energies-logo

Journal Browser

Journal Browser

Applied Energy System Modeling 2015

A special issue of Energies (ISSN 1996-1073).

Deadline for manuscript submissions: closed (30 December 2015) | Viewed by 44809

Special Issue Editor


E-Mail Website
Guest Editor
Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, SE-971 87 Luleå, Sweden
Interests: forest, energy and environmental economics; econometrics and mathematical programming methods; economic policy; bioeconomy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The overall aim of this Special Issue of Energies is to publish studies that enhance our understanding of alternative future energy transitions, their implications for energy systems, human well-being, and the environment, and how they might be influenced by decision makers. A number of major challenges face current energy systems. Many of these challenges need to be addressed simultaneously and from a system perspective.

This Special Issue welcomes contributions that take a system perspective on identified challenges and implement them using, e.g., integrated system analysis, spatial and behavioral heterogeneity, multi-criteria analysis, energy technology assessment, and uncertainty and risk analyses. Extended contributions are welcomed to facilitate detailed model or method descriptions.

Prof. Dr. Robert Lundmark
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • systems analysis
  • energy policy
  • energy transition
  • energy scenario

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

4858 KiB  
Article
Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks
by Krystel K. Castillo-Villar, Hertwin Minor-Popocatl and Erin Webb
Energies 2016, 9(3), 203; https://0-doi-org.brum.beds.ac.uk/10.3390/en9030203 - 16 Mar 2016
Cited by 17 | Viewed by 5661
Abstract
Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities). Logging residues are under-utilized sources of biomass for [...] Read more.
Logging residues, which refer to the unused portions of trees cut during logging, are important sources of biomass for the emerging biofuel industry and are critical feedstocks for the first-type biofuel facilities (e.g., corn-ethanol facilities). Logging residues are under-utilized sources of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential to design cost-effective biofuel supply chains that not only minimize costs, but also consider the biomass quality characteristics. The biomass quality is heavily dependent upon the moisture and the ash contents. Ignoring the biomass quality characteristics and its intrinsic costs may yield substantial economic losses that will only be discovered after operations at a biorefinery have begun. This paper proposes a novel bioenergy supply chain network design model that minimizes operational costs and includes the biomass quality-related costs. The proposed model is unique in the sense that it supports decisions where quality is not unrealistically assumed to be perfect. The effectiveness of the proposed methodology is proven by assessing a case study in the state of Tennessee, USA. The results demonstrate that the ash and moisture contents of logging residues affect the performance of the supply chain (in monetary terms). Higher-than-target moisture and ash contents incur in additional quality-related costs. The quality-related costs in the optimal solution (with final ash content of 1% and final moisture of 50%) account for 27% of overall supply chain cost. Based on the numeral experimentation, the total supply chain cost increased 7%, on average, for each additional percent in the final ash content. Full article
(This article belongs to the Special Issue Applied Energy System Modeling 2015)
Show Figures

Figure 1

1080 KiB  
Article
The Value of Lost Load for Sectoral Load Shedding Measures: The German Case with 51 Sectors
by Aaron Praktiknjo
Energies 2016, 9(2), 116; https://0-doi-org.brum.beds.ac.uk/10.3390/en9020116 - 19 Feb 2016
Cited by 20 | Viewed by 8060
Abstract
The transition of the German electricity system towards a renewable, nuclear free and increasingly fluctuating power generation raises concerns about supply security. A possible contribution to solve this issue might lie in demand response or load shedding measures. The goal of our work [...] Read more.
The transition of the German electricity system towards a renewable, nuclear free and increasingly fluctuating power generation raises concerns about supply security. A possible contribution to solve this issue might lie in demand response or load shedding measures. The goal of our work is to monetarily quantify the consequences of power interruptions. The focus lies on power interruption costs in 51 economic sectors. Two input-output models are proposed to estimate the Value of Lost Load for each sector. The first does not take inter-linkages of the sectors and possible cascading effects on interruption costs into account. The second model is a new and innovative approach which is based on the Ghosh Input-Output model and which accounts for these effects. We assume that the first model is adequate to assess shorter power interruptions, whereas the second model might be more appropriate when estimating costs of longer interruptions. Full article
(This article belongs to the Special Issue Applied Energy System Modeling 2015)
Show Figures

Figure 1

1221 KiB  
Article
A Sectoral Micro-Economic Approach to Scenario Selection and Development: The Case of the Greek Power Sector
by Alexandros Flamos
Energies 2016, 9(2), 77; https://0-doi-org.brum.beds.ac.uk/10.3390/en9020077 - 27 Jan 2016
Cited by 12 | Viewed by 4503
Abstract
Generating policy-relevant scenarios is instrumental for understanding and developing policy measures. These are especially relevant to the power sector. Practitioners have been working on policy-relevant scenarios for the ex-ante assessment of policy measures in a meaningful way for end-users related to climate change [...] Read more.
Generating policy-relevant scenarios is instrumental for understanding and developing policy measures. These are especially relevant to the power sector. Practitioners have been working on policy-relevant scenarios for the ex-ante assessment of policy measures in a meaningful way for end-users related to climate change mitigation and adaptation strategies. This paper presents a method for generating such policy relevant scenarios by focusing on the actor-contingent elements of the scenarios, i.e., the developments that are within the control of system actors to change or bring about. Several scenario techniques focusing on systematic-formalized or quantitative approaches have been published on this front over the past few years. Here, we introduce a methodology that is best suited for the assessment of the expected effect of different policy measures on the involved stakeholders’ behavior as well as for the analysis of the interactions between different policy measures as reflected on their impact on the strength and direction of the provided incentives. The applicability of our methodology is demonstrated for the case of the Greek power market. It was further evaluated in view of the challenges related to the issues of generation capacity adequacy and increased fiscal deficit. The strategic implications of the proposed approach concern the demonstration of the benefits from adopting a policy assessment methodology that focus on stakeholder expectations and interactions. Full article
(This article belongs to the Special Issue Applied Energy System Modeling 2015)
Show Figures

Figure 1

1387 KiB  
Article
What Do Capacity Deployment Rates Tell Us about the Efficiency of Electricity Generation from Renewable Energy Sources Support Measures in Greece?
by Sotiris Papadelis, Vasssilis Stavrakas and Alexandros Flamos
Energies 2016, 9(1), 38; https://0-doi-org.brum.beds.ac.uk/10.3390/en9010038 - 13 Jan 2016
Cited by 20 | Viewed by 7245
Abstract
The efficiency of fiscal support for electricity generation from renewable energy sources (RES-E) is a multifaceted notion that cannot be adequately described by a single metric. Efficiency is related to the ability of a policy measure to support deployment without creating negative feedback [...] Read more.
The efficiency of fiscal support for electricity generation from renewable energy sources (RES-E) is a multifaceted notion that cannot be adequately described by a single metric. Efficiency is related to the ability of a policy measure to support deployment without creating negative feedback effects. These negative effects may stem from saturation of the grid’s ability to absorb an increased amount of RES-E power, the inability of regulatory bodies to cope with the larger workload due to the increased number of projects requesting permits or from rent-seeking behavior. Furthermore, the primary rationale for feed-in tariffs (FITs) and other fiscal support schemes is that increased deployment of RES-E technologies will lead to reductions in costs and increases in efficiency. As a result, the efficiency of an RES-E support policy should be also judged by its ability to capitalize on cost reductions. Overall, we present an approach to facilitate ongoing assessments of the efficiency of support measures for RES-E deployment. We demonstrate the proposed approach using the FIT support policy in Greece as a case study. In particular, the RES-E support policy in Greece has been recently revised through tariff cuts and a moratorium on new production licenses. We aim to demonstrate that if publicly available data are appropriately monitored, a policy revision can take place in a timelier and less disruptive manner. Full article
(This article belongs to the Special Issue Applied Energy System Modeling 2015)
Show Figures

Figure 1

323 KiB  
Article
Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems
by Fumin Ma, Gregory M. P. O’Hare, Tengfei Zhang and Michael J. O’Grady
Energies 2015, 8(10), 12283-12303; https://0-doi-org.brum.beds.ac.uk/10.3390/en81012283 - 27 Oct 2015
Cited by 1 | Viewed by 6060
Abstract
Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison [...] Read more.
Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses. Full article
(This article belongs to the Special Issue Applied Energy System Modeling 2015)
Show Figures

Figure 1

908 KiB  
Article
Re-Industrialisation and Low-Carbon Economy—Can They Go Together? Results from Stakeholder-Based Scenarios for Energy-Intensive Industries in the German State of North Rhine Westphalia
by Stefan Lechtenböhmer, Clemens Schneider, María Yetano Roche and Samuel Höller
Energies 2015, 8(10), 11404-11429; https://0-doi-org.brum.beds.ac.uk/10.3390/en81011404 - 13 Oct 2015
Cited by 21 | Viewed by 7607
Abstract
The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) [...] Read more.
The German federal state of North Rhine-Westphalia (NRW) is home to one of the most important industrial regions in Europe, and is the first German state to have adopted its own Climate Protection Law (CPL). This paper describes the long-term (up to 2050) mitigation scenarios for NRW’s main energy-intensive industrial sub-sectors which served to support the implementation of the CPL. It also describes the process of scenario development, as these scenarios were developed through stakeholder participation. The scenarios considered three different pathways (best-available technologies, break-through technologies, and CO2 capture and storage). All pathways had optimistic assumptions on the rate of industrial growth and availability of low-carbon electricity. We find that a policy of “re-industrialisation” for NRW based on the current industrial structures (assumed here to represent an average growth of NRWs industrial gross value added (GVA) of 1.6% per year until 2030 and 0.6% per year from 2030 to 2050), would pose a significant challenge for the achievement of overall energy demand and German greenhouse gas (GHG) emission targets, in particular as remaining efficiency potentials in NRW are limited. In the best-available technology (BAT) scenario CO2 emission reductions of only 16% are achieved, whereas the low carbon (LC) and the carbon capture and storage (CCS) scenario achieve 50% and 79% reduction respectively. Our results indicate the importance of successful development and implementation of a decarbonised electricity supply and breakthrough technologies in industry—such as electrification, hydrogen-based processes for steel, alternative cements or CCS—if significant growth is to be achieved in combination with climate mitigation. They, however, also show that technological solutions alone, together with unmitigated growth in consumption of material goods, could be insufficient to meet GHG reduction targets in industry. Full article
(This article belongs to the Special Issue Applied Energy System Modeling 2015)
Show Figures

Figure 1

Review

Jump to: Research

157 KiB  
Review
Optimal Rule-Based Power Management for Online, Real-Time Applications in HEVs with Multiple Sources and Objectives: A Review
by Bedatri Moulik and Dirk Söffker
Energies 2015, 8(9), 9049-9063; https://0-doi-org.brum.beds.ac.uk/10.3390/en8099049 - 26 Aug 2015
Cited by 12 | Viewed by 4874
Abstract
The field of hybrid vehicles has undergone intensive research and development, primarily due to the increasing concern of depleting resources and increasing pollution. In order to investigate further options to optimize the performance of hybrid vehicles with regards to different criteria, such as [...] Read more.
The field of hybrid vehicles has undergone intensive research and development, primarily due to the increasing concern of depleting resources and increasing pollution. In order to investigate further options to optimize the performance of hybrid vehicles with regards to different criteria, such as fuel economy, battery aging, etc., a detailed state-of-the-art review is presented in this contribution. Different power management and optimization techniques are discussed focusing on rule-based power management and multi-objective optimization techniques. The extent of rule-based power management and optimization in solving battery aging issues is investigated along with an implementation in real-time driving scenarios where no pre-defined drive cycle is followed. The goal of this paper is to illustrate the significance and applications of rule-based power management optimization based on previous contributions. Full article
(This article belongs to the Special Issue Applied Energy System Modeling 2015)
Show Figures

Figure 1

Back to TopTop