energies-logo

Journal Browser

Journal Browser

Heat Transfer in Heat Exchangers

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "J1: Heat and Mass Transfer".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 621

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17 Street, 75-620 Koszalin, Poland
Interests: heat transfer; heat exchangers; two-phase flows; boiling; condensation; minichannels
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka 15-17 Street, 75-620 Koszalin, Poland
Interests: heat transfer; heat exchangers; phase-change materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Guest Editor are honored to invite you to submit to a Special Issue of Energies on the subject area of “Heat Transfer in Heat Exchangers“.

There are many ways to intensify heat transfer in heat exchangers. They may concern the very structure of the exchanger, including the selection of appropriate materials for the construction of walls through which the heat exchange takes place, the development and modification of the heat exchange surface, and the appropriate selection of the exchanger's elements. It is also important to select the appropriate heat transfer fluids and their thermal and flow parameters. The miniaturization of the flow spaces also contributes to a significant intensification of heat transfer, where a reduction in the hydraulic diameter is accompanied by an increase in heat transfer coefficients. During the modernization of the heat exchanger structure, attention should be paid to the change in the flow resistance of the working media. The increase in the intensification of heat exchange should not significantly increase the flow resistance. The submitted papers should be based on mathematical modeling, numerical simulations, and experimental research. Topics of interest for the publication include, but are not limited to:

  • Heat transfer fluids;
  • Heat transfer intensification;
  • Phase-change phenomenon;
  • Flow resistance;
  • Wave phenomena;
  • New designs of heat exchangers,
  • Numerical modeling;
  • Experimental research.

Prof. Dr. Tadeusz Bohdal
Dr. Marcin Kruzel
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heat exchanger
  • innovative designs
  • heat transfer fluid
  • surface enhancement
  • heat transfer intensification

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 9124 KiB  
Article
Numerical Analysis of Altered Parallel Flow Heat Exchanger with Promoted Geometry at Multifarious Baffle Prolongs
by Mehmet Akif Kartal and Ahmet Feyzioğlu
Energies 2024, 17(7), 1676; https://0-doi-org.brum.beds.ac.uk/10.3390/en17071676 - 01 Apr 2024
Viewed by 449
Abstract
This study investigated the influence of BFFSP on the thermohydraulic performance of a SATHEC(s) using a novel computational approach. The novelty lies in the detailed exploration of the interplay between BFFSP, MFRT, and key performance parameters. Unlike prior studies, which often focus on [...] Read more.
This study investigated the influence of BFFSP on the thermohydraulic performance of a SATHEC(s) using a novel computational approach. The novelty lies in the detailed exploration of the interplay between BFFSP, MFRT, and key performance parameters. Unlike prior studies, which often focus on a limited range of operating conditions, this work employs a comprehensive parametric analysis encompassing two BFFSPs (95 mm and 125 mm) and four MFRTs (0.1, 0.3, 0.5, and 0.7 kg/h). This extensive analysis provides a deeper understanding of the trade-off between the HTRFR enhancement and PDP associated with the BFFSP across a wider range of operating conditions. This investigation leverages the power of computational fluid dynamics (CFD) simulations for high-fidelity analysis. ANSYS Fluent, a widely recognized commercial CFD software package, was used as a computational platform. A three-dimensional steady-state model of HEXR geometry was established. The cold fluid was modeled as water, and the hot fluid was modeled as water. The selection of appropriate turbulence models is crucial for accurate flow simulations within the complex geometry of HEXR. This study incorporates a well-established two-equation turbulence model to effectively capture turbulent flow behavior. The governing equations for mass, momentum, and energy conservation were solved numerically within the CFD framework. Convergence criteria were meticulously established to ensure the accuracy and reliability of the simulation results. BFFs are crucial components in HEXRs as they promote fluid mixing and turbulence on the HTRFR surface, thereby enhancing HTRFR. This study explores the interplay between BFFSP and HTRFR effectiveness. It is hypothesized that a larger BFFSP (125 mm) might lead to a higher HTC owing to the increased fluid mixing. However, the potential drawbacks of the increased PDP due to the flow restriction also need to be considered. The PDP across the HEXR is a critical parameter that affects pumping costs and overall system yield. This study investigates the impact of BFFSP on the PDP. It is expected that a larger BFFSP (125 mm) will result in a higher PDP, owing to the increased resistance to fluid flow. Here, we aim to quantify the trade-off between enhanced HTRFR and increased PDP associated with different BFFSPs. The optimal design of an HEXR seeks a balance between achieving a high HTRFR rate and minimizing pressure losses. HTRPD, a metric combining both HTC and PDP, was employed to evaluate the thermohydraulic performance. We hypothesized that a specific BFFSP might offer a superior HTRPD, indicating an optimal balance between HTRFR effectiveness and PDP for the investigated HEXR geometry and operating conditions. CFD simulations were conducted using ANSYS Fluent to analyze the effects of BFFSP and MFRT on the HTC, PDP, and HTRPD. The simulations employed a commercially available HEXR geometry with water as the cold and hot fluid. The results are presented and discussed to elucidate the relationships between the BFFSP, MFRT, and key performance parameters of the HEXR. This study provides valuable insights into the influence of BFFSP on the thermohydraulic performance of HEXRs. The findings can aid in optimizing the HEXR design by identifying the BFFSP that offers the best compromise between HTRFR enhancement and PDP for specific operating conditions. The results contribute to the knowledge base of HEXR design and optimization, potentially leading to improved yield in various industrial applications. The results indicate that a larger BFFSP (125 mm) leads to higher outlet temperatures but also results in a higher PDP compared to the 95 mm design. Conversely, the 95 mm BFFSP exhibits a lower PDP but achieves a lower HTC. In terms of thermohydraulic performance, as indicated by HTRPD, the 95 mm BFFSP with the lowest MFRT (0.1 kg/h) achieved the highest value, surpassing the 125 mm design by 19.81%. This suggests that a 95 mm BFFSP offers a better trade-off between HTRFR effectiveness and pressure loss, potentially improving the overall HEXR performance. Full article
(This article belongs to the Special Issue Heat Transfer in Heat Exchangers)
Show Figures

Figure 1

Back to TopTop