Novel Pharmaceuticals Development and Delivery Systems for the Treatment of Parasitic Diseases, 2nd Edition

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Targeting and Design".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 961

Special Issue Editor


E-Mail Website
Guest Editor
1. Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Centre for the Study in Animal Science (CECA), University of Porto, Praça do Coronel Pacheco 42, 4050-083 Porto, Portugal
2. Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
Interests: carcinogenesis; helminth-associated carcinogenesis; combine therapy; immunotherapy; protein recombinant; parasites; schistosoma; opisthorchis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Parasitic infections such as malaria, schistosomiasis, and leishmaniasis, among others, remain a major public health problem causing substantial mortality and morbidity worldwide. Antiparasitic drugs are available, but they are not ideal and present major disadvantages. Furthermore, there is a real concern regarding the development of drug resistance (e.g., primaquine for malaria). Few novel antiparasitic drugs have emerged in recent decades, and the discovery and development of novel antiparasitic drugs are urgently needed. Strategies such as combinations of existing drugs, improvements to known drugs, de novo discovery, and/or the exploration of natural bioactive compounds, among others, should be explored to improve the treatment of parasitic infections and prevent the development of drug resistance.

This Special Issue aims to discuss strategies for the discovery and development of novel treatments for parasitic diseases, as well as advanced drug delivery technology. The design and synthesis of novel drugs or drug derivatives and their antiparasitic activities, structure–activity relationships (SARs), the use of bioinformatics tools (or others) for the discovery of potential drugs, and natural compounds as sources of antiparasitic drugs will be addressed here. Colleagues are invited to submit original research papers, communications, or review articles to this Special Issue.

Dr. Maria João Castro Gouveia
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • parasites
  • drug synthesis and discovery
  • natural bioactive compounds
  • drug combinations
  • parasitic diseases
  • neglected tropical diseases
  • novel therapeutic strategies
  • optimization
  • formulations
  • mechanism of action
  • screening assays
  • pharmacodynamics
  • pharmacokinetics
  • drug resistance
  • antiparasitic activity

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4443 KiB  
Article
A Surprising Repurposing of Central Nervous System Drugs against Squamous Cell Carcinoma of the Bladder, UM-UC-5
by Maria João Gouveia, Eduarda Ribeiro and Nuno Vale
Pharmaceutics 2024, 16(2), 212; https://0-doi-org.brum.beds.ac.uk/10.3390/pharmaceutics16020212 - 31 Jan 2024
Viewed by 764
Abstract
The potential benefits of drug repurposing have gained attention as an alternative to developing de novo drugs. The potential of using central nervous system (CNS) drugs as anticancer drugs has been explored in several types of human cancers, such as breast and colon [...] Read more.
The potential benefits of drug repurposing have gained attention as an alternative to developing de novo drugs. The potential of using central nervous system (CNS) drugs as anticancer drugs has been explored in several types of human cancers, such as breast and colon cancer, among others. Here, we examine the effect of the CNS drugs sertraline, paroxetine, and chlorpromazine on human squamous carcinoma cells of the bladder (UM-UC-5). After exposing UM-UC-5 cells to increased concentrations of each drug for 48 h, we assessed their metabolic activity using an MTT assay. Based on those results, we calculated cell viability and the half-maximal inhibitory concentration (IC50) values. The results suggest that the CNS drugs were effective against UM-UC-5 in the order of potency of sertraline > chlorpromazine > paroxetine. Interestingly, sertraline was more potent than 5-fluorouracil (5-FU), a widely used anticancer drug. This study demonstrated, for the first time, the promising anticancer activity of CNS drugs on human bladder cancer cells in vitro and supports the repurposing of CNS drugs to improve cancer treatment. Nevertheless, further studies are necessary to understand their mechanism of action and in vivo activity. Full article
Show Figures

Figure 1

Back to TopTop