Special Issue "Solubilization and Controlled Release Strategy of Poorly Water-Soluble Drugs"

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: 31 March 2022.

Special Issue Editor

Prof. Dr. María Ángeles Peña Fernández
E-Mail Website
Guest Editor
Departamento Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
Interests: drug formulation; pharmaceutical technology; formulation development and characterization
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The processes of solubilization and controlled release of drugs that are not very soluble in water are of great relevance to the pre-formulation of drugs in pharmaceutical developments.

In recent years, a large number of drugs have been industrialized, but almost 70% of them have low solubility in water, which limits their dissolution rate and, consequently, their bioavailability. Undoubtedly, it is a problem of far-reaching repercussions for the pharmaceutical industry, so the discovery of new technological tools for the hydrosolubilization of drugs that do not affect their physical–chemical and therapeutic properties will constitute an extraordinary achievement.

On the other hand, from a pharmacological point of view, the search for knowledge of the interaction mechanism and the different properties of drug-controlled release systems is currently of great importance in drug formulation, especially in relation to their efficacy therapy, as well as achieving the correct amount of active ingredient, the right time and the precise place of action.

This Special Issue is dedicated to the latest advances in solubilization and controlled release processes for poorly soluble drugs. We invite authors to submit original research or review articles on these topics, including the development of novel solubilization strategies, as well as innovative alternative methods to obtain new controlled-release pharmaceutical forms, suitable for a specific patient and the pathology to be treated, without forgetting the best form of administration to obtain the optimal efficacy and safety of the drugs.

Dr. María Peña Fernández
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug formulation
  • solubilization
  • controlled release systems
  • solubility
  • poor water-soluble drugs

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Chitosan as Valuable Excipient for Oral and Topical Carvedilol Delivery Systems
Pharmaceuticals 2021, 14(8), 712; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14080712 - 23 Jul 2021
Viewed by 238
Abstract
Chitosan is a valued excipient due to its biocompatibility properties and increasing solubility of poorly water-soluble drugs. The research presented in this paper concerns the preparation of binary combinations of chitosan (deacetylated chitin) with carvedilol (beta-blocker) to develop a formulation with a modified [...] Read more.
Chitosan is a valued excipient due to its biocompatibility properties and increasing solubility of poorly water-soluble drugs. The research presented in this paper concerns the preparation of binary combinations of chitosan (deacetylated chitin) with carvedilol (beta-blocker) to develop a formulation with a modified carvedilol release profile. As part of the research, six physical mixtures of chitosan with carvedilol were obtained and identified by spectral (PXRD, FT-IR, and Raman), thermal (DSC), and microscopic (SEM) methods. The next stage of the research estimated the profile changes and the dissolution rate for carvedilol in the obtained drug delivery systems; the reference sample was pure carvedilol. The studies were conducted at pH = 1.2 and 6.8, simulating the gastrointestinal tract conditions. Quantitative changes of carvedilol were determined using the developed isocratic UHPLC-DAD method. Established apparent permeability coefficients proved the changes in carvedilol’s permeability after introducing a drug delivery system through membranes simulating the gastrointestinal tract and skin walls. A bioadhesive potential of carvedilol–chitosan systems was confirmed using the in vitro model. The conducted research and the obtained results indicate a significant potential of using chitosan as an excipient in modern oral or epidermal drug delivery systems of carvedilol. Full article
Show Figures

Figure 1

Article
Optimization of Novel Naproxen-Loaded Chitosan/Carrageenan Nanocarrier-Based Gel for Topical Delivery: Ex Vivo, Histopathological, and In Vivo Evaluation
Pharmaceuticals 2021, 14(6), 557; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14060557 - 11 Jun 2021
Viewed by 825
Abstract
Naproxen (NAP) is commonly used for pain, inflammation, and stiffness associated with arthritis. However, systemic administration is linked with several gastrointestinal tract (GIT) side effects. The present work aims to prepare and evaluate NAP nanoparticulate shells of chitosan (CS) and carrageenan (CRG) loaded [...] Read more.
Naproxen (NAP) is commonly used for pain, inflammation, and stiffness associated with arthritis. However, systemic administration is linked with several gastrointestinal tract (GIT) side effects. The present work aims to prepare and evaluate NAP nanoparticulate shells of chitosan (CS) and carrageenan (CRG) loaded into a Carbopol 940 (Ca-940) gel system with unique features of sustained drug delivery as well as improved permeation through a topical route. Moreover, this study aims to evaluate its ex vivo, histopathological, and in vivo anti-inflammatory activity in albino Wistar rats. The percentage of ex vivo drug permeation patterns in the optimized formulation (No) was higher (88.66%) than the control gel (36.195%). Oral toxicity studies of developed nanoparticles in albino rabbits showed that the NAP-loaded CS/CRG are non-toxic and, upon histopathological evaluation, no sign of incompatibility was observed compared to the control group. A In Vivo study showed that the optimized gel formulation (No) was more effective than the control gel (Nc) in treating arthritis-associated inflammation. The sustained permeation and the absence of skin irritation make this novel NAP nanoparticle-loaded gel based on CS/CRG a suitable drug delivery system for topical application and has the potential for improved patient compliance and reduced GIT-related side effects in arthritis. Full article
Show Figures

Figure 1

Article
Combinations of Freeze-Dried Amorphous Vardenafil Hydrochloride with Saccharides as a Way to Enhance Dissolution Rate and Permeability
Pharmaceuticals 2021, 14(5), 453; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14050453 - 11 May 2021
Viewed by 576
Abstract
To improve physicochemical properties of vardenafil hydrochloride (VAR), its amorphous form and combinations with excipients—hydroxypropyl methylcellulose (HPMC) and β-cyclodextrin (β-CD)—were prepared. The impact of the modification on physicochemical properties was estimated by comparing amorphous mixtures of VAR to their crystalline form. The amorphous [...] Read more.
To improve physicochemical properties of vardenafil hydrochloride (VAR), its amorphous form and combinations with excipients—hydroxypropyl methylcellulose (HPMC) and β-cyclodextrin (β-CD)—were prepared. The impact of the modification on physicochemical properties was estimated by comparing amorphous mixtures of VAR to their crystalline form. The amorphous form of VAR was obtained as a result of the freeze-drying process. Confirmation of the identity of the amorphous dispersion of VAR was obtained through the use of comprehensive analysis techniques—X-ray powder diffraction (PXRD) and differential scanning calorimetry (DSC), supported by FT-IR (Fourier-transform infrared spectroscopy) coupled with density functional theory (DFT) calculations. The amorphous mixtures of VAR increased its apparent solubility compared to the crystalline form. Moreover, a nearly 1.3-fold increase of amorphous VAR permeability through membranes simulating gastrointestinal epithelium as a consequence of the changes of apparent solubility (Papp crystalline VAR = 6.83 × 10−6 cm/s vs. Papp amorphous VAR = 8.75 × 10−6 cm/s) was observed, especially for its combinations with β-CD in the ratio of 1:5—more than 1.5-fold increase (Papp amorphous VAR = 8.75 × 10−6 cm/s vs. Papp amorphous VAR:β-CD 1:5 = 13.43 × 10−6 cm/s). The stability of the amorphous VAR was confirmed for 7 months. The HPMC and β-CD are effective modifiers of its apparent solubility and permeation through membranes simulating gastrointestinal epithelium, suggesting a possibility of a stronger pharmacological effect. Full article
Show Figures

Graphical abstract

Article
Development of a Solid Dispersion of Nystatin with Maltodextrin as a Carrier Agent: Improvements in Antifungal Efficacy against Candida spp. Biofilm Infections
Pharmaceuticals 2021, 14(5), 397; https://0-doi-org.brum.beds.ac.uk/10.3390/ph14050397 - 22 Apr 2021
Viewed by 403
Abstract
The aim of this study was to improve the treatment of Candida albicans biofilms through the use of nystatin solid dispersions developed using maltodextrins as a hyperosmotic carrier. Characterization studies by differential scanning calorimetry, X-ray diffraction, dissolution studies, and particle size analysis were [...] Read more.
The aim of this study was to improve the treatment of Candida albicans biofilms through the use of nystatin solid dispersions developed using maltodextrins as a hyperosmotic carrier. Characterization studies by differential scanning calorimetry, X-ray diffraction, dissolution studies, and particle size analysis were performed to evaluate changes in nystatin crystallinity. Antifungal activity and anti-biofilm efficacy were assessed by microbiological techniques. The results for nystatin solid dispersions showed that the enhancement of antifungal activity may be related to the high proportions of maltodextrins. Anti-biofilm assays showed a significant reduction (more than 80%) on biofilm formation with SD-N:MD [1:6] compared to the nystatin reference suspension. The elaboration process and physicochemical properties of SD-N:MD [1:6] could be a promising strategy for treatment of Candida biofilms. Full article
Show Figures

Graphical abstract

Back to TopTop