Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5094 KiB  
Review
Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells
by Paulina Podkalicka, Jacek Stępniewski, Olga Mucha, Neli Kachamakova-Trojanowska, Józef Dulak and Agnieszka Łoboda
Biomolecules 2020, 10(12), 1614; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10121614 - 29 Nov 2020
Cited by 27 | Viewed by 5013
Abstract
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages [...] Read more.
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders. Full article
(This article belongs to the Special Issue Hypoxia and Hypoxia-Inducible Factors in Human Endothelium)
Show Figures

Figure 1

19 pages, 3119 KiB  
Review
Sequence Features of Mitochondrial Transporter Protein Families
by Gergely Gyimesi and Matthias A. Hediger
Biomolecules 2020, 10(12), 1611; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10121611 - 28 Nov 2020
Cited by 22 | Viewed by 5700
Abstract
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of [...] Read more.
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

32 pages, 1883 KiB  
Review
The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters
by Eva Roig-Rosello and Patricia Rousselle
Biomolecules 2020, 10(12), 1607; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10121607 - 27 Nov 2020
Cited by 53 | Viewed by 15517
Abstract
One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction—a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to [...] Read more.
One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction—a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to the underlying dermis. This junction provides both a structural support to keratinocytes and a specific niche that mediates signals influencing their behavior. It displays a distinctive microarchitecture characterized by an undulating pattern, strengthening dermal-epidermal connectivity and crosstalk. The optimal stiffness arising from the overall molecular organization, together with characteristic anchoring complexes, keeps the dermis and epidermis layers extremely well connected and capable of proper epidermal renewal and regeneration. Due to intrinsic and extrinsic factors, a large number of structural and biological changes accompany skin aging. These changes progressively weaken the dermal–epidermal junction substructure and affect its functions, contributing to the gradual decline in overall skin physiology. Most changes involve reduced turnover or altered enzymatic or non-enzymatic post-translational modifications, compromising the mechanical properties of matrix components and cells. This review combines recent and older data on organization of the dermal-epidermal junction, its mechanical properties and role in mechanotransduction, its involvement in regeneration, and its fate during the aging process. Full article
Show Figures

Graphical abstract

22 pages, 798 KiB  
Review
Post-Myocardial Infarction Ventricular Remodeling Biomarkers—The Key Link between Pathophysiology and Clinic
by Maria-Madălina Bostan, Cristian Stătescu, Larisa Anghel, Ionela-Lăcrămioara Șerban, Elena Cojocaru and Radu Sascău
Biomolecules 2020, 10(11), 1587; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111587 - 23 Nov 2020
Cited by 25 | Viewed by 6265
Abstract
Studies in recent years have shown increased interest in developing new methods of evaluation, but also in limiting post infarction ventricular remodeling, hoping to improve ventricular function and the further evolution of the patient. This is the point where biomarkers have proven effective [...] Read more.
Studies in recent years have shown increased interest in developing new methods of evaluation, but also in limiting post infarction ventricular remodeling, hoping to improve ventricular function and the further evolution of the patient. This is the point where biomarkers have proven effective in early detection of remodeling phenomena. There are six main processes that promote the remodeling and each of them has specific biomarkers that can be used in predicting the evolution (myocardial necrosis, neurohormonal activation, inflammatory reaction, hypertrophy and fibrosis, apoptosis, mixed processes). Some of the biomarkers such as creatine kinase–myocardial band (CK-MB), troponin, and N-terminal-pro type B natriuretic peptide (NT-proBNP) were so convincing that they immediately found their place in the post infarction patient evaluation protocol. Others that are related to more complex processes such as inflammatory biomarkers, atheroma plaque destabilization biomarkers, and microRNA are still being studied, but the results so far are promising. This article aims to review the markers used so far, but also the existing data on new markers that could be considered, taking into consideration the most important studies that have been conducted so far. Full article
(This article belongs to the Special Issue Molecular Biomarkers In Cardiology)
Show Figures

Figure 1

32 pages, 741 KiB  
Review
Astrocytic Connexin43 Channels as Candidate Targets in Epilepsy Treatment
by Laura Walrave, Mathieu Vinken, Luc Leybaert and Ilse Smolders
Biomolecules 2020, 10(11), 1578; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111578 - 20 Nov 2020
Cited by 27 | Viewed by 4774
Abstract
In epilepsy research, emphasis is put on exploring non-neuronal targets such as astrocytic proteins, since many patients remain pharmacoresistant to current treatments, which almost all target neuronal mechanisms. This paper reviews available data on astrocytic connexin43 (Cx43) signaling in seizures and epilepsy. Cx43 [...] Read more.
In epilepsy research, emphasis is put on exploring non-neuronal targets such as astrocytic proteins, since many patients remain pharmacoresistant to current treatments, which almost all target neuronal mechanisms. This paper reviews available data on astrocytic connexin43 (Cx43) signaling in seizures and epilepsy. Cx43 is a widely expressed transmembrane protein and the constituent of gap junctions (GJs) and hemichannels (HCs), allowing intercellular and extracellular communication, respectively. A plethora of research papers show altered Cx43 mRNA levels, protein expression, phosphorylation state, distribution and/or functional coupling in human epileptic tissue and experimental models. Human Cx43 mutations are linked to seizures as well, as 30% of patients with oculodentodigital dysplasia (ODDD), a rare genetic condition caused by mutations in the GJA1 gene coding for Cx43 protein, exhibit neurological symptoms including seizures. Cx30/Cx43 double knock-out mice show increased susceptibility to evoked epileptiform events in brain slices due to impaired GJ-mediated redistribution of K+ and glutamate and display a higher frequency of spontaneous generalized chronic seizures in an epilepsy model. Contradictory, Cx30/Cx43 GJs can traffic nutrients to high-energy demanding neurons and initiate astrocytic Ca2+ waves and hyper synchronization, thereby supporting proconvulsant effects. The general connexin channel blocker carbenoxolone and blockers from the fenamate family diminish epileptiform activity in vitro and improve seizure outcome in vivo. In addition, interventions with more selective peptide inhibitors of HCs display anticonvulsant actions. To conclude, further studies aiming to disentangle distinct roles of HCs and GJs are necessary and tools specifically targeting Cx43 HCs may facilitate the search for novel epilepsy treatments. Full article
(This article belongs to the Special Issue Connexins, Innexins, and Pannexins: From Biology to Clinical Targets)
Show Figures

Figure 1

34 pages, 8748 KiB  
Review
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions
by Zhonghua Sun
Biomolecules 2020, 10(11), 1577; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111577 - 20 Nov 2020
Cited by 43 | Viewed by 5555
Abstract
Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed [...] Read more.
Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted. Full article
Show Figures

Figure 1

34 pages, 807 KiB  
Review
Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders
by María S. García-Gutiérrez, Francisco Navarrete, Ani Gasparyan, Amaya Austrich-Olivares, Francisco Sala and Jorge Manzanares
Biomolecules 2020, 10(11), 1575; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111575 - 19 Nov 2020
Cited by 135 | Viewed by 49798
Abstract
The potential therapeutic use of some Cannabis sativa plant compounds has been attracting great interest, especially for managing neuropsychiatric disorders due to the relative lack of efficacy of the current treatments. Numerous studies have been carried out using the main phytocannabinoids, tetrahydrocannabinol (THC) [...] Read more.
The potential therapeutic use of some Cannabis sativa plant compounds has been attracting great interest, especially for managing neuropsychiatric disorders due to the relative lack of efficacy of the current treatments. Numerous studies have been carried out using the main phytocannabinoids, tetrahydrocannabinol (THC) and cannabidiol (CBD). CBD displays an interesting pharmacological profile without the potential for becoming a drug of abuse, unlike THC. In this review, we focused on the anxiolytic, antidepressant, and antipsychotic effects of CBD found in animal and human studies. In rodents, results suggest that the effects of CBD depend on the dose, the strain, the administration time course (acute vs. chronic), and the route of administration. In addition, certain key targets have been related with these CBD pharmacological actions, including cannabinoid receptors (CB1r and CB2r), 5-HT1A receptor and neurogenesis factors. Preliminary clinical trials also support the efficacy of CBD as an anxiolytic, antipsychotic, and antidepressant, and more importantly, a positive risk-benefit profile. These promising results support the development of large-scale studies to further evaluate CBD as a potential new drug for the treatment of these psychiatric disorders. Full article
(This article belongs to the Special Issue The Endocannabinoid System in Health and Disease)
Show Figures

Figure 1

22 pages, 3543 KiB  
Article
Potential Nutraceutical Properties of Leaves from Several Commonly Cultivated Plants
by Hafsa Amat-ur-Rasool, Fenella Symes, David Tooth, Larissa-Nele Schaffert, Ekramy Elmorsy, Mehboob Ahmed, Shahida Hasnain and Wayne G. Carter
Biomolecules 2020, 10(11), 1556; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111556 - 15 Nov 2020
Cited by 24 | Viewed by 4526
Abstract
Chronic dietary ingestion of suitable phytochemicals may assist with limiting or negating neurodegenerative decline. Current therapeutics used to treat Alzheimer disease elicit broad adverse drug reactions, and alternative sources of cholinesterase inhibitors (ChEIs) are required. Herein, we screened methanolic extracts from seven commonly [...] Read more.
Chronic dietary ingestion of suitable phytochemicals may assist with limiting or negating neurodegenerative decline. Current therapeutics used to treat Alzheimer disease elicit broad adverse drug reactions, and alternative sources of cholinesterase inhibitors (ChEIs) are required. Herein, we screened methanolic extracts from seven commonly cultivated plants for their nutraceutical potential; ability to inhibit acetylcholinesterase (AChE) and butyryl-cholinesterase (BuChE), and provision of antioxidant activity through their 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging capabilities. Potential neurotoxicity of plant extracts was examined via application to SHSY-5Y neuroblastoma cells and quantitation of cell viability. Methanolic extracts of Citrus limon (Lemon), Bombax ceiba (Red silk-cotton), Lawsonia inermis (Henna), Eucalyptus globulus (Eucalyptus), Ocimum basilicum (Basil), Citrus reticulata (Mandarin orange), and Mentha spicata (Spearmint) all displayed concentration-dependent inhibition of AChE and BuChE. The majority of extracts inhibited AChE and BuChE to near equipotency, with Henna and Eucalyptus extracts the two most potent ChEIs. All plant extracts were able to scavenge free radicals in a concentration-dependent manner, with Eucalyptus the most potent antioxidant. Toxicity of plant extracts to neuronal cells was concentration dependent, with Eucalyptus also the most toxic extract. Fractionation of plant extracts and analysis by mass spectrometry identified a number of plant polyphenols that might have contributed to the cholinesterase inhibition: 3-caffeoylquinic acid, methyl 4-caffeoylquinate, kaempferol-acetyl-glycoside, quercetin 3-rutinoside, quercetin-acetyl-glycoside, kaempferol 3-O-glucoside, and quercetin 3-O-glucoside. In silico molecular modeling of these polyphenols demonstrated their improved AChE and BuChE binding affinities compared to the current FDA-approved dual ChEI, galantamine. Collectively, all the plant extracts contained nutraceutical agents as antioxidants and ChEIs and, therefore, their chronic consumption may prove beneficial to combat the pathological deficits that accrue in Alzheimer disease. Full article
(This article belongs to the Special Issue Cholinesterase Research)
Show Figures

Figure 1

14 pages, 1289 KiB  
Review
Ferroptosis in Friedreich’s Ataxia: A Metal-Induced Neurodegenerative Disease
by Piergiorgio La Rosa, Sara Petrillo, Maria Teresa Fiorenza, Enrico Silvio Bertini and Fiorella Piemonte
Biomolecules 2020, 10(11), 1551; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111551 - 13 Nov 2020
Cited by 22 | Viewed by 4256
Abstract
Ferroptosis is an iron-dependent form of regulated cell death, arising from the accumulation of lipid-based reactive oxygen species when glutathione-dependent repair systems are compromised. Lipid peroxidation, mitochondrial impairment and iron dyshomeostasis are the hallmark of ferroptosis, which is emerging as a crucial player [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death, arising from the accumulation of lipid-based reactive oxygen species when glutathione-dependent repair systems are compromised. Lipid peroxidation, mitochondrial impairment and iron dyshomeostasis are the hallmark of ferroptosis, which is emerging as a crucial player in neurodegeneration. This review provides an analysis of the most recent advances in ferroptosis, with a special focus on Friedreich’s Ataxia (FA), the most common autosomal recessive neurodegenerative disease, caused by reduced levels of frataxin, a mitochondrial protein involved in iron–sulfur cluster synthesis and antioxidant defenses. The hypothesis is that the iron-induced oxidative damage accumulates over time in FA, lowering the ferroptosis threshold and leading to neuronal cell death and, at last, to cardiac failure. The use of anti-ferroptosis drugs combined with treatments able to activate the antioxidant response will be of paramount importance in FA therapy, such as in many other neurodegenerative diseases triggered by oxidative stress. Full article
Show Figures

Figure 1

17 pages, 2491 KiB  
Article
Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information
by Ai Dozen, Masaaki Komatsu, Akira Sakai, Reina Komatsu, Kanto Shozu, Hidenori Machino, Suguru Yasutomi, Tatsuya Arakaki, Ken Asada, Syuzo Kaneko, Ryu Matsuoka, Daisuke Aoki, Akihiko Sekizawa and Ryuji Hamamoto
Biomolecules 2020, 10(11), 1526; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111526 - 8 Nov 2020
Cited by 52 | Viewed by 6940
Abstract
Image segmentation is the pixel-by-pixel detection of objects, which is the most challenging but informative in the fundamental tasks of machine learning including image classification and object detection. Pixel-by-pixel segmentation is required to apply machine learning to support fetal cardiac ultrasound screening; we [...] Read more.
Image segmentation is the pixel-by-pixel detection of objects, which is the most challenging but informative in the fundamental tasks of machine learning including image classification and object detection. Pixel-by-pixel segmentation is required to apply machine learning to support fetal cardiac ultrasound screening; we have to detect cardiac substructures precisely which are small and change shapes dynamically with fetal heartbeats, such as the ventricular septum. This task is difficult for general segmentation methods such as DeepLab v3+, and U-net. Hence, here we proposed a novel segmentation method named Cropping-Segmentation-Calibration (CSC) that is specific to the ventricular septum in ultrasound videos in this study. CSC employs the time-series information of videos and specific section information to calibrate the output of U-net. The actual sections of the ventricular septum were annotated in 615 frames from 421 normal fetal cardiac ultrasound videos of 211 pregnant women who were screened. The dataset was assigned a ratio of 2:1, which corresponded to a ratio of the training to test data, and three-fold cross-validation was conducted. The segmentation results of DeepLab v3+, U-net, and CSC were evaluated using the values of the mean intersection over union (mIoU), which were 0.0224, 0.1519, and 0.5543, respectively. The results reveal the superior performance of CSC. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence for Medical Research)
Show Figures

Figure 1

20 pages, 3216 KiB  
Review
Hyaluronan: Metabolism and Function
by Takashi Kobayashi, Theerawut Chanmee and Naoki Itano
Biomolecules 2020, 10(11), 1525; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111525 - 7 Nov 2020
Cited by 138 | Viewed by 12383
Abstract
As a major polysaccharide component of the extracellular matrix, hyaluronan plays essential roles in the organization of tissue architecture and the regulation of cellular functions, such as cell proliferation and migration, through interactions with cell-surface receptors and binding molecules. Metabolic pathways for biosynthesis [...] Read more.
As a major polysaccharide component of the extracellular matrix, hyaluronan plays essential roles in the organization of tissue architecture and the regulation of cellular functions, such as cell proliferation and migration, through interactions with cell-surface receptors and binding molecules. Metabolic pathways for biosynthesis and degradation tightly control the turnover rate, concentration, and molecular size of hyaluronan in tissues. Despite the relatively simple chemical composition of this polysaccharide, its wide range of molecular weights mediate diverse functions that depend on molecular size and tissue concentration. Genetic engineering and pharmacological approaches have demonstrated close associations between hyaluronan metabolism and functions in many physiological and pathological events, including morphogenesis, wound healing, and inflammation. Moreover, emerging evidence has suggested that the accumulation of hyaluronan extracellular matrix and fragments due to the altered expression of hyaluronan synthases and hyaluronidases potentiates cancer development and progression by remodeling the tumor microenvironment. In addition to the well-known functions exerted by extracellular hyaluronan, recent metabolomic approaches have also revealed that its synthesis can regulate cellular functions via the reprogramming of cellular metabolism. This review highlights the current advances in knowledge on the biosynthesis and catabolism of hyaluronan and describes the diverse functions associated with hyaluronan metabolism. Full article
(This article belongs to the Special Issue Structural and Functional Approach to the Glycan Diversity)
Show Figures

Figure 1

24 pages, 1511 KiB  
Review
Structural Conservation and Adaptation of the Bacterial Flagella Motor
by Brittany L. Carroll and Jun Liu
Biomolecules 2020, 10(11), 1492; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111492 - 29 Oct 2020
Cited by 25 | Viewed by 9094
Abstract
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella [...] Read more.
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution. Full article
(This article belongs to the Special Issue Perspectives on Bacterial Flagellar Motor)
Show Figures

Figure 1

19 pages, 1107 KiB  
Review
Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers
by Yun-Ju Huang, Kai-Lee Wang, Hsin-Yuan Chen, Yi-Fen Chiang and Shih-Min Hsia
Biomolecules 2020, 10(11), 1481; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10111481 - 25 Oct 2020
Cited by 42 | Viewed by 6932
Abstract
Green tea and its major bioactive component, (−)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review [...] Read more.
Green tea and its major bioactive component, (−)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review summarizes recent knowledge of underlying mechanisms of EGCG on protective roles for endometrial, breast, and ovarian cancers based on both in vitro and in vivo animal studies. EGCG has the ability to regulate many pathways, including the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), inhibition of nuclear factor-κB (NF-κB), and protection against epithelial–mesenchymal transition (EMT). EGCG has also been found to interact with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which affect epigenetic modifications. Finally, the action of EGCG may exert a suppressive effect on gynecological cancers and have beneficial effects on auxiliary therapies for known drugs. Thus, future clinical intervention studies with EGCG will be necessary to more and clear evidence for the benefit to these cancers. Full article
(This article belongs to the Special Issue Biomolecules and Cancer Prevention)
Show Figures

Figure 1

32 pages, 2420 KiB  
Review
Updating Phospholipase A2 Biology
by Makoto Murakami, Hiroyasu Sato and Yoshitaka Taketomi
Biomolecules 2020, 10(10), 1457; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101457 - 19 Oct 2020
Cited by 115 | Viewed by 10718
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids [...] Read more.
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo. Full article
(This article belongs to the Special Issue Phospholipases: From Structure to Biological Function)
Show Figures

Figure 1

22 pages, 1142 KiB  
Review
Ubiquitomics: An Overview and Future
by George Vere, Rachel Kealy, Benedikt M. Kessler and Adan Pinto-Fernandez
Biomolecules 2020, 10(10), 1453; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101453 - 17 Oct 2020
Cited by 22 | Viewed by 6192
Abstract
Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected [...] Read more.
Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected to lysine, perhaps other amino acid side chains, and N-termini of proteins, often including branching of the ubiquitin chains. Understanding this enormous complexity in protein ubiquitination, the so-called ‘ubiquitin code’, in combination with the 1000 enzymes involved in controlling ubiquitin recognition, conjugation, and deconjugation, calls for novel developments in analytical techniques. Here, we review different headways in the field mainly driven by mass spectrometry and chemical biology, referred to as “ubiquitomics”, aiming to understand this system’s biological diversity. Full article
(This article belongs to the Special Issue Looking Back and Ahead: Emerging Concepts in Ubiquitin and UBLs)
Show Figures

Figure 1

16 pages, 817 KiB  
Review
Metabolic Functions of G Protein-Coupled Receptors in Hepatocytes—Potential Applications for Diabetes and NAFLD
by Takefumi Kimura, Sai P. Pydi, Jonathan Pham and Naoki Tanaka
Biomolecules 2020, 10(10), 1445; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101445 - 15 Oct 2020
Cited by 25 | Viewed by 8512
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30–40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. [...] Read more.
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30–40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, liver function is regulated by GPCRs. More than 50 different GPCRs are predicted to be expressed in the mouse liver. However, knowledge of how GPCRs regulate liver metabolism is limited. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In this review, we describe the functions of multiple GPCRs expressed in hepatocytes and their role in metabolic processes. Full article
Show Figures

Figure 1

18 pages, 4222 KiB  
Review
Genetic Alterations in the INK4a/ARF Locus: Effects on Melanoma Development and Progression
by Zizhen Ming, Su Yin Lim and Helen Rizos
Biomolecules 2020, 10(10), 1447; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101447 - 15 Oct 2020
Cited by 20 | Viewed by 4028
Abstract
Genetic alterations in the INK4a/ARF (or CDKN2A) locus have been reported in many cancer types, including melanoma; head and neck squamous cell carcinomas; lung, breast, and pancreatic cancers. In melanoma, loss of function CDKN2A alterations have been identified in approximately 50% of [...] Read more.
Genetic alterations in the INK4a/ARF (or CDKN2A) locus have been reported in many cancer types, including melanoma; head and neck squamous cell carcinomas; lung, breast, and pancreatic cancers. In melanoma, loss of function CDKN2A alterations have been identified in approximately 50% of primary melanomas, in over 75% of metastatic melanomas, and in the germline of 40% of families with a predisposition to cutaneous melanoma. The CDKN2A locus encodes two critical tumor suppressor proteins, the cyclin-dependent kinase inhibitor p16INK4a and the p53 regulator p14ARF. The majority of CDKN2A alterations in melanoma selectively target p16INK4a or affect the coding sequence of both p16INK4a and p14ARF. There is also a subset of less common somatic and germline INK4a/ARF alterations that affect p14ARF, while not altering the syntenic p16INK4a coding regions. In this review, we describe the frequency and types of somatic alterations affecting the CDKN2A locus in melanoma and germline CDKN2A alterations in familial melanoma, and their functional consequences in melanoma development. We discuss the clinical implications of CDKN2A inactivating alterations and their influence on treatment response and resistance. Full article
(This article belongs to the Special Issue Deciphering alternative functions of the INK4a/ARF locus)
Show Figures

Figure 1

26 pages, 1456 KiB  
Review
Microglia in Alzheimer’s Disease in the Context of Tau Pathology
by Juan Ramón Perea, Marta Bolós and Jesús Avila
Biomolecules 2020, 10(10), 1439; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101439 - 14 Oct 2020
Cited by 62 | Viewed by 11593
Abstract
Microglia are the cells that comprise the innate immune system in the brain. First described more than a century ago, these cells were initially assigned a secondary role in the central nervous system (CNS) with respect to the protagonists, neurons. However, the latest [...] Read more.
Microglia are the cells that comprise the innate immune system in the brain. First described more than a century ago, these cells were initially assigned a secondary role in the central nervous system (CNS) with respect to the protagonists, neurons. However, the latest advances have revealed the complexity and importance of microglia in neurodegenerative conditions such as Alzheimer’s disease (AD), the most common form of dementia associated with aging. This pathology is characterized by the accumulation of amyloid-β peptide (Aβ), which forms senile plaques in the neocortex, as well as by the aggregation of hyperphosphorylated tau protein, a process that leads to the development of neurofibrillary tangles (NFTs). Over the past few years, efforts have been focused on studying the interaction between Aβ and microglia, together with the ability of the latter to decrease the levels of this peptide. Given that most clinical trials following this strategy have failed, current endeavors focus on deciphering the molecular mechanisms that trigger the tau-induced inflammatory response of microglia. In this review, we summarize the most recent studies on the physiological and pathological functions of tau protein and microglia. In addition, we analyze the impact of microglial AD-risk genes (APOE, TREM2, and CD33) in tau pathology, and we discuss the role of extracellular soluble tau in neuroinflammation. Full article
(This article belongs to the Special Issue Microglia in Neurodegeneration)
Show Figures

Figure 1

36 pages, 2126 KiB  
Review
The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View
by Bianca Vezzani, Marianna Carinci, Simone Patergnani, Matteo P. Pasquin, Annunziata Guarino, Nimra Aziz, Paolo Pinton, Michele Simonato and Carlotta Giorgi
Biomolecules 2020, 10(10), 1437; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101437 - 13 Oct 2020
Cited by 26 | Viewed by 4713
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation [...] Read more.
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson’s and Alzheimer’s diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation. Full article
(This article belongs to the Special Issue Mitochondria and Central Nervous System Disorders)
Show Figures

Figure 1

28 pages, 3067 KiB  
Review
Role of Glutathione in Cancer: From Mechanisms to Therapies
by Luke Kennedy, Jagdeep K. Sandhu, Mary-Ellen Harper and Miroslava Cuperlovic-Culf
Biomolecules 2020, 10(10), 1429; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101429 - 9 Oct 2020
Cited by 372 | Viewed by 21388
Abstract
Glutathione (GSH) is the most abundant non-protein thiol present at millimolar concentrations in mammalian tissues. As an important intracellular antioxidant, it acts as a regulator of cellular redox state protecting cells from damage caused by lipid peroxides, reactive oxygen and nitrogen species, and [...] Read more.
Glutathione (GSH) is the most abundant non-protein thiol present at millimolar concentrations in mammalian tissues. As an important intracellular antioxidant, it acts as a regulator of cellular redox state protecting cells from damage caused by lipid peroxides, reactive oxygen and nitrogen species, and xenobiotics. Recent studies have highlighted the importance of GSH in key signal transduction reactions as a controller of cell differentiation, proliferation, apoptosis, ferroptosis and immune function. Molecular changes in the GSH antioxidant system and disturbances in GSH homeostasis have been implicated in tumor initiation, progression, and treatment response. Hence, GSH has both protective and pathogenic roles. Although in healthy cells it is crucial for the removal and detoxification of carcinogens, elevated GSH levels in tumor cells are associated with tumor progression and increased resistance to chemotherapeutic drugs. Recently, several novel therapies have been developed to target the GSH antioxidant system in tumors as a means for increased response and decreased drug resistance. In this comprehensive review we explore mechanisms of GSH functionalities and different therapeutic approaches that either target GSH directly, indirectly or use GSH-based prodrugs. Consideration is also given to the computational methods used to describe GSH related processes for in silico testing of treatment effects. Full article
(This article belongs to the Special Issue Targeting Tumor Metabolism: From Mechanisms to Therapies)
Show Figures

Figure 1

17 pages, 2887 KiB  
Article
Modulation of Guanylate Cyclase Activating Protein 1 (GCAP1) Dimeric Assembly by Ca2+ or Mg2+: Hints to Understand Protein Activity
by Francesco Bonì, Valerio Marino, Carlo Bidoia, Eloise Mastrangelo, Alberto Barbiroli, Daniele Dell’Orco and Mario Milani
Biomolecules 2020, 10(10), 1408; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101408 - 5 Oct 2020
Cited by 10 | Viewed by 2941
Abstract
The guanylyl cyclase-activating protein 1, GCAP1, activates or inhibits retinal guanylyl cyclase (retGC) depending on cellular Ca2+ concentrations. Several point mutations of GCAP1 have been associated with impaired calcium sensitivity that eventually triggers progressive retinal degeneration. In this work, we demonstrate that [...] Read more.
The guanylyl cyclase-activating protein 1, GCAP1, activates or inhibits retinal guanylyl cyclase (retGC) depending on cellular Ca2+ concentrations. Several point mutations of GCAP1 have been associated with impaired calcium sensitivity that eventually triggers progressive retinal degeneration. In this work, we demonstrate that the recombinant human protein presents a highly dynamic monomer-dimer equilibrium, whose dissociation constant is influenced by salt concentration and, more importantly, by protein binding to Ca2+ or Mg2+. Based on small-angle X-ray scattering data, protein-protein docking, and molecular dynamics simulations we propose two novel three-dimensional models of Ca2+-bound GCAP1 dimer. The different propensity of human GCAP1 to dimerize suggests structural differences induced by cation binding potentially involved in the regulation of retGC activity. Full article
(This article belongs to the Special Issue Metal Binding Proteins 2020)
Show Figures

Graphical abstract

15 pages, 2096 KiB  
Article
Direct Effects of D-Chiro-Inositol on Insulin Signaling and Glucagon Secretion of Pancreatic Alpha Cells
by Agnese Filippello, Alessandra Scamporrino, Stefania Di Mauro, Roberta Malaguarnera, Antonino Di Pino, Roberto Scicali, Francesco Purrello and Salvatore Piro
Biomolecules 2020, 10(10), 1404; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10101404 - 4 Oct 2020
Cited by 11 | Viewed by 3426
Abstract
The insulin resistance state of pancreatic α-cells seems to be related to glucagon hypersecretion in type 2 diabetes. Treatment that can improve the insulin sensitivity of α-cells could control glucagon levels in patients with diabetes mellitus. The aim of this study was to [...] Read more.
The insulin resistance state of pancreatic α-cells seems to be related to glucagon hypersecretion in type 2 diabetes. Treatment that can improve the insulin sensitivity of α-cells could control glucagon levels in patients with diabetes mellitus. The aim of this study was to investigate the preventive role of D-chiro-inositol (DCI), which has insulin receptor-sensitizer effects on insulin signaling pathways and glucagon secretion in pancreatic α-TC1 clone 6 cells. Cells were chronically treated with palmitate to induce insulin resistance in the presence/absence of DCI. DCI treatment improved the insulin signaling pathway and restored insulin-mediated glucagon suppression in α-TC1-6 cells exposed to palmitate. These results indicate that DCI treatment prevents the insulin resistance of α-TC1-6 cells chronically exposed to palmitate. Our data provide evidence that DCI could be useful to improve the insulin sensitivity of pancreatic α-cells in diabetes treatment. Full article
(This article belongs to the Special Issue Pancreatic Islets of Langerhans: Not Only Beta-Cells)
Show Figures

Figure 1

19 pages, 2458 KiB  
Review
Mitochondrial Potassium Channels as Druggable Targets
by Antoni Wrzosek, Bartłomiej Augustynek, Monika Żochowska and Adam Szewczyk
Biomolecules 2020, 10(8), 1200; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081200 - 18 Aug 2020
Cited by 47 | Viewed by 5796
Abstract
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been [...] Read more.
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been shown that inhibition of the mitochondrial Kv1.3 channel may lead to cancer cell death. Hence, in this paper, we examine the concept of the druggability of mitochondrial potassium channels. To what extent are mitochondrial potassium channels an important, novel, and promising drug target in various organs and tissues? The druggability of mitochondrial potassium channels will be discussed within the context of channel molecular identity, the specificity of potassium channel openers and inhibitors, and the unique regulatory properties of mitochondrial potassium channels. Future prospects of the druggability concept of mitochondrial potassium channels will be evaluated in this paper. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

36 pages, 1810 KiB  
Review
Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases
by Veronika Vozáriková, Nina Kunová, Jacob A. Bauer, Ján Frankovský, Veronika Kotrasová, Katarína Procházková, Vladimíra Džugasová, Eva Kutejová, Vladimír Pevala, Jozef Nosek and Ľubomír Tomáška
Biomolecules 2020, 10(8), 1193; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081193 - 16 Aug 2020
Cited by 13 | Viewed by 4727
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression [...] Read more.
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level. Full article
(This article belongs to the Special Issue HMG Proteins from Molecules to Disease)
Show Figures

Figure 1

16 pages, 5690 KiB  
Review
Peroxisomal Cofactor Transport
by Anastasija Plett, Lennart Charton and Nicole Linka
Biomolecules 2020, 10(8), 1174; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081174 - 12 Aug 2020
Cited by 14 | Viewed by 4205
Abstract
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum [...] Read more.
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5′-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

15 pages, 1246 KiB  
Article
Targeting Endothelial Dysfunction in Eight Extreme-Critically Ill Patients with COVID-19 Using the Anti-Adrenomedullin Antibody Adrecizumab (HAM8101)
by Mahir Karakas, Dominik Jarczak, Martin Becker, Kevin Roedl, Marylyn M. Addo, Frauke Hein, Andreas Bergmann, Jens Zimmermann, Tim-Philipp Simon, Gernot Marx, Marc Lütgehetmann, Axel Nierhaus and Stefan Kluge
Biomolecules 2020, 10(8), 1171; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081171 - 11 Aug 2020
Cited by 21 | Viewed by 6352
Abstract
Recently, the stabilization of the endothelium has been explicitly identified as a therapeutic goal in coronavirus disease 2019 (COVID-19). Adrecizumab (HAM8101) is a first-in-class humanized monoclonal anti-Adrenomedullin (anti-ADM) antibody, targeting the sepsis- and inflammation-based vascular and capillary leakage. Within a “treatment on a [...] Read more.
Recently, the stabilization of the endothelium has been explicitly identified as a therapeutic goal in coronavirus disease 2019 (COVID-19). Adrecizumab (HAM8101) is a first-in-class humanized monoclonal anti-Adrenomedullin (anti-ADM) antibody, targeting the sepsis- and inflammation-based vascular and capillary leakage. Within a “treatment on a named-patient basis” approach, Adrecizumab was administered to eight extreme-critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS). The patients received a single dose of Adrecizumab, which was administered between 1 and 3 days after the initiation of mechanical ventilation. The SOFA (median 12.5) and SAPS-II (median 39) scores clearly documented the population at highest risk. Moreover, six of the patients suffered from acute renal failure, of whom five needed renal replacement therapy. The length of follow-up ranged between 13 and 27 days. Following the Adrecizumab administration, one patient in the low-dose group died at day 4 due to fulminant pulmonary embolism, while four were in stable condition, and three were discharged from the intensive care unit (ICU). Within 12 days, the SOFA score, as well as the disease severity score (range 0–16, mirroring critical resources in the ICU, with higher scores indicating more severe illness), decreased in five out of the seven surviving patients (in all high-dose patients). The PaO2/FiO2 increased within 12 days, while the inflammatory parameters C-reactive protein, procalcitonin, and interleukin-6 decreased. Importantly, the mortality was lower than expected and calculated by the SOFA score. In conclusion, in this preliminary uncontrolled case series of eight shock patients with life-threatening COVID-19 and ARDS, the administration of Adrecizumab was followed by a favorable outcome. Although the non-controlled design and the small sample size preclude any definitive statement about the potential efficacy of Adrecizumab in critically ill COVID-19 patients, the results of this case series are encouraging. Full article
(This article belongs to the Special Issue Biomolecules for Translational Approaches in Cardiology)
Show Figures

Figure 1

39 pages, 7906 KiB  
Review
Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin
by Svenja Kleiser and Alexander Nyström
Biomolecules 2020, 10(8), 1170; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081170 - 11 Aug 2020
Cited by 19 | Viewed by 4950
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane—the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles [...] Read more.
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane—the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases. Full article
Show Figures

Figure 1

19 pages, 1272 KiB  
Review
Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan
by Jane L. Buchanan and Eric B. Taylor
Biomolecules 2020, 10(8), 1162; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081162 - 8 Aug 2020
Cited by 15 | Viewed by 4827
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, [...] Read more.
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

24 pages, 1431 KiB  
Review
Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome
by Amanda B. Abildgaard, Sarah K. Gersing, Sven Larsen-Ledet, Sofie V. Nielsen, Amelie Stein, Kresten Lindorff-Larsen and Rasmus Hartmann-Petersen
Biomolecules 2020, 10(8), 1141; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081141 - 4 Aug 2020
Cited by 25 | Viewed by 5419
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together [...] Read more.
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review. Full article
(This article belongs to the Special Issue Ubiquitin-Like Modifiers and Their Diverse Impact on Cell Signaling)
Show Figures

Graphical abstract

16 pages, 1884 KiB  
Review
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction
by Amany Tawfik, Yara A. Samra, Nehal M. Elsherbiny and Mohamed Al-Shabrawey
Biomolecules 2020, 10(8), 1119; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081119 - 29 Jul 2020
Cited by 39 | Viewed by 5794
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such [...] Read more.
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy. Full article
(This article belongs to the Special Issue Homocysteine: Biochemistry, Molecular Biology, and Role in Disease)
Show Figures

Figure 1

19 pages, 2046 KiB  
Article
Protein–Protein Interactions Mediated by Intrinsically Disordered Protein Regions Are Enriched in Missense Mutations
by Eric T. C. Wong, Victor So, Mike Guron, Erich R. Kuechler, Nawar Malhis, Jennifer M. Bui and Jörg Gsponer
Biomolecules 2020, 10(8), 1097; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081097 - 24 Jul 2020
Cited by 22 | Viewed by 4714
Abstract
Because proteins are fundamental to most biological processes, many genetic diseases can be traced back to single nucleotide variants (SNVs) that cause changes in protein sequences. However, not all SNVs that result in amino acid substitutions cause disease as each residue is under [...] Read more.
Because proteins are fundamental to most biological processes, many genetic diseases can be traced back to single nucleotide variants (SNVs) that cause changes in protein sequences. However, not all SNVs that result in amino acid substitutions cause disease as each residue is under different structural and functional constraints. Influential studies have shown that protein–protein interaction interfaces are enriched in disease-associated SNVs and depleted in SNVs that are common in the general population. These studies focus primarily on folded (globular) protein domains and overlook the prevalent class of protein interactions mediated by intrinsically disordered regions (IDRs). Therefore, we investigated the enrichment patterns of missense mutation-causing SNVs that are associated with disease and cancer, as well as those present in the healthy population, in structures of IDR-mediated interactions with comparisons to classical globular interactions. When comparing the different categories of interaction interfaces, division of the interface regions into solvent-exposed rim residues and buried core residues reveal distinctive enrichment patterns for the various types of missense mutations. Most notably, we demonstrate a strong enrichment at the interface core of interacting IDRs in disease mutations and its depletion in neutral ones, which supports the view that the disruption of IDR interactions is a mechanism underlying many diseases. Intriguingly, we also found an asymmetry across the IDR interaction interface in the enrichment of certain missense mutation types, which may hint at an increased variant tolerance and urges further investigations of IDR interactions. Full article
(This article belongs to the Special Issue The Amazing World of IDPs in Human Diseases)
Show Figures

Figure 1

19 pages, 4801 KiB  
Article
Glutenin and Gliadin, a Piece in the Puzzle of their Structural Properties in the Cell Described through Monte Carlo Simulations
by Joel Markgren, Mikael Hedenqvist, Faiza Rasheed, Marie Skepö and Eva Johansson
Biomolecules 2020, 10(8), 1095; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081095 - 23 Jul 2020
Cited by 29 | Viewed by 5218
Abstract
Gluten protein crosslinking is a predetermined process where specific intra- and intermolecular disulfide bonds differ depending on the protein and cysteine motif. In this article, all-atom Monte Carlo simulations were used to understand the formation of disulfide bonds in gliadins and low molecular [...] Read more.
Gluten protein crosslinking is a predetermined process where specific intra- and intermolecular disulfide bonds differ depending on the protein and cysteine motif. In this article, all-atom Monte Carlo simulations were used to understand the formation of disulfide bonds in gliadins and low molecular weight glutenin subunits (LMW-GS). The two intrinsically disordered proteins appeared to contain mostly turns and loops and showed “self-avoiding walk” behavior in water. Cysteine residues involved in intramolecular disulfide bonds were located next to hydrophobic peptide sections in the primary sequence. Hydrophobicity of neighboring peptide sections, synthesis chronology, and amino acid chain flexibility were identified as important factors in securing the specificity of intramolecular disulfide bonds formed directly after synthesis. The two LMW-GS cysteine residues that form intermolecular disulfide bonds were positioned next to peptide sections of lower hydrophobicity, and these cysteine residues are more exposed to the cytosolic conditions, which influence the crosslinking behavior. In addition, coarse-grained Monte Carlo simulations revealed that the protein folding is independent of ionic strength. The potential molecular behavior associated with disulfide bonds, as reported here, increases the biological understanding of seed storage protein function and provides opportunities to tailor their functional properties for different applications. Full article
Show Figures

Graphical abstract

14 pages, 1156 KiB  
Review
Analytical Methods for the Determination of Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) in Biological Samples, Plants and Foods
by Maroula G. Kokotou
Biomolecules 2020, 10(8), 1092; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081092 - 22 Jul 2020
Cited by 15 | Viewed by 4361
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) constitute a class of recently identified novel lipids exhibiting anti-diabetic and anti-inflammatory effects. Due to their high biological significance, a tremendous effort has been devoted to the development of analytical methods for the detection and [...] Read more.
Fatty acid esters of hydroxy fatty acids (FAHFAs) constitute a class of recently identified novel lipids exhibiting anti-diabetic and anti-inflammatory effects. Due to their high biological significance, a tremendous effort has been devoted to the development of analytical methods for the detection and quantitation of FAHFAs during the last five years. The analysis of FAHFAs is very challenging due to the great number of possible regio-isomers arising from the great number of possible combinations of FAs with HFAs, and the low abundancies of FAHFAs in biological samples. The aim of this review article is to summarize all the cutting-edge analytical methodologies for the determination of FAHFAs in biological samples, plant tissues and food matrices, with emphasis on extraction and analysis steps. All the analytical methodologies rely on the use of liquid chromatography–mass spectrometry (LC-MS), providing high sensitivity due to the MS detection. Powerful and robust analytical methodologies may highly contribute in studying FAHFAs levels under various biomedical conditions, and facilitate our understanding of the role of these lipid species in physiological and pathological conditions. Full article
(This article belongs to the Collection Bioactive Lipids in Inflammation, Diabetes and Cancer)
Show Figures

Graphical abstract

15 pages, 583 KiB  
Review
Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers
by Taku Fujimura and Setsuya Aiba
Biomolecules 2020, 10(8), 1087; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10081087 - 22 Jul 2020
Cited by 32 | Viewed by 3554
Abstract
Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from monocytes [...] Read more.
Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from monocytes develop into functional, fully activated macrophages, and TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment. Since TAMs express PD1 to maintain the immunosuppressive M2 phenotype by PD1/PD-L1 signaling from tumor cells, and the blockade of PD1/PD-L1 signaling by anti-PD1 antibodies (Abs) activate and re-polarize TAMs into immunoreactive M1 phenotypes, TAMs represent a potential target for anti-PD1 Abs. The main population of TAMs comprises CD163+ M2 macrophages, and CD163+ TAMs release soluble (s)CD163 and several proinflammatory chemokines (CXCL5, CXCL10, CCL19, etc.) as a result of TAM activation to induce an immunosuppressive tumor microenvironment together with other immunosuppressive cells. Since direct blockade of PD1/PD-L1 signaling between tumor cells and tumor-infiltrating T cells (both effector T cells and Tregs) is mandatory for inducing an anti-immune response by anti-PD1 Abs, anti-PD1 Abs need to reach the tumor microenvironment to induce anti-immune responses in the tumor-bearing host. Taken together, TAM-related factors could offer a biomarker for anti-PD1 Ab-based immunotherapy. Understanding the crosstalk between TAMs and immunosuppressive cells is important for optimizing PD1 Ab-based immunotherapy. Full article
(This article belongs to the Collection Recent Advances in Cancer Immunotherapy)
Show Figures

Figure 1

19 pages, 2016 KiB  
Review
The Disordered Cellular Multi-Tasker WIP and Its Protein–Protein Interactions: A Structural View
by Chana G. Sokolik, Nasrin Qassem and Jordan H. Chill
Biomolecules 2020, 10(7), 1084; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10071084 - 21 Jul 2020
Cited by 7 | Viewed by 3662
Abstract
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein–protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function [...] Read more.
WASp-interacting protein (WIP), a regulator of actin cytoskeleton assembly and remodeling, is a cellular multi-tasker and a key member of a network of protein–protein interactions, with significant impact on health and disease. Here, we attempt to complement the well-established understanding of WIP function from cell biology studies, summarized in several reviews, with a structural description of WIP interactions, highlighting works that present a molecular view of WIP’s protein–protein interactions. This provides a deeper understanding of the mechanisms by which WIP mediates its biological functions. The fully disordered WIP also serves as an intriguing example of how intrinsically disordered proteins (IDPs) exert their function. WIP consists of consecutive small functional domains and motifs that interact with a host of cellular partners, with a striking preponderance of proline-rich motif capable of interactions with several well-recognized binding partners; indeed, over 30% of the WIP primary structure are proline residues. We focus on the binding motifs and binding interfaces of three important WIP segments, the actin-binding N-terminal domain, the central domain that binds SH3 domains of various interaction partners, and the WASp-binding C-terminal domain. Beyond the obvious importance of a more fundamental understanding of the biology of this central cellular player, this approach carries an immediate and highly beneficial effect on drug-design efforts targeting WIP and its binding partners. These factors make the value of such structural studies, challenging as they are, readily apparent. Full article
(This article belongs to the Special Issue The Amazing World of IDPs in Human Diseases)
Show Figures

Figure 1

18 pages, 991 KiB  
Review
The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier
by Joséphine Zangari, Francesco Petrelli, Benoît Maillot and Jean-Claude Martinou
Biomolecules 2020, 10(7), 1068; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10071068 - 17 Jul 2020
Cited by 58 | Viewed by 19743
Abstract
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the [...] Read more.
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

15 pages, 1172 KiB  
Review
The Hippo Pathway in Cardiac Regeneration and Homeostasis: New Perspectives for Cell-Free Therapy in the Injured Heart
by Mingjie Zheng, Joan Jacob, Shao-Hsi Hung and Jun Wang
Biomolecules 2020, 10(7), 1024; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10071024 - 10 Jul 2020
Cited by 19 | Viewed by 4758
Abstract
Intractable cardiovascular diseases are leading causes of mortality around the world. Adult mammalian hearts have poor regenerative capacity and are not capable of self-repair after injury. Recent studies of cell-free therapeutics such as those designed to stimulate endogenous cardiac regeneration have uncovered new [...] Read more.
Intractable cardiovascular diseases are leading causes of mortality around the world. Adult mammalian hearts have poor regenerative capacity and are not capable of self-repair after injury. Recent studies of cell-free therapeutics such as those designed to stimulate endogenous cardiac regeneration have uncovered new feasible therapeutic avenues for cardiac repair. The Hippo pathway, a fundamental pathway with pivotal roles in cell proliferation, survival and differentiation, has tremendous potential for therapeutic manipulation in cardiac regeneration. In this review, we summarize the most recent studies that have revealed the function of the Hippo pathway in heart regeneration and homeostasis. In particular, we discuss the molecular mechanisms of how the Hippo pathway maintains cardiac homeostasis by directing cardiomyocyte chromatin remodeling and regulating the cell-cell communication between cardiomyocytes and non-cardiomyocytes in the heart. Full article
Show Figures

Figure 1

15 pages, 503 KiB  
Review
Dopamine D3 Receptor Heteromerization: Implications for Neuroplasticity and Neuroprotection
by Federica Bono, Veronica Mutti, Chiara Fiorentini and Cristina Missale
Biomolecules 2020, 10(7), 1016; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10071016 - 9 Jul 2020
Cited by 27 | Viewed by 7166
Abstract
The dopamine (DA) D3 receptor (D3R) plays a pivotal role in the control of several functions, including motor activity, rewarding and motivating behavior and several aspects of cognitive functions. Recently, it has been reported that the D3R is also involved in the regulation [...] Read more.
The dopamine (DA) D3 receptor (D3R) plays a pivotal role in the control of several functions, including motor activity, rewarding and motivating behavior and several aspects of cognitive functions. Recently, it has been reported that the D3R is also involved in the regulation of neuronal development, in promoting structural plasticity and in triggering key intracellular events with neuroprotective potential. A new role for D3R-dependent neurotransmission has thus been proposed both in preserving DA neuron homeostasis in physiological conditions and in preventing pathological alterations that may lead to neurodegeneration. Interestingly, there is evidence that nicotinic acetylcholine receptors (nAChR) located on DA neurons also provide neurotrophic support to DA neurons, an effect requiring functional D3R and suggesting the existence of a positive cross-talk between these receptor systems. Increasing evidence suggests that, as with the majority of G protein-coupled receptors (GPCR), the D3R directly interacts with other receptors to form new receptor heteromers with unique functional and pharmacological properties. Among them, we recently identified a receptor heteromer containing the nAChR and the D3R as the molecular effector of nicotine-mediated neurotrophic effects. This review summarizes the functional and pharmacological characteristics of D3R, including the capability to form active heteromers as pharmacological targets for specific neurodegenerative disorders. In particular, the molecular and functional features of the D3R-nAChR heteromer will be especially discussed since it may represent a possible key etiologic effector for DA-related pathologies, such as Parkinson’s disease (PD), and a target for drug design. Full article
(This article belongs to the Special Issue Dopamine Receptor in Health and Diseases)
Show Figures

Figure 1

13 pages, 1624 KiB  
Review
Biogenesis of Mitochondrial Metabolite Carriers
by Patrick Horten, Lilia Colina-Tenorio and Heike Rampelt
Biomolecules 2020, 10(7), 1008; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10071008 - 7 Jul 2020
Cited by 30 | Viewed by 4939
Abstract
Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors [...] Read more.
Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

40 pages, 1674 KiB  
Review
JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future
by Jacopo Angelini, Rossella Talotta, Rossana Roncato, Giulia Fornasier, Giorgia Barbiero, Lisa Dal Cin, Serena Brancati and Francesco Scaglione
Biomolecules 2020, 10(7), 1002; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10071002 - 5 Jul 2020
Cited by 101 | Viewed by 12749
Abstract
Janus kinase inhibitors (JAKi) belong to a new class of oral targeted disease-modifying drugs which have recently revolutionized the therapeutic panorama of rheumatoid arthritis (RA) and other immune-mediated diseases, placing alongside or even replacing conventional and biological drugs. JAKi are characterized by a [...] Read more.
Janus kinase inhibitors (JAKi) belong to a new class of oral targeted disease-modifying drugs which have recently revolutionized the therapeutic panorama of rheumatoid arthritis (RA) and other immune-mediated diseases, placing alongside or even replacing conventional and biological drugs. JAKi are characterized by a novel mechanism of action, consisting of the intracellular interruption of the JAK-STAT pathway crucially involved in the immune response. The aim of this narrative review is to globally report the most relevant pharmacological features and clinical outcomes of the developed and incoming JAKi for RA, based on the available preclinical and clinical evidence. A total of 219 papers, including narrative and systematic reviews, randomized controlled trials (RCTs), observational studies, case reports, guidelines, and drug factsheets, were selected. The efficacy and safety profile of both the first generation JAKi (baricitinib and tofacitinib) and the second generation JAKi (upadacitinib, filgotinib, peficitinib, decernotinib and itacitinib) were compared and discussed. Results from RCTs and real-life data are encouraging and outline a rapid onset of the pharmacologic effects, which are maintained during the time. Their efficacy and safety profile are comparable or superior to those of biologic agents and JAKi proved to be efficacious when given as monotherapy. Finally, the manufacturing of JAKi is relatively easier and cheaper than that of biologics, thus increasing the number of compounds being formulated and tested for clinical use. Full article
(This article belongs to the Special Issue Pathogenesis of Arthritis)
Show Figures

Figure 1

25 pages, 1070 KiB  
Review
Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology
by Massimo Bonora, Simone Patergnani, Daniela Ramaccini, Giampaolo Morciano, Gaia Pedriali, Asrat Endrias Kahsay, Esmaa Bouhamida, Carlotta Giorgi, Mariusz R. Wieckowski and Paolo Pinton
Biomolecules 2020, 10(7), 998; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10070998 - 4 Jul 2020
Cited by 85 | Viewed by 9335
Abstract
Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse [...] Read more.
Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms. The induction of MPT is mostly dependent on mitochondrial reactive oxygen species (ROS) and Ca2+, but is also dependent on the metabolic stage of the affected cell and signaling events. Therefore, since its discovery in the late 1970s, the role of MPT in human pathology has been heavily investigated. Here, we summarize the most significant findings corroborating a role for MPT in the etiology of a spectrum of human diseases, including diseases characterized by acute or chronic loss of adult cells and those characterized by neoplastic initiation. Full article
(This article belongs to the Special Issue Mitochondrial Transport Proteins)
Show Figures

Figure 1

34 pages, 1376 KiB  
Review
UPF1-Mediated RNA Decay—Danse Macabre in a Cloud
by Daria Lavysh and Gabriele Neu-Yilik
Biomolecules 2020, 10(7), 999; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10070999 - 4 Jul 2020
Cited by 19 | Viewed by 5941
Abstract
Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted [...] Read more.
Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted phenomenon with high variability with respect to substrate RNAs, degradation efficiency, effector proteins and decay-triggering RNA features. Despite increasing knowledge of the mechanistic details, it seems ever more difficult to define NMD and to clearly distinguish it from a growing list of other UPF1-mediated RNA decay pathways (UMDs). With a focus on mammalian NMD, we here critically examine the prevailing NMD models and the gaps and inconsistencies in these models. By exploring the minimal requirements for NMD and other UMDs, we try to elucidate whether they are separate and definable pathways, or rather variations of the same phenomenon. Finally, we suggest that the operating principle of the UPF1-mediated decay family could be considered similar to that of a computing cloud providing a flexible infrastructure with rapid elasticity and dynamic access according to specific user needs. Full article
(This article belongs to the Special Issue Ribonucleoprotein Particles (RNPs): From Structure to Function)
Show Figures

Graphical abstract

22 pages, 8209 KiB  
Review
Cell-Adhesion Properties of β-Subunits in the Regulation of Cardiomyocyte Sodium Channels
by Samantha C. Salvage, Christopher L.-H. Huang and Antony P. Jackson
Biomolecules 2020, 10(7), 989; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10070989 - 1 Jul 2020
Cited by 14 | Viewed by 5481
Abstract
Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression [...] Read more.
Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory β-subunits (β1–4) bind to the Nav channel α-subunits. Previous work has emphasised the β-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on β-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the β-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between β1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes. Full article
Show Figures

Figure 1

32 pages, 2345 KiB  
Review
Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation
by Yves Jossin
Biomolecules 2020, 10(6), 964; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10060964 - 26 Jun 2020
Cited by 98 | Viewed by 8916
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human [...] Read more.
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders. Full article
(This article belongs to the Special Issue Reelin, a Hub Protein during Nervous System Development?)
Show Figures

Figure 1

28 pages, 1235 KiB  
Review
The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives
by Emiliano Panieri, Pelin Telkoparan-Akillilar, Sibel Suzen and Luciano Saso
Biomolecules 2020, 10(5), 791; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10050791 - 20 May 2020
Cited by 54 | Viewed by 5826
Abstract
The NRF2/KEAP1 pathway is a fundamental signaling cascade that controls multiple cytoprotective responses through the induction of a complex transcriptional program that ultimately renders cancer cells resistant to oxidative, metabolic and therapeutic stress. Interestingly, accumulating evidence in recent years has indicated that metabolic [...] Read more.
The NRF2/KEAP1 pathway is a fundamental signaling cascade that controls multiple cytoprotective responses through the induction of a complex transcriptional program that ultimately renders cancer cells resistant to oxidative, metabolic and therapeutic stress. Interestingly, accumulating evidence in recent years has indicated that metabolic reprogramming is closely interrelated with the regulation of redox homeostasis, suggesting that the disruption of NRF2 signaling might represent a valid therapeutic strategy against a variety of solid and hematologic cancers. These aspects will be the focus of the present review. Full article
Show Figures

Figure 1

32 pages, 1311 KiB  
Review
Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace
by Maria Soledad Ramirez, Robert A. Bonomo and Marcelo E. Tolmasky
Biomolecules 2020, 10(5), 720; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10050720 - 6 May 2020
Cited by 122 | Viewed by 11807
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due [...] Read more.
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates. Full article
(This article belongs to the Special Issue Beta-Lactamases: Sequence, Structure, Function, and Inhibition)
Show Figures

Figure 1

30 pages, 1274 KiB  
Review
Novel Applications of Mesenchymal Stem Cell-Derived Exosomes for Myocardial Infarction Therapeutics
by Sho Joseph Ozaki Tan, Juliana Ferreria Floriano, Laura Nicastro, Costanza Emanueli and Francesco Catapano
Biomolecules 2020, 10(5), 707; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10050707 - 2 May 2020
Cited by 57 | Viewed by 6830
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs [...] Read more.
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts. Full article
Show Figures

Figure 1

82 pages, 15127 KiB  
Review
Cystathionine-β-synthase: Molecular Regulation and Pharmacological Inhibition
by Karim Zuhra, Fiona Augsburger, Tomas Majtan and Csaba Szabo
Biomolecules 2020, 10(5), 697; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10050697 - 30 Apr 2020
Cited by 121 | Viewed by 11816
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen [...] Read more.
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used “CBS inhibitors” (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models. Full article
Show Figures

Graphical abstract

12 pages, 1039 KiB  
Article
A Fluorescence-Based Method to Measure ADP/ATP Exchange of Recombinant Adenine Nucleotide Translocase in Liposomes
by Jürgen Kreiter, Eric Beitz and Elena E. Pohl
Biomolecules 2020, 10(5), 685; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10050685 - 29 Apr 2020
Cited by 10 | Viewed by 4505
Abstract
Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating [...] Read more.
Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating substrate transport is challenging. Currently, mainly radioactively labeled substrates are used, which are very expensive and require stringent precautions during their preparation and use. We present and evaluate a fluorescence-based method using Magnesium Green (MgGrTM), a Mg2+-sensitive dye suitable for measurement in liposomes. Given the different binding affinities of Mg2+ for ATP and ADP, changes in their concentrations can be detected. We obtained an ADP/ATP exchange rate of 3.49 ± 0.41 mmol/min/g of recombinant ANT1 reconstituted into unilamellar liposomes, which is comparable to values measured in mitochondria and proteoliposomes using a radioactivity assay. ADP/ATP exchange calculated from MgGrTM fluorescence solely depends on the ANT1 content in liposomes and is inhibited by the ANT-specific inhibitors, bongkrekic acid and carboxyatractyloside. The application of MgGrTM to investigate ADP/ATP exchange rates contributes to our understanding of ANT function in mitochondria and paves the way for the design of other substrate transport assays. Full article
Show Figures

Figure 1

19 pages, 4219 KiB  
Article
Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18
by Alexander Neumann, Viktor Engel, Andhika B. Mahardhika, Clara T. Schoeder, Vigneshwaran Namasivayam, Katarzyna Kieć-Kononowicz and Christa E. Müller
Biomolecules 2020, 10(5), 686; https://0-doi-org.brum.beds.ac.uk/10.3390/biom10050686 - 29 Apr 2020
Cited by 14 | Viewed by 5583
Abstract
GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still [...] Read more.
GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target. Full article
Show Figures

Graphical abstract

Back to TopTop