment over the last half century or more, but the newer anxiolytics have proved disappointing, and enormous challenges remain. Nitric oxide (NO), an intra- [...] Read more.
Close to 19% of the world population suffers from anxiety. Current medications for this chronic mental disorder have improved treatment over the last half century or more, but the newer anxiolytics have proved disappointing, and enormous challenges remain. Nitric oxide (NO), an intra- and inter-cellular messenger in the brain, is involved in the pathogenesis of anxiety. In particular, excessive NO production might contribute to its pathology. This implies that it might be useful to reduce nitrergic activity; therefore, molecules aiming to downregulate NO production such as NO synthase inhibitors (NOSIs) might be candidates. Here, it was intended to critically review advances in research on these emerging molecules for the treatment of anxiety disorders. Current assessment indicates that, although NOSIs are implicated in anxiety, their potential anti-anxiety action remains to be established. Full article
(This article belongs to the Special Issue Nitric Oxide Modulators in Health and Disease II)
Show Figures

Figure 1

14 pages, 2213 KiB  
Article
Preparation and Support Effect of Graphdiyne Nanotubes with Abundant Cu Quantum Dots
by Yan Lv, Wenzhou Wang, Zhangwei Li and Fucang Liang
Molecules 2024, 29(6), 1410; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061410 - 21 Mar 2024
Viewed by 523
Abstract
Graphdiyne (GDY) is considered a very attractive support for metal nanocatalysts due to its unique structure and superior properties. The metal–GDY interaction can significantly affect the performance of catalysts. Herein, GDY nanotubes abundant in in situ formed Cu quantum dots (QDs) (Cu-GDYNT) are [...] Read more.
Graphdiyne (GDY) is considered a very attractive support for metal nanocatalysts due to its unique structure and superior properties. The metal–GDY interaction can significantly affect the performance of catalysts. Herein, GDY nanotubes abundant in in situ formed Cu quantum dots (QDs) (Cu-GDYNT) are prepared using the electrospun polyacrylonitrile nanofibers collected on the surface of electrolytic Cu foil as templates. The diameter of the Cu-GDYNT is controllable and the uniform size of the embedded Cu QDs is about 2.2 nm. And then, the uniformly dispersed and highly active supported catalysts of ruthenium nanoparticles (Rux/Cu-GDYNT) are produced using the Cu-GDYNT as the support. Among them, the Ru3/Cu-GDYNT exhibit outstanding HER performance at all pH levels. Only 17, 67 and 83 mV overpotential is required to reach a current density of 10 mA cm−2 in 1.0 M KOH, 0.5 M H2SO4 and 1.0 M neutral PBS solutions, respectively. The sample exhibits 3000 CV cycle stability and 20 h continuous electrolysis without performance degradation in an alkaline medium. This work provides a new idea for constructing the GDY-supported metal nanocatalysts. Full article
(This article belongs to the Special Issue Advanced Carbon Nanomaterials and Their Applications)
Show Figures

Figure 1

47 pages, 23957 KiB  
Review
Organotransition Metal Chemistry of Terpenes: Syntheses, Structures, Reactivity and Molecular Rearrangements
by Michael J. McGlinchey
Molecules 2024, 29(6), 1409; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061409 - 21 Mar 2024
Viewed by 685
Abstract
The impact of organometallic chemistry on the terpene field only really blossomed in the 1960s and 1970s with the realisation that carbon–carbon bond formation under mild conditions could be achieved by using nickel or iron carbonyls as synthetic reagents. Concomitantly, the development of [...] Read more.
The impact of organometallic chemistry on the terpene field only really blossomed in the 1960s and 1970s with the realisation that carbon–carbon bond formation under mild conditions could be achieved by using nickel or iron carbonyls as synthetic reagents. Concomitantly, the development of palladium derivatives capable of the controlled coupling of isoprene units attracted the attention of numerous highly talented researchers, including future Nobel laureates. We discuss briefly how early work on the syntheses of simple monoterpenes soon progressed to sesquiterpenes and diterpenes of increasing complexity, such as humulene, flexibilene, vitamin A, or pheromones of commercial value, in particular those used in perfumery (muscone, lavandulol), or grandisol and red scale pheromone as replacements for harmful pesticides. As the field progressed, there has been more emphasis on developing organometallic routes to enantiopure rather than racemic products, as well as gaining precise mechanistic data on the transformations, notably the course of metal-promoted molecular rearrangements that have long been a feature of terpene chemistry. We note the impact of the enormously enhanced analytical techniques, high-field NMR spectroscopy and X-ray crystallography, and their use to re-examine the originally proposed structures of terpenes and their organometallic derivatives. Finally, we highlight the very recent ground-breaking use of the crystalline sponge method to acquire structural data on low-melting or volatile terpenes. The literature cited herein covers the period 1959 to 2023. Full article
Show Figures

Figure 1

45 pages, 10444 KiB  
Review
Asymmetric α-Fluoroalkyl-α-Amino Acids: Recent Advances in Their Synthesis and Applications
by Nathan Picois, Yazid Boutahri, Pierre Milbeo, Chiara Zanato, Nathalie Lensen, Grégory Chaume and Thierry Brigaud
Molecules 2024, 29(6), 1408; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061408 - 21 Mar 2024
Viewed by 627
Abstract
Due to the specific properties provided by fluorine atoms to biomolecules, amino acids with fluorinated side chains are of great interest for medicinal chemistry and chemical biology. Among them, α-fluoroalkyl-α-amino acids constitute a unique class of compounds. In this review, we outline the [...] Read more.
Due to the specific properties provided by fluorine atoms to biomolecules, amino acids with fluorinated side chains are of great interest for medicinal chemistry and chemical biology. Among them, α-fluoroalkyl-α-amino acids constitute a unique class of compounds. In this review, we outline the strategies adopted for their syntheses in enantiopure or enantioenriched forms and their incorporation into peptides. We then describe the consequences of the introduction of fluorine atoms in these compounds for the modulation of their hydrophobicity and the control of their conformation. Emerging applications are presented in the areas of enzyme inhibition, medicinal chemistry, hydrolytic stability of peptides, antimicrobial peptides, PET, and 19F NMR probes. Full article
(This article belongs to the Special Issue Insights for Organofluorine Chemistry – 2nd Edition)
Show Figures

Graphical abstract

30 pages, 15263 KiB  
Article
Discovery of Novel 4-Hydroxyquinazoline Derivatives: In Silico, In Vivo and In Vitro Studies Using Primary PARPi-Resistant Cell Lines
by Lijie Zhu, Binzhuo Liu, Feng Jin, Weilong Cao, Guangzhao Xu, Xinwei Zhang, Peng Peng, Dingding Gao, Bin Wang and Kairui Feng
Molecules 2024, 29(6), 1407; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061407 - 21 Mar 2024
Viewed by 608
Abstract
A series of novel 4-Hydroxyquinazoline derivatives were designed and synthesized to enhance sensitivity in primary PARPi-resistant cells. Among them, the compound B1 has been found to have superior cytotoxicity in primary PARPi-resistant HCT-15 and HCC1937 cell lines, and dose-dependently suppressed the intracellular PAR [...] Read more.
A series of novel 4-Hydroxyquinazoline derivatives were designed and synthesized to enhance sensitivity in primary PARPi-resistant cells. Among them, the compound B1 has been found to have superior cytotoxicity in primary PARPi-resistant HCT-15 and HCC1937 cell lines, and dose-dependently suppressed the intracellular PAR formation and enhanced the γH2AX aggregation. Mechanistic study showed that B1 stimulated the formation of intracellular ROS and the depolarization of the mitochondrial membrane, which could increase apoptosis and cytotoxicity. An in vivo study showed that B1 significantly suppressed tumor growth at a dose of 25 mg/kg, and an acute toxicity study confirmed its safety. Molecular docking and dynamics simulations revealed that hydrogen bonding between B1 and ASP766 may be helpful to enhance anti-drug resistance ability. This study suggests that B1 is a potent PARP inhibitor that can overcome PARPi resistance and deserves further investigation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

16 pages, 7206 KiB  
Article
Design, Synthesis, and Biological Evaluation of Novel Coumarin Analogs Targeted against SARS-CoV-2
by Kirti Sharma, Manjinder Singh, Pratibha Sharma, Sumesh C. Sharma, Somdutt Mujwar, Mohit Kapoor, Krishna Kumar Mishra and Tanveer A. Wani
Molecules 2024, 29(6), 1406; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061406 - 21 Mar 2024
Viewed by 769
Abstract
SARS-CoV, an RNA virus, is contagious and displays a remarkable degree of adaptability, resulting in intricate disease presentations marked by frequent genetic mutations that can ultimately give rise to drug resistance. Targeting its viral replication cycle could be a potential therapeutic option to [...] Read more.
SARS-CoV, an RNA virus, is contagious and displays a remarkable degree of adaptability, resulting in intricate disease presentations marked by frequent genetic mutations that can ultimately give rise to drug resistance. Targeting its viral replication cycle could be a potential therapeutic option to counter its viral growth in the human body leading to the severe infectious stage. The Mpro of SARS-CoV-2 is a promising target for therapeutic development as it is crucial for viral transcription and replication. The derivatives of β-diketone and coumarin have already been reported for their antiviral potential and, thus, are considered as a potential scaffold in the current study for the computational design of potential analogs for targeting the viral replication of SARS-CoV-2. In our study, we used novel diketone-hinged coumarin derivatives against the SARS-CoV-2 MPro to develop a broad-spectrum antiviral agent targeting SARS-CoV-2. Through an analysis of pharmacokinetics and docking studies, we identified a list of the top 10 compounds that demonstrated effectiveness in inhibiting the SARS-CoV-2 MPro virus. On the basis of the pharmacokinetics and docking analyses, the top 5 novel coumarin analogs were synthesized and characterized. The thermodynamic stability of compounds KS82 and KS94 was confirmed by their molecular dynamics, and the stability of the simulated system indicated their inhibitory nature. Molecules KS82 and KS94 were further evaluated for their anti-viral potential using Vero E6 cells followed by RT-PCR assay against SARS-CoV-2. The test compound KS82 was the most active with the potential to inhibit SARS-CoV-2 replication in Vero E6 cells. These data indicate that KS82 prevents the attack of the virus and emerges as the primary candidate with promising antiviral properties. Full article
Show Figures

Figure 1

18 pages, 11094 KiB  
Article
Composite of KLVFF-Transthyretin-Penetratin and Manganese Dioxide Nanoclusters: A Multifunctional Agent against Alzheimer’s β-Amyloid Fibrillogenesis
by Haitao Lan, Ying Wang, Wei Liu, Xiaoyan Dong and Yan Sun
Molecules 2024, 29(6), 1405; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061405 - 21 Mar 2024
Viewed by 840
Abstract
Design of amyloid β-protein (Aβ) inhibitors is considered an effective strategy for the prevention and treatment of Alzheimer’s disease (AD). However, the limited blood–brain barrier (BBB) penetration and poor Aβ-targeting capability restricts the therapeutic efficiency of candidate drugs. Herein, we have proposed to [...] Read more.
Design of amyloid β-protein (Aβ) inhibitors is considered an effective strategy for the prevention and treatment of Alzheimer’s disease (AD). However, the limited blood–brain barrier (BBB) penetration and poor Aβ-targeting capability restricts the therapeutic efficiency of candidate drugs. Herein, we have proposed to engineer transthyretin (TTR) by fusion of the Aβ-targeting peptide KLVFF and cell-penetrating peptide Penetratin to TTR, and derived a fusion protein, KLVFF-TTR-Penetratin (KTP). Moreover, to introduce the scavenging activity for reactive oxygen species (ROS), a nanocomposite of KTP and manganese dioxide nanoclusters (KTP@MnO2) was fabricated by biomineralization. Results revealed that KTP@MnO2 demonstrated significantly enhanced inhibition on Aβ aggregation as compared to TTR. The inhibitory effect was increased from 18%, 33%, and 49% (10, 25, and 50 μg/mL TTR, respectively) to 52%, 81%, and 100% (10, 25, and 50 μg/mL KTP@MnO2). In addition, KTP@MnO2 could penetrate the BBB and target amyloid plaques. Moreover, multiple ROS, including hydroxyl radicals, superoxide radicals, hydrogen peroxide, and Aβ-induced-ROS, which cannot be scavenged by TTR, were scavenged by KTP@MnO2, thus resulting in the mitigation of cellular oxidative damages. More importantly, cell culture and in vivo experiments with AD nematodes indicated that KTP@MnO2 at 50 μg/mL increased the viability of Aβ-treated cells from 66% to more than 95%, and completely cleared amyloid plaques in AD nematodes and extended their lifespan by 7 d. Overall, despite critical aspects such as the stability, metabolic distribution, long-term biotoxicity, and immunogenicity of the nanocomposites in mammalian models remaining to be investigated, this work has demonstrated the multifunctionality of KTP@MnO2 for targeting Aβ in vivo, and provided new insights into the design of multifunctional nanocomposites of protein–metal clusters against AD. Full article
Show Figures

Graphical abstract

17 pages, 3246 KiB  
Article
An In Vitro Examination of Whether Kratom Extracts Enhance the Cytotoxicity of Low-Dose Doxorubicin against A549 Human Lung Cancer Cells
by Asep Bayu, Siti Irma Rahmawati, Firmansyah Karim, Jonathan Ardhianto Panggabean, Dasilva Primarindu Nuswantari, Dwi Wahyu Indriani, Peni Ahmadi, Rendi Witular, Ni Luh Putu Indi Dharmayanti and Masteria Yunovilsa Putra
Molecules 2024, 29(6), 1404; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061404 - 21 Mar 2024
Viewed by 965
Abstract
Doxorubicin is an effective chemotherapeutic agent in the treatment of solid hematological and non-hematological carcinoma. However, its long-term usage could result in side effects, such as cardiomyopathy, chronic heart failure, neurotoxicity and cancer cell resistance. In this study, we reported the sensitivity enhancement [...] Read more.
Doxorubicin is an effective chemotherapeutic agent in the treatment of solid hematological and non-hematological carcinoma. However, its long-term usage could result in side effects, such as cardiomyopathy, chronic heart failure, neurotoxicity and cancer cell resistance. In this study, we reported the sensitivity enhancement of A549 human lung cancer cells on doxorubicin at a low dose (0.1 ppm) in combination with 10–60 ppm of crude and alkaloid extracts derived from the leaves of Kratom (Mitragyna speciosa (Korth.) Havil. Rubiaceae). A549 cancer cell lines were insensitive to the crude extract containing low mitragynine (MG) (4–5%), while these cells were moderately inhibited by the alkaloid extract containing 40–45% MG (IC50 of 48–55 ppm). The alkaloid extract was found to inhibit A549 cancer cells via apoptosis as suggested by the higher relative fluorescence intensity with Annexin compared to that in propidium iodide (PI), i.e., a positive Annexin and a negative PI. The combination of crude extract and doxorubicin sensitized A549 cancer cells to doxorubicin by 1.3 to 2.4 times, while the combination with the alkaloid induced a 2.6- to 3.4-fold increase in sensitivity. The calculated combination index (CI) for doxorubicin with the crude and alkaloid extracts was 0.6 and 0.3, respectively, showing potential synergistic combinations to reduce the level of dosage of doxorubicin used in chemotherapy. In addition, the synergistic enhancement effect of crude extract on the cytotoxic activity of doxorubicin provides insights into the plausibility of non-alkaloids to influence the biological activities of Kratom. Full article
(This article belongs to the Special Issue Natural Products Based Anticancer Drugs)
Show Figures

Figure 1

16 pages, 4130 KiB  
Article
Enzymatic Hydrolysis Optimization of Yak Whey Protein Concentrates and Bioactivity Evaluation of the Ultrafiltered Peptide Fractions
by Lingshen Hao, Xuefei Li, Baotang Zhao, Xuemei Song, Yan Zhang and Qi Liang
Molecules 2024, 29(6), 1403; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061403 - 21 Mar 2024
Viewed by 547
Abstract
Yak whey protein concentrates (YWPCs) have good functional properties, but there is still a gap in the study of their peptides. In this study, peptides were obtained by enzymatic hydrolysis, and the bioactivity of each ultrafiltration fraction was evaluated using an optimal process. [...] Read more.
Yak whey protein concentrates (YWPCs) have good functional properties, but there is still a gap in the study of their peptides. In this study, peptides were obtained by enzymatic hydrolysis, and the bioactivity of each ultrafiltration fraction was evaluated using an optimal process. YWPCs were isolated and purified from yak milk as the raw material. Alkaline protease, trypsin, and papain were used to hydrolyze YWPCs. The protease with the highest degree of hydrolysis (DH) and peptide concentration was selected as the most suitable enzyme. The effects of pH, temperature, time, and the enzyme-to-substrate ratio (E/S) on the DH and peptide concentration were investigated, and response surface methodology was utilized to optimize the hydrolysis process. The hydrolysate was separated using ultrafiltration membranes with molecular weight cut-offs of 10 kDa, 5 kDa, 3 kDa, and 1 kDa. The bioactivity of each ultrafiltration component was analyzed, including the inhibition rates of α-amylase and xanthine oxidase (XOD) activities and the scavenging rates of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radicals. The results indicated that alkaline protease was the best enzyme for hydrolyzing YWPCs. The peptide concentration in the YWPC hydrolysate was the highest (17.21 mg/mL) at a pH of 8 and a concentration of 7500 U/g, after 2.5 h at 62 °C. The enzymatic hydrolysate was ultrafiltered to yield four peptide fractions, of which the <1 kDa peptides exhibited the highest α-amylase inhibitory activity (22.06%), XOD inhibitory activity (17.15%), and ABTS cationic free radical scavenging rate (69.55%). This demonstrates the potential of YWPC hydrolyzed peptides for hypoglycemic, uric acid-lowering, and antioxidant applications, providing a theoretical basis for the high-value utilization of YWPCs. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Enhancing the Luminescence of La3Mg2NbO9:Mn4+ Phosphor through H3BO3 and Charge Compensator Co-Doping for Use in Plant Growth Lamps
by Zaifa Yang, Ruoxuan Wang, Shuyu Yang, Hongxia Bu and Jingfen Zhao
Molecules 2024, 29(6), 1402; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061402 - 21 Mar 2024
Viewed by 552
Abstract
Mn4+-doped red-light-emitting phosphors have become a research hotspot that can effectively enhance photosynthesis and promote morphogenesis in plants. Herein, the red phosphor La3Mg2NbO9:Mn4+ was synthesized through the solid-state reaction method. The effects of adding [...] Read more.
Mn4+-doped red-light-emitting phosphors have become a research hotspot that can effectively enhance photosynthesis and promote morphogenesis in plants. Herein, the red phosphor La3Mg2NbO9:Mn4+ was synthesized through the solid-state reaction method. The effects of adding H3BO3 and a charge compensator R+ (R = Li, Na, K) on the crystal structure, morphology, quantum efficiency, and luminous performance of the La3Mg2NbO9:Mn4+ phosphor were systematically analyzed, respectively. The results showed that adding H3BO3 flux and a charge compensator improved the quantum efficiency and luminescence intensity. The emission intensity of the phosphor was enhanced about 5.9 times when Li+ was used as the charge compensator, while it was enhanced about 240% with the addition of H3BO3 flux. Remarkably, it was also found that the addition of H3BO3 flux and a charge compensator simultaneously improved the thermal stability at 423 K from 47.3% to 68.9%. The prototype red LED fabricated using the La3Mg2NbO9:Mn4+,H3BO3,Li+ phosphor exhibited a perfect overlap with the phytochrome absorption band for plant growth. All of these results indicate that the La3Mg2NbO9:Mn4+,H3BO3,Li+ phosphor has great potential for use in agricultural plant lighting. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials)
Show Figures

Figure 1

13 pages, 1896 KiB  
Article
Vitamin D Mitigates Hepatic Fat Accumulation and Inflammation and Increases SIRT1/AMPK Expression in AML-12 Hepatocytes
by Eugene Chang
Molecules 2024, 29(6), 1401; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061401 - 21 Mar 2024
Viewed by 752
Abstract
Emerging evidence has demonstrated a strong correlation between vitamin D status and fatty liver disease. Aberrant hepatic fat infiltration contributes to oxidant overproduction, promoting metabolic dysfunction, and inflammatory responses. Vitamin D supplementation might be a good strategy for reducing hepatic lipid accumulation and [...] Read more.
Emerging evidence has demonstrated a strong correlation between vitamin D status and fatty liver disease. Aberrant hepatic fat infiltration contributes to oxidant overproduction, promoting metabolic dysfunction, and inflammatory responses. Vitamin D supplementation might be a good strategy for reducing hepatic lipid accumulation and inflammation in non-alcoholic fatty liver disease and its associated diseases. This study aimed to investigate the role of the most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), in hepatic fat accumulation and inflammation in palmitic acid (PA)-treated AML-12 hepatocytes. The results indicated that treatment with 1,25(OH)2D significantly decreased triglyceride contents, lipid peroxidation, and cellular damage. In addition, mRNA levels of apoptosis-associated speck-like CARD-domain protein (ASC), thioredoxin-interacting protein (TXNIP), NOD-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1β (IL-1β) involved in the NLRP3 inflammasome accompanied by caspase-1 activity and IL-1β expression were significantly suppressed by 1,25(OH)2D in PA-treated hepatocytes. Moreover, upon PA exposure, 1,25(OH)2D-incubated AML-12 hepatocytes showed higher sirtulin 1 (SIRT1) expression and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. A SIRT1 inhibitor alleviated the beneficial effects of 1,25(OH)2D on PA-induced hepatic fat deposition, IL-1β expression, and caspase-1 activity. These results suggest that the favorable effects of 1,25(OH)2D on hepatic fat accumulation and inflammation may be, at least in part, associated with the SIRT1. Full article
Show Figures

Figure 1

16 pages, 8611 KiB  
Article
Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells
by Hao Ren, Qi Gao, Liangmeng Ni, Mengfu Su, Shaowen Rong, Shushu Liu, Yanhang Zhong and Zhijia Liu
Molecules 2024, 29(6), 1400; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061400 - 21 Mar 2024
Viewed by 605
Abstract
To investigate the influence of deashing on fusion characteristics, a combined method of water and acid washing with different sequences (water washing followed by acid washing, and acid washing followed by water washing) was used to treat the biochar of bamboo shoot shells [...] Read more.
To investigate the influence of deashing on fusion characteristics, a combined method of water and acid washing with different sequences (water washing followed by acid washing, and acid washing followed by water washing) was used to treat the biochar of bamboo shoot shells (BBSSs). The results show that deashing decreased the K content of the biochar from 50.3% to 1.08% but increased the Si content from 33.48% to 89.15%. The formation of silicates and aluminosilicates from alkali metal oxides with silicon was an inevitable result of ash phase transformation at the high temperatures used to improve the fusion temperature (>1450 °C). The thermochemical behavior of ash mainly occurs at 1000 °C. The deashing treatment significantly reduced the reaction intensity during the high-temperature process. This significantly increased the thermal stability of the ash. The adjustment of the washing sequence had a slight impact on the chemical compositions, but the differences in ash micromorphology were obvious. Deashing treatments with different washing sequences can significantly improve ash fusion properties effectively and reduce the risk of scaling, slagging, and corrosion. This study provides a new and reasonable strategy for the deashing of biochar to commercially utilize bamboo shoot shell resources. Full article
Show Figures

Figure 1

10 pages, 1471 KiB  
Article
A Sustainable Synthetic Approach to Tacrine and Cholinesterase Inhibitors in Deep Eutectic Solvents under Aerobic Conditions
by Luciana Cicco, Filippo Maria Perna, Vito Capriati and Paola Vitale
Molecules 2024, 29(6), 1399; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061399 - 21 Mar 2024
Viewed by 683
Abstract
An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield [...] Read more.
An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield loss and extends successfully to tacrine derivatives with reduced hepatotoxicity. Particularly notable is the synthesis of novel triazole-based derivatives, yielding 90–95%, by integrating an in situ preparation of aryl azides in DESs with N-propargyl-substituted tacrine derivatives. Quantitative metrics validate the green aspects of the reported drug development processes. Full article
(This article belongs to the Special Issue Organic Reactions in Deep Eutectic Solvents)
Show Figures

Scheme 1

9 pages, 808 KiB  
Article
A Chiral-LC-MS Method for the Simultaneous Quantification of Short-Chain Fatty Acids and D/L-Lactate in the Ruminal Fluid of Dairy Cows
by Zhiqian Liu, S. Richard O. Williams, Joe L. Jacobs, Aodan S. O. Neachtain and Simone Rochfort
Molecules 2024, 29(6), 1398; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061398 - 21 Mar 2024
Viewed by 546
Abstract
Short-chain fatty acids (SCFA) and lactate in ruminal fluid are products resulting from the microbial fermentation of substrates and can be used to reflect the composition and activity of the ruminal microbiome. Determination of SCFA and D-/L-lactate in ruminal fluid currently requires two [...] Read more.
Short-chain fatty acids (SCFA) and lactate in ruminal fluid are products resulting from the microbial fermentation of substrates and can be used to reflect the composition and activity of the ruminal microbiome. Determination of SCFA and D-/L-lactate in ruminal fluid currently requires two separate protocols, which is time-consuming and costly. In this study, we have optimised and validated a simple and unified 3-nitrophenylhydrazine (3-NPH) derivatisation protocol and a 20 min chiral-LC-MS method for the simultaneous quantification of all SCFA and D- and L-lactate in ruminal fluid. This method, which requires no sample pretreatment or purification shows adequate sensitivity (limit of detection (LOD): 0.01 µg/mL), satisfactory accuracy (recovery: 88–103%), and excellent reproducibility (relative standard deviation (RSD) for repeated analyses < 3% for most analytes). The application of this method to a cohort of 24 animals allowed us to reveal a large inter-cow variation in ruminal SCFA and lactate level, the concentration range for each species, the widespread correlation between different SCFA, and the strong correlation between D- and L-lactate. Full article
(This article belongs to the Special Issue Advances in Chiral Analysis)
Show Figures

Figure 1

19 pages, 6753 KiB  
Article
Hybrid Peptide-Alkoxyamine Drugs: A Strategy for the Development of a New Family of Antiplasmodial Drugs
by Ange W. Embo-Ibouanga, Michel Nguyen, Lucie Paloque, Mathilde Coustets, Jean-Patrick Joly, Jean-Michel Augereau, Nicolas Vanthuyne, Raphaël Bikanga, Naomie Coquin, Anne Robert, Gérard Audran, Jérôme Boissier, Philippe Mellet, Françoise Benoit-Vical and Sylvain R. A. Marque
Molecules 2024, 29(6), 1397; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061397 - 21 Mar 2024
Viewed by 695
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as [...] Read more.
The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite’s food vacuoles, our approach is summarized as “to dig its grave with its fork”. However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity. Full article
(This article belongs to the Special Issue Chemistry of Antiparasitic Drugs)
Show Figures

Figure 1

12 pages, 2672 KiB  
Article
Characterisation of Modular Polyketide Synthases Designed to Make Pentaene Analogues of Amphotericin B
by Yuhao Song, Mark Hogan, Jimmy Muldoon, Paul Evans and Patrick Caffrey
Molecules 2024, 29(6), 1396; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061396 - 21 Mar 2024
Viewed by 566
Abstract
Glycosylated polyene macrolides are important antifungal agents that are produced by many actinomycete species. Development of new polyenes may deliver improved antibiotics. Here, Streptomyces nodosus was genetically re-programmed to synthesise pentaene analogues of the heptaene amphotericin B. These pentaenes are of interest as [...] Read more.
Glycosylated polyene macrolides are important antifungal agents that are produced by many actinomycete species. Development of new polyenes may deliver improved antibiotics. Here, Streptomyces nodosus was genetically re-programmed to synthesise pentaene analogues of the heptaene amphotericin B. These pentaenes are of interest as surrogate substrates for enzymes catalysing unusual, late-stage biosynthetic modifications. The previous deletion of amphotericin polyketide synthase modules 5 and 6 generated S. nodosus M57, which produces an inactive pentaene. Here, the chain-terminating thioesterase was fused to module 16 to generate strain M57-16TE, in which cycles 5, 6, 17 and 18 are eliminated from the biosynthetic pathway. Another variant of M57 was obtained by replacing modules 15, 16 and 17 with a single 15–17 hybrid module. This gave strain M57-1517, in which cycles 5, 6, 15 and 16 are deleted. M57-16TE and M57-1517 gave reduced pentaene yields. Only M57-1517 delivered its predicted full-length pentaene macrolactone in low amounts. For both mutants, the major pentaenes were intermediates released from modules 10, 11 and 12. Longer pentaene chains were unstable. The novel pentaenes were not glycosylated and were not active against Candida albicans. However, random mutagenesis and screening may yet deliver new antifungal producers from the M57-16TE and M57-1517 strains. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

11 pages, 4961 KiB  
Article
Anticancer Potential and Safety Profile of β-Lapachone In Vitro
by Karina Motta Melo Lima, Luana França Calandrini de Azevedo, Jorge Dores Rissino, Valdicley Vieira Vale, Erica Vanessa Souza Costa, Maria Fani Dolabela, Cleusa Yoshiko Nagamachi and Julio Cesar Pieczarka
Molecules 2024, 29(6), 1395; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061395 - 21 Mar 2024
Viewed by 597
Abstract
Ipê is a plant of the Bignoniaceae family. Among the compounds extracted from this tree, lapachol is notable because its structural modification allows the production of β-lapachone, which has anticancer properties. The objective of this work was to test this hypothesis at a [...] Read more.
Ipê is a plant of the Bignoniaceae family. Among the compounds extracted from this tree, lapachol is notable because its structural modification allows the production of β-lapachone, which has anticancer properties. The objective of this work was to test this hypothesis at a cellular level in vitro and assess its potential safety for use. The following tests were performed: MTT cell viability assay, apoptotic index determination, comet assay, and micronucleus test. The results showed that β-lapachone had a high cytotoxic capacity for all cell lines tested: ACP02 (gastric adenocarcinoma cells), MCF7 (breast carcinoma cells), HCT116 (colon cancer cells) and HEPG2 (hepatocellular carcinoma cells). Regarding genotoxicity, the exposure of cells to sublethal doses of β-lapachone induced DNA damage (assessed by the comet assay) and nuclear abnormalities, such as nucleoplasmic bridges and nuclear buds (assessed by the micronucleus test). All tested cell lines responded similarly to β-lapachone, except for ACP02 cells, which were relatively resistant to the cytotoxic effects of the compound in the MTT test. Our results collectively indicate that although β-lapachone showed antiproliferative activity against cancer cell lines, it also caused harmful effects in these cells, suggesting that the use of β-lapachone in treating cancer should be carried out with caution. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Graphical abstract

16 pages, 3530 KiB  
Article
Preparation and Characterization of Pullulan-Based Packaging Paper for Fruit Preservation
by Hang Dong and Zhongjian Tian
Molecules 2024, 29(6), 1394; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061394 - 21 Mar 2024
Viewed by 612
Abstract
Improving the shelf lives of fruits is challenging. The biodegradable polysaccharide pullulan exhibits excellent film-forming ability, gas barrier performance, and natural decomposability, making it an optimal material for fruit preservation. To overcome problems of high cost and film porosity of existing packaging technologies, [...] Read more.
Improving the shelf lives of fruits is challenging. The biodegradable polysaccharide pullulan exhibits excellent film-forming ability, gas barrier performance, and natural decomposability, making it an optimal material for fruit preservation. To overcome problems of high cost and film porosity of existing packaging technologies, we aimed to develop pullulan-based packaging paper to enhance the shelf lives of fruits. A thin paper coating comprising a mixture of 15 wt.% pullulan solution at various standard viscosities (75.6, 77.8, and 108.5 mPa·s) with tea polyphenols (15:2) and/or vitamin C (150:1) improved the oxygen transmission rate (120–160 cm3 m−2·24 h·0.1 MPa), water vapor transmission rate (<5.44 g·mm−1 m−2·h·kPa), maximum free radical clearance rate (>87%), and antibacterial properties of base packaging paper. Grapes wrapped with these pullulan-based papers exhibited less weight loss (>4.41%) and improved hardness (>16.4%) after 10 days of storage compared to those of control grapes (wrapped in untreated/base paper). Grapes wrapped with pullulan-based paper had >12.6 wt.% total soluble solids, >1.5 mg/g soluble protein, >0.44 wt.% titratable acidity, and ≥4.5 mg 100 g−1 ascorbic acid. Thus, pullulan-based paper may prolong the shelf life of grapes with operational convenience, offering immense value for fruit preservation. Full article
(This article belongs to the Special Issue Polymer Composites: Chemical Synthesis and Applications)
Show Figures

Graphical abstract

14 pages, 3762 KiB  
Article
Broadening the Voltage Window of 3D-Printed MXene Micro-Supercapacitors with a Hybridized Electrolyte
by Xin Jiang, Haowen Jia, Xuan Chen, Jiajia Li, Yanling Chen, Jin Jia, Guangzhen Zhao, Lianghao Yu, Guang Zhu and Yuanyuan Zhu
Molecules 2024, 29(6), 1393; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061393 - 20 Mar 2024
Viewed by 550
Abstract
The burgeoning demand for miniaturized energy storage devices compatible with the miniaturization trend of electronic technologies necessitates advancements in micro-supercapacitors (MSCs) that promise safety, cost efficiency, and high-speed charging capabilities. However, conventional aqueous MSCs face a significant limitation due to their inherently narrow [...] Read more.
The burgeoning demand for miniaturized energy storage devices compatible with the miniaturization trend of electronic technologies necessitates advancements in micro-supercapacitors (MSCs) that promise safety, cost efficiency, and high-speed charging capabilities. However, conventional aqueous MSCs face a significant limitation due to their inherently narrow electrochemical potential window, which restricts their operational voltage and energy density compared to their organic and ionic liquid counterparts. In this study, we introduce an innovative aqueous NaCl/H2O/EG hybrid gel electrolyte (comprising common salt (NaCl), H2O, ethylene glycol (EG), and SiO2) for Ti3C2Tx MXene MSCs that substantially widens the voltage window to 1.6 V, a notable improvement over traditional aqueous system. By integrating the hybrid electrolyte with 3D-printed MXene electrodes, we realized MSCs with remarkable areal capacitance (1.51 F cm−2) and energy density (675 µWh cm−2), significantly surpassing existing benchmarks for aqueous MSCs. The strategic formulation of the hybrid electrolyte—a low-concentration NaCl solution with EG—ensures both economic and environmental viability while enabling enhanced electrochemical performance. Furthermore, the MSCs fabricated via 3D printing technology exhibit exceptional flexibility and are suitable for modular device integration, offering a promising avenue for the development of high-performance, sustainable energy storage devices. This advancement not only provides a tangible solution to the challenge of limited voltage windows in aqueous MXene MSCs but also sets a new precedent for the design of next-generation MSCs that align with the needs of an increasingly microdevice-centric world. Full article
(This article belongs to the Special Issue 2D Nanosheets and Their Nanohybrids)
Show Figures

Figure 1

21 pages, 11525 KiB  
Article
Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers
by Chunhou Li, Xican Li, Jingyuan Zeng, Rongxin Cai, Shaoman Chen, Ban Chen and Xiaojun Zhao
Molecules 2024, 29(6), 1392; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061392 - 20 Mar 2024
Viewed by 549
Abstract
Naodesheng Tablet (Naodesheng Pian), a traditional Chinese medicine formula for stroke treatment, is made up of five herbal medicines, i.e., Sanqi, Gegen, Honghua, Shanzha, and Chuanxiong. However, the current Pharmacopoeia quality-marker (Q-marker) system cannot detect possible adulteration. [...] Read more.
Naodesheng Tablet (Naodesheng Pian), a traditional Chinese medicine formula for stroke treatment, is made up of five herbal medicines, i.e., Sanqi, Gegen, Honghua, Shanzha, and Chuanxiong. However, the current Pharmacopoeia quality-marker (Q-marker) system cannot detect possible adulteration. Our study tried to use a new strategy, i.e., standards-library-dependent ultra-high-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap MS/MS) putative identification, to reconstruct the Q-marker system. Through the strategy, 30 isomers were successfully differentiated (such as 2′-hydroxygenistein, luteolin, and kaempferol; ginsenoside Rg2 and ginsenoside Rg3; ginsenoside Rf and ginsenoside Rg1). In particular, 11 compounds were unexpectedly found in Naodesheng, including 2′-hydroxygenistein, 7,4′-dihydroxyflavone, pectolinarigenin, 7-methoxy-4′-hydroxyisoflavone, scoparone, matrine, 3,3′,4′,5,6,7,8-heptamethoxyflavone, 5-hydroxyflavone, diosgenin, chloesteryl acetate, and (+)-4-cholesten-3-one. In total, 68 compounds were putatively identified and fully elucidated for their MS spectra. Subsequently, relevant compounds were further investigated using UV-vis scanning experiments, semi-quantitative analysis, and quantum chemical calculation. Finally, five adulterated Naodesheng Tablets were used for validation experiments. The experiment successfully detected five adulterated ones via a lower-version LC-MS analysis. On this basis, three new candidates (hydroxy safflor yellow A (HSYA), citric acid, and levistilide A), along with puerarin and notoginsenoside R1, are re-nominated as the Q-markers for LC-MS analysis. The LC-MS analysis of puerarin, notoginsenoside R1, HSYA, citric acid, and levistilide A can clearly detect adulteration regarding all five herbal medicines mentioned above. Therefore, the reconstructed Q-markers are described as a “perfect” quality control system to detect adulteration in Naodesheng and will offer a valuable recommendation for the Pharmacopoeia Commission. Full article
Show Figures

Figure 1

11 pages, 1586 KiB  
Article
Graphene Materials from Coke-like Wastes as Proactive Support of Nickel–Iron Electro-Catalysts for Water Splitting
by María González-Ingelmo, Victoria G. Rocha, Zoraida González, Uriel Sierra, Enrique Diaz Barriga and Patricia Álvarez
Molecules 2024, 29(6), 1391; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061391 - 20 Mar 2024
Viewed by 524
Abstract
Graphene materials, used as electrocatalyst support in green hydrogen production, contribute to increasing the efficiency and robustness of various systems. However, the preparation of a hybrid catalyst containing graphene materials from industrial wastes is still a challenge due to the heterogeneity of the [...] Read more.
Graphene materials, used as electrocatalyst support in green hydrogen production, contribute to increasing the efficiency and robustness of various systems. However, the preparation of a hybrid catalyst containing graphene materials from industrial wastes is still a challenge due to the heterogeneity of the waste. We report the synthesis of 3D electrodes using graphene oxides (GOs) from industrial waste (IW) prepared by immersion onto Toray carbon paper as a 3D support onto GO suspensions and electrodepositing NiFe layered double hydroxides (LDHs). Standard graphite was also used as the reference. The morphology of the two hybrid electrodes was determined by SEM, HRTEM, XPS. Although very similar in both, the sample containing graphene from IW (higher Csp3 hybridization in the graphene layer) has a NiFe phase with less crystallinity and larger presence of Fe2+ ions. These electrodes exhibited similar activity and stability as electrocatalysts of the oxygen evolution reaction (OER), demonstrating the proactive effect of the graphene into the 3D electrode even when this is prepared from heterogeneous industrial waste. Moreover, the defective graphenic structure of the waste GO enhances the reaction kinetics and improves the electron transfer rate, possibly due to the small differences in the electrodeposited NiFe LDH structure. Full article
Show Figures

Graphical abstract

15 pages, 3374 KiB  
Article
Neurotensin (8-13) and Neuromedin N Neuropeptides Radiolabelling with Copper-64 Produced on Solid or Liquid Targets
by Diana Cocioabă, Alexandra I. Fonseca, Radu Leonte, Ivanna Hrynchak, Roxana Tudoroiu-Cornoiu, Sergio J. C. do Carmo, Bogdan Burghelea, Simona Băruță, Ana Rita Almeida, Radu Șerban, Anca Dinischiotu, Antero J. Abrunhosa and Dana Niculae
Molecules 2024, 29(6), 1390; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061390 - 20 Mar 2024
Viewed by 655
Abstract
On the verge of a theranostic approach to personalised medicine, copper-64 is one of the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted the development of [...] Read more.
On the verge of a theranostic approach to personalised medicine, copper-64 is one of the emerging radioisotopes in nuclear medicine due to its exploitable nuclear and biochemical characteristics. The increased demand for copper-64 for preclinical and clinical studies has prompted the development of production routes. This research aims to compare the (p,n) reaction on nickel-64 solid versus liquid targets and evaluate the effectiveness of [64Cu]CuCl2 solutions prepared by the two routes. As new treatments for neurotensin receptor-overexpressing tumours have developed, copper-64 was used to radiolabel Neurotensin (8-13) and Neuromedin N. High-quality [64Cu]CuCl2 solutions were prepared using ACSI TR-19 and IBA Cyclone Kiube cyclotrons. The radiochemical purity after post-irradiation processing reached 99% (LT) and 99.99% (ST), respectively. The irradiation of a solid target with 11.8 MeV protons and 150 μAh led to 704 ± 84 MBq/μA (17.6 ± 2.1 GBq/batch at EOB). At the end of the purification process (1 h, 90.90% activity yield), the solution for peptide radiolabelling had a radioactive concentration of 1340.4 ± 70.1 MBq/mL (n.d.c.). The irradiation of a liquid target with 16.9 MeV protons and 230 μAh resulted in 3.7 ± 0.2 GBq/batch at EOB, which corresponds to an experimental production yield of 6.89 GBq.cm3/(g.µA)sat. Benefiting from a shorter purification process (40 min), the activity yielded 90.87%, while the radioactive concentration of the radiolabelling solution was lower (492 MBq/mL, n.d.c.). The [64Cu]CuCl2 solutions were successfully used for the radiolabelling of DOTA-NT(8-13) and DOTA-NN neuropeptides, resulting in a high RCP (>99%) and high molar activity (27.2 and 26.4 GBq/μmol for LT route compared to 45 and 52 GBq/μmol for ST route, respectively). The strong interaction between the [64Cu]Cu-DOTA-NT(8-13) and the colon cancerous cell lines HT29 and HCT116 proved that the specificity for NTR had not been altered, as shown by the uptake and retention data. Full article
(This article belongs to the Special Issue Advance in Radiochemistry)
Show Figures

Figure 1

13 pages, 1594 KiB  
Article
Unified Synthesis and Biological Evaluation of Makaluvamine J and Its Analogs
by Yo Kiichi, Koshiro Fukuoka, Anna Kitano, Koya Ishino and Naoyuki Kotoku
Molecules 2024, 29(6), 1389; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061389 - 20 Mar 2024
Viewed by 637
Abstract
Makaluvamine J, a pyrroloiminoquinone alkaloid of marine sponge origin, and its analogs were synthesized and assessed for their potential to develop as a novel and selective growth inhibitor targeting human pancreatic cancer PANC-1 cells. Ts-damirone B, a common precursor featuring a pyrroloiminoquinone core [...] Read more.
Makaluvamine J, a pyrroloiminoquinone alkaloid of marine sponge origin, and its analogs were synthesized and assessed for their potential to develop as a novel and selective growth inhibitor targeting human pancreatic cancer PANC-1 cells. Ts-damirone B, a common precursor featuring a pyrroloiminoquinone core structure, was synthesized through Bartoli indole synthesis and IBX-mediated oxidation. Late-stage diversification at N-5 and N-9 yielded makaluvamine J and several analogs. A structure–activity relationship (SAR) analysis highlighted the significance of the lipophilic side chain at N-9 for the growth inhibitory activity of PANC-1 cells. The modest alkyl group at N-5 was found to improve selectivity against other cancer cells. Among the prepared analogs, the tryptamine analog 24 showed potent and selective cytotoxicity (IC50 = 0.029 µM, selective index = 13.1), exceeding those of natural products. Full article
Show Figures

Figure 1

24 pages, 4011 KiB  
Review
Comprehensive Utilization Technology of Aronia melanocarpa
by Dongfang Shi, Jing Xu, Li Sheng and Kai Song
Molecules 2024, 29(6), 1388; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061388 - 20 Mar 2024
Viewed by 608
Abstract
Aronia melanocarpa fruit contains a variety of active ingredients, such as phenolic acids, anthocyanins, proanthocyanidins, etc. Relevant in vivo and in vitro studies have concluded that it has beneficial effects in terms of treating dyslipidemia, hypertension, glucose metabolism disorders, etc. This article discusses [...] Read more.
Aronia melanocarpa fruit contains a variety of active ingredients, such as phenolic acids, anthocyanins, proanthocyanidins, etc. Relevant in vivo and in vitro studies have concluded that it has beneficial effects in terms of treating dyslipidemia, hypertension, glucose metabolism disorders, etc. This article discusses the nutritional value and food processing of Aronia melanocarpa and reviews the chemical components of Aronia melanocarpa and the pharmacological activities of related substances in order to summarize the chemical characteristics of the fruit and its development prospects. The process optimization of juice production, the impact of antioxidant capacity, and the comprehensive utilization of pomace in feed are discussed. This article provides a reference for future comprehensive application research and product development of Aronia melanocarpa. Full article
Show Figures

Figure 1

12 pages, 3265 KiB  
Article
In Situ Hybridization Strategy Constructs Heterogeneous Interfaces to Form Electronically Modulated MoS2/FeS2 as the Anode for High-Performance Lithium-Ion Storage
by Dazhi Li, Changlong Sun, Zeqing Miao, Kesheng Gao, Zeyang Li, Wei Sun, Shengjing Guan, Xiaofei Qu and Zhenjiang Li
Molecules 2024, 29(6), 1387; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061387 - 20 Mar 2024
Viewed by 442
Abstract
The interfacial effect is important for anodes of transition metal dichalcogenides (TMDs) to achieve superior lithium-ion storage performance. In this paper, a MoS2/FeS2 heterojunction is synthesized by a simple hydrothermal reaction to construct the interface effect, and the heterostructure introduces [...] Read more.
The interfacial effect is important for anodes of transition metal dichalcogenides (TMDs) to achieve superior lithium-ion storage performance. In this paper, a MoS2/FeS2 heterojunction is synthesized by a simple hydrothermal reaction to construct the interface effect, and the heterostructure introduces an inherent electric field that accelerates the de-embedding process of lithium ions, improves the electron transfer capability, and effectively mitigates volume expansion. XPS analysis confirms evident chemical interaction between MoS2 and FeS2 via an interfacial covalent bond (Mo–S–Fe). This MoS2/FeS2 anode shows a distinct interfacial effect for efficient interatomic electron migration. The electrochemical performance demonstrated that the discharge capacity can reach up to 1217.8 mA h g−1 at 0.1 A g−1 after 200 cycles, with a capacity retention rate of 72.9%. After 2000 cycles, the capacity retention is about 61.6% at 1.0 A g−1, and the discharge capacity can still reach 638.9 mA h g−1. Electrochemical kinetic analysis indicated an enhanced pseudocapacitance contribution and that the MoS2/FeS2 had sufficient adsorption of lithium ions. This paper therefore argues that this interfacial engineering is an effective solution for designing sulfide-based anodes with good electrochemical properties. Full article
(This article belongs to the Special Issue 2D Nanosheets and Their Nanohybrids)
Show Figures

Figure 1

13 pages, 4632 KiB  
Article
Insights into the Synthesis of Spiral Beta Zeolite with Enhanced Catalytic Performance in VOC Abatement
by Chaoqun Bian, Xiaohui Luo and Xiao Chen
Molecules 2024, 29(6), 1386; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061386 - 20 Mar 2024
Viewed by 525
Abstract
The rational synthesis of zeolites with designed morphology is a highly challenging task. In this study, we propose 1,5-bis(methylpiperidine)pentylammonium hydroxide (BMPPAOH) as an organic structure-directing agent (OSDA) based on theoretical calculations. The morphology of zeolite samples is characterized by XRD, SEM, TEM, N [...] Read more.
The rational synthesis of zeolites with designed morphology is a highly challenging task. In this study, we propose 1,5-bis(methylpiperidine)pentylammonium hydroxide (BMPPAOH) as an organic structure-directing agent (OSDA) based on theoretical calculations. The morphology of zeolite samples is characterized by XRD, SEM, TEM, N2 sorption isotherms, and UV Raman spectroscopy. This simple bis-quaternary ammonium salt favored the formation of spiral morphology in Beta zeolite spheres (S-Beta). The crystallization of zeolite in the presence of BMMPAOH is a two-stage process, where nanoparticles agglomerate into spheres in the early stages followed by the emergence of S-Beta crystals with spiral morphology. The synthesized Pt-S-Beta catalysts show higher catalytic activity in VOC abatement compared with other Pt-Beta samples. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

13 pages, 1211 KiB  
Article
Phytochemical Evaluation of Terminalia canescens DC. Radlk. Extracts with Antibacterial and Antibiotic Potentiation Activities against Selected β-Lactam Drug-Resistant Bacteria
by Muhammad Jawad Zai, Matthew James Cheesman and Ian Edwin Cock
Molecules 2024, 29(6), 1385; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29061385 - 20 Mar 2024
Viewed by 591
Abstract
Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity [...] Read more.
Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity of T. canescens. In this study, T. canescens was screened against a panel of bacterial pathogens, including multi-antibiotic-resistant strains. Solvents with different polarities were used to extract different complements of phytochemicals from T. canescens leaves. Methanolic and aqueous extracts exhibited substantial antimicrobial activity against various pathogens, including those that are multidrug-resistant strains. When combined with some selected clinical antibiotics, some extracts potentiated the antibacterial inhibitory activity. This study identified two synergistic, eleven additive, eleven non-interactive and eight antagonistic interactions. The toxicities of the plant extracts were examined in the Artemia franciscana nauplii assay and were found to be non-toxic, except the aqueous extract, which showed toxicity. Metabolomic liquid chromatography–mass spectrometry (LC-MS) analyses highlighted and identified several flavonoids, including vitexin, quercetin, orientin and kaempferol, as well as the tannins ellagic acid and pyrogallol, which may contribute to the antibacterial activities observed herein. The possible mechanism of action of these extracts was further explored in this study. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop