Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Photocatalytic Degradation of Sulfolane Using a LED-Based Photocatalytic Treatment System
Catalysts 2021, 11(5), 624; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11050624 - 12 May 2021
Cited by 4
Abstract
Sulfolane is an emerging industrial pollutant detected in the environments near many oil and gas plants in North America. So far, numerous advanced oxidation processes have been investigated to treat sulfolane in aqueous media. However, there is only a few papers that discuss [...] Read more.
Sulfolane is an emerging industrial pollutant detected in the environments near many oil and gas plants in North America. So far, numerous advanced oxidation processes have been investigated to treat sulfolane in aqueous media. However, there is only a few papers that discuss the degradation of sulfolane using photocatalysis. In this study, photocatalytic degradation of sulfolane using titanium dioxide (TiO2) and reduced graphene oxide TiO2 composite (RGO-TiO2) in a light-emitting diode (LED) photoreactor was investigated. The impact of different waters (ultrapure water, tap water, and groundwater) and type of irradiation (UVA-LED and mercury lamp) on photocatalytic degradation of sulfolane were also studied. In addition, a reusability test was conducted for the photocatalyst to examine the degradation of sulfolane in three consecutive cycles with new batches of sulfolane-contaminated water. The results show that LED-based photocatalysis was effective in degrading sulfolane in waters even after three photocatalytic cycles. UVA-LEDs displayed more efficient use of photon energy when compared with the mercury lamps as they have a narrow emission spectrum coinciding with the absorption of TiO2. The combination of UVA-LED and TiO2 yielded better performance than UVA-LED and RGO-TiO2 for the degradation of sulfolane. Much lower sulfolane degradation rates were observed in tap water and groundwater than ultrapure water. Full article
Show Figures

Figure 1

Article
Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions
Catalysts 2021, 11(5), 607; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11050607 - 10 May 2021
Cited by 4
Abstract
With the introduction of gasoline particulate filters (GPFs), the particle number (PN) emissions of gasoline direct-injection (GDI) vehicles are below the European regulatory limit of 6 × 1011 p/km under certification conditions. Nevertheless, concerns have been raised regarding emission levels at the [...] Read more.
With the introduction of gasoline particulate filters (GPFs), the particle number (PN) emissions of gasoline direct-injection (GDI) vehicles are below the European regulatory limit of 6 × 1011 p/km under certification conditions. Nevertheless, concerns have been raised regarding emission levels at the boundaries of ambient and driving conditions of the real-driving emissions (RDE) regulation. A Euro 6d-Temp GDI vehicle with a GPF was tested on the road and in the laboratory with cycles simulating congested urban traffic, dynamic driving, and towing a trailer uphill at 85% of maximum payload. The ambient temperatures covered a range from −30 to 50 °C. The solid PN emissions were 10 times lower than the PN limit under most conditions and temperatures. Only dynamic driving that regenerated the filter passively, and for the next cycle resulted in relatively high emissions although they were still below the limit. The results of this study confirmed the effectiveness of GPFs in controlling PN emissions under a wide range of conditions. Full article
Show Figures

Figure 1

Article
The Effect of Co Incorporation on the CO Oxidation Activity of LaFe1−xCoxO3 Perovskites
Catalysts 2021, 11(5), 550; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11050550 - 27 Apr 2021
Cited by 4
Abstract
Perovskite oxides are versatile materials due to their wide variety of compositions offering promising catalytic properties, especially in oxidation reactions. In the presented study, LaFe1−xCoxO3 perovskites were synthesized by hydroxycarbonate precursor co-precipitation and thermal decomposition thereof. Precursor and [...] Read more.
Perovskite oxides are versatile materials due to their wide variety of compositions offering promising catalytic properties, especially in oxidation reactions. In the presented study, LaFe1−xCoxO3 perovskites were synthesized by hydroxycarbonate precursor co-precipitation and thermal decomposition thereof. Precursor and calcined materials were studied by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TG), and X-ray powder diffraction (XRD). The calcined catalysts were in addition studied by transmission electron microscopy (TEM) and N2 physisorption. The obtained perovskites were applied as catalysts in transient CO oxidation, and in operando studies of CO oxidation in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A pronounced increase in activity was already observed by incorporating 5% cobalt into the structure, which continued, though not linearly, at higher loadings. This could be most likely due to the enhanced redox properties as inferred by H2-temperature programmed reduction (H2-TPR). Catalysts with higher Co contents showing higher activities suffered less from surface deactivation related to carbonate poisoning. Despite the similarity in the crystalline structures upon Co incorporation, we observed a different promotion or suppression of various carbonate-related bands, which could indicate different surface properties of the catalysts, subsequently resulting in the observed non-linear CO oxidation activity trend at higher Co contents. Full article
(This article belongs to the Special Issue Surface Design of Metal Oxide Catalysts)
Show Figures

Graphical abstract

Article
Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor
Catalysts 2021, 11(4), 512; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11040512 - 19 Apr 2021
Cited by 4
Abstract
The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made [...] Read more.
The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made use of a yeast extract as the microbial substrate and Pb(NO3)2 as the source of Pb(II). The UASB reactor exhibited removal efficiencies of between 90 and 100% for the inlet Pb concentrations from 80 to 2000 ppm and a maximum removal rate of 1948.4 mg/(L·d) was measured. XRD and XPS analyses of the precipitate revealed the presence of Pb0, PbO, PbS and PbSO4. Supporting experimental work carried out included growth measurements, pH, oxidation–reduction potentials and nitrate levels. Full article
(This article belongs to the Special Issue Biocatalysis for Green Chemistry)
Show Figures

Figure 1

Article
A Thermally Conductive Pt/AAO Catalyst for Hydrogen Passive Autocatalytic Recombination
Catalysts 2021, 11(4), 491; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11040491 - 12 Apr 2021
Cited by 4
Abstract
In this study, a Pt/anodized aluminum oxide (AAO) catalyst was prepared by the anodization of an Al alloy (Al6082, 97.5% Al), followed by the incorporation of Pt via an incipient wet impregnation method. Then, the Pt/AAO catalyst was evaluated for autocatalytic hydrogen recombination. [...] Read more.
In this study, a Pt/anodized aluminum oxide (AAO) catalyst was prepared by the anodization of an Al alloy (Al6082, 97.5% Al), followed by the incorporation of Pt via an incipient wet impregnation method. Then, the Pt/AAO catalyst was evaluated for autocatalytic hydrogen recombination. The Pt/AAO catalyst’s morphological characteristics were determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average Pt particle size was determined to be 3.0 ± 0.6 nm. This Pt/AAO catalyst was tested for the combustion of lean hydrogen (0.5–4 vol% H2 in the air) in a recombiner section testing station. The thermal distribution throughout the catalytic surface was investigated at 3 vol% hydrogen (H2) using an infrared camera. The Al/AAO system had a high thermal conductivity, which prevents the formation of hotspots (areas where localized surface temperature is higher than an average temperature across the entire catalyst surface). In turn, the Pt stability was enhanced during catalytic hydrogen combustion (CHC). A temperature gradient over 70 mm of the Pt/AAO catalyst was 23 °C and 42 °C for catalysts with uniform and nonuniform (worst-case scenario) Pt distributions. The commercial computational fluid dynamics (CFD) code STAR-CCM+ was used to compare the experimentally observed and numerically simulated thermal distribution of the Pt/AAO catalyst. The effect of the initial H2 volume fraction on the combustion temperature and conversion of H2 was investigated. The activation energy for CHC on the Pt/AAO catalyst was 19.2 kJ/mol. Prolonged CHC was performed to assess the durability (reactive metal stability and catalytic activity) of the Pt/AAO catalyst. A stable combustion temperature of 162.8 ± 8.0 °C was maintained over 530 h of CHC. To confirm that Pt aggregation was avoided, the Pt particle size and distribution were determined by TEM before and after prolonged CHC. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

Article
Multi-Scale Biosurfactant Production by Bacillus subtilis Using Tuna Fish Waste as Substrate
Catalysts 2021, 11(4), 456; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11040456 - 01 Apr 2021
Cited by 5
Abstract
As one of the most effective biosurfactants reported to date, lipopeptides exhibit attractive surface and biological activities and have the great potential to serve as biocatalysts. Low yield, high cost of production, and purification hinder the large-scale applications of lipopeptides. Utilization of waste [...] Read more.
As one of the most effective biosurfactants reported to date, lipopeptides exhibit attractive surface and biological activities and have the great potential to serve as biocatalysts. Low yield, high cost of production, and purification hinder the large-scale applications of lipopeptides. Utilization of waste materials as low-cost substrates for the growth of biosurfactant producers has emerged as a feasible solution for economical biosurfactant production. In this study, fish peptone was generated through enzyme hydrolyzation of smashed tuna (Katsuwonus pelamis). Biosurfactant (mainly surfactin) production by Bacillus subtilis ATCC 21332 was further evaluated and optimized using the generated fish peptone as a comprehensive substrate. The optimized production conduction was continuously assessed in a 7 L batch-scale and 100 L pilot-scale fermenter, exploring the possibility for a large-scale surfactin production. The results showed that Bacillus subtilis ATCC 21332 could effectively use the fish waste peptones for surfactin production. The highest surfactin productivity achieved in the pilot-scale experiments was 274 mg/L. The experimental results shed light on the further production of surfactins at scales using fish wastes as an economical substrate. Full article
(This article belongs to the Special Issue Biocatalysts and Their Environmental Applications)
Show Figures

Figure 1

Article
Hydrogen Production via Pd-TiO2 Photocatalytic Water Splitting under Near-UV and Visible Light: Analysis of the Reaction Mechanism
Catalysts 2021, 11(3), 405; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11030405 - 23 Mar 2021
Cited by 6
Abstract
Photocatalytic hydrogen production via water splitting using a noble metal on a TiO2 is a technology that has developed rapidly over the past few years. Specifically, palladium doped TiO2 irradiated with near-UV or alternatively with visible light has shown promising results. [...] Read more.
Photocatalytic hydrogen production via water splitting using a noble metal on a TiO2 is a technology that has developed rapidly over the past few years. Specifically, palladium doped TiO2 irradiated with near-UV or alternatively with visible light has shown promising results. With this end in mind, strategically designed experiments were developed in the Photo-CREC Water-II (PCW-II) Reactor using a 0.25 wt.% Pd-TiO2 under near-UV and visible light, and ethanol as an organic scavenger. Acetaldehyde, carbon monoxide, carbon dioxide, methane, ethane, ethylene, and hydrogen peroxide together with hydrogen were the main chemical species observed. A Langmuir adsorption isotherm was also established for hydrogen peroxide. On this basis, it is shown that pH variations, hydrogen peroxide formation/adsorption, and the production of various redox chemical species provide an excellent carbon element balance, as well as OH and H radicals balances. Under near-UV irradiation, 113 cm3 STP of H2 is produced after 6 h, reaching an 99.8% elemental carbon balance and 99.2% OH and H and radical balance. It is also proven that a similar reaction network can be considered adequate for the photoreduced Pd-TiO2 photocatalyst yielding 29 cm3 STP of H2 with 95.4% carbon and the 97.5% OH–H radical balance closures. It is shown on this basis that a proposed “series-parallel” reaction network describes the water splitting reaction using the mesoporous Pd-TiO2 and ethanol as organic scavenger. Full article
(This article belongs to the Special Issue Commemorative Issue in Honor of Professor Hugo de Lasa)
Show Figures

Graphical abstract

Article
Optical Management of CQD/[email protected] Arrays with Highly Efficient Capability of Dye Degradation
Catalysts 2021, 11(3), 399; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11030399 - 22 Mar 2021
Cited by 4
Abstract
The facile synthetic method for the preparation of incorporated carbon quantum dots (CQDs)/Ag nanoparticles (AgNPs) with well-aligned silicon nanowire (SiNW) arrays is demonstrated, offering the superior photodegradation capabilities covering UV to visible wavelength regions. By examining the morphology, microstructure, crystallinity, chemical feature, surface [...] Read more.
The facile synthetic method for the preparation of incorporated carbon quantum dots (CQDs)/Ag nanoparticles (AgNPs) with well-aligned silicon nanowire (SiNW) arrays is demonstrated, offering the superior photodegradation capabilities covering UV to visible wavelength regions. By examining the morphology, microstructure, crystallinity, chemical feature, surface groups, light-emitting, and reflection characteristics, these hybrid heterostructures are systematically identified. Moreover, the involving degradation kinetics, band diagram, cycling capability, and underlying mechanism of photodegradation are investigated, validating their remarkable and reliable photocatalytic performances contributed from the strongly reduced light reflectivity, superior capability of charge separation, and sound wettability with dye solutions. Full article
(This article belongs to the Special Issue Photocatalytic Removal of Dyes)
Show Figures

Figure 1

Article
Hexavalent Chromium Removal via Photoreduction by Sunlight on Titanium–Dioxide Nanotubes Formed by Anodization with a Fluorinated Glycerol–Water Electrolyte
Catalysts 2021, 11(3), 376; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11030376 - 13 Mar 2021
Cited by 4
Abstract
In this paper, titanium–dioxide (TiO2) nanotubes (TNTs) are formed by anodic oxidation with a fluorinated glycerol–water (85% and 15%, respectively) electrolyte to examine the effect of fluoride ion concentration, time, and applied voltage on TNT morphologies and dimensions. For fluoride ion [...] Read more.
In this paper, titanium–dioxide (TiO2) nanotubes (TNTs) are formed by anodic oxidation with a fluorinated glycerol–water (85% and 15%, respectively) electrolyte to examine the effect of fluoride ion concentration, time, and applied voltage on TNT morphologies and dimensions. For fluoride ion concentration, the surface etching increases when the amount of ammonium fluoride added to the electrolyte solution increases, forming nanotube arrays with a clear pore structure. At a constant voltage of 20 V, TNTs with an average length of ~2 µm are obtained after anodization for 180 min. A prolonged anodization time only results in a marginal length increment. The TNT diameter is voltage dependent and increases from approximately 30 nm at 10 V to 310 nm at 60 V. At 80 V, the structure is destroyed. TNTs formed at 20 V for 180 min are annealed to induce the TiO2 anatase phase in either air or nitrogen. When ethylenediaminetetraacetic acid is added as a hole scavenger, 100% hexavalent chromium removal is obtained after 120 min of sunlight exposure for nitrogen-annealed TNTs. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Wastewater Purification)
Show Figures

Figure 1

Article
Green Synthesis of Silver and Gold Nanoparticles via Sargassum serratifolium Extract for Catalytic Reduction of Organic Dyes
Catalysts 2021, 11(3), 347; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11030347 - 08 Mar 2021
Cited by 4
Abstract
The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum [...] Read more.
The green synthesis of inorganic nanoparticles (NPs) using bio-materials has attained enormous attention in recent years due to its simple, eco-friendly, low-cost and non-toxic nature. In this work, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized by the marine algae extract, Sargassum serratifolium (SS). The characteristic studies of bio-synthesized SS-AgNPs and SS-AuNPs were carried out by using ultraviolet–visible (UV–Vis) absorption spectroscopy, dynamic light scattering (DLS), high-resolution transmission electron microscope (HR-TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Phytochemicals in the algae extract, such as meroterpenoids, acted as a capping agent for the NPs’ growth. The synthesized Ag and Au NPs were found to have important catalytic activity for the degradation of organic dyes, including methylene blue, rhodamine B and methyl orange. The reduction of dyes by SS-AgNPs and -AuNPs followed the pseudo-first order kinetics. Full article
Show Figures

Graphical abstract

Article
The Efficacy of Silver Nitrate (AgNO3) as a Coating Agent to Protect Paper against High Deteriorating Microbes
Catalysts 2021, 11(3), 310; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11030310 - 26 Feb 2021
Cited by 9
Abstract
This study focuses on the efficacy of silver nitrate (AgNO3) as a coating agent used to preserve papers against microbial deterioration. To this end, the in vitro cytotoxicity of AgNO3 was assessed against two normal cell lines, WI-38 and HFB-4, [...] Read more.
This study focuses on the efficacy of silver nitrate (AgNO3) as a coating agent used to preserve papers against microbial deterioration. To this end, the in vitro cytotoxicity of AgNO3 was assessed against two normal cell lines, WI-38 and HFB-4, to detect a safe dose that can be used as a coating agent, which was 80 µg mL−1. Bacillus subtilis B3 and Penicillium chrysogenum F9 were selected as high deteriorating microbes, previously isolated from a historical manuscript dating back to 1677 A.-D. The microbial growth inhibition, color change, mechanical properties, and cellulosic fibers of untreated/treated papers were evaluated. The data showed the efficacy of AgNO3 to inhibit the growth of B. subtilis with a percentage of 100% after 7 days, while it inhibits the growth of P. chrysogenum with a percentage of 85.9 ± 1.1% after 21 days. The color and mechanical properties of treated paper in the presence/absence of microbial inoculation were slightly changed, although they changed greatly due to microbial growth in the absence of AgNO3. The EDX analysis confirmed the successful adsorption of Ag-ion on papers, with a weight percentage of 1.9%. The cellulosic fibers of untreated paper in the presence of microbial growth were highly deteriorated as compared with treated and standard filter paper (shown by FT-IR and SEM). Full article
(This article belongs to the Special Issue Gold, Silver and Copper Catalysis)
Show Figures

Figure 1

Article
W-Doped ZnO Photocatalyst for the Degradation of Glyphosate in Aqueous Solution
Catalysts 2021, 11(2), 234; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11020234 - 09 Feb 2021
Cited by 4
Abstract
In this paper, the photocatalytic degradation of glyphosate by zinc oxide (ZnO) photocatalysts doped with tungsten (W) was investigated under solar simulated light. The photocatalysts were successfully synthesized through a simple precipitation method and subsequently characterized by different techniques: Raman spectroscopy, UV–Vis, N [...] Read more.
In this paper, the photocatalytic degradation of glyphosate by zinc oxide (ZnO) photocatalysts doped with tungsten (W) was investigated under solar simulated light. The photocatalysts were successfully synthesized through a simple precipitation method and subsequently characterized by different techniques: Raman spectroscopy, UV–Vis, N2 adsorption at −196 °C, X-ray diffraction, and SEM analysis. In particular, all the prepared catalysts were characterized by a crystallite size of about 28 nm and a hexagonal wurtzite structure. After the W doping, the bandgap energy decreased from 3.22 of pure ZnO to 3.19 for doped ZnO. This allowed us to obtain good results in terms of glyphosate degradation and simultaneous mineralization under solar simulated lamps, making the process environmentally friendly and with almost zero energy costs. In particular, the best photocatalytic performance was obtained with 100 W-ZnO (prepared with 1.5 mol% of W). With this catalyst, after 180 min of exposure to solar simulated light, the glyphosate degradation and mineralization was equal to 74% and 30%, respectively. Furthermore, it has been shown that the best catalyst dosage was equal to 1.5 g/L. The study on the influence of pH evidenced that the best photocatalytic performances are obtained at spontaneous (neutral) pH conditions. Finally, to determine the main reactive species in the glyphosate oxidation, the effects of different radical scavengers were tested. The results evidenced that the glyphosate oxidation mechanism seems to be related mainly to the O2•− generated under simulated solar light irradiation, but also in minor part to h+. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

Article
Tailoring Properties of Metal-Free Catalysts for the Highly Efficient Desulfurization of Sour Gases under Harsh Conditions
Catalysts 2021, 11(2), 226; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11020226 - 09 Feb 2021
Cited by 5
Abstract
Carbon-based nanomaterials, particularly in the form of N-doped networks, are receiving the attention of the catalysis community as effective metal-free systems for a relatively wide range of industrially relevant transformations. Among them, they have drawn attention as highly valuable and durable catalysts for [...] Read more.
Carbon-based nanomaterials, particularly in the form of N-doped networks, are receiving the attention of the catalysis community as effective metal-free systems for a relatively wide range of industrially relevant transformations. Among them, they have drawn attention as highly valuable and durable catalysts for the selective hydrogen sulfide oxidation to elemental sulfur in the treatment of natural gas. In this contribution, we report the outstanding performance of N-C/SiC based composites obtained by the surface coating of a non-oxide ceramic with a mesoporous N-doped carbon phase, starting from commercially available and cheap food-grade components. Our study points out on the importance of controlling the chemical and morphological properties of the N-C phase to get more effective and robust catalysts suitable to operate H2S removal from sour (acid) gases under severe desulfurization conditions (high GHSVs and concentrations of aromatics as sour gas stream contaminants). We firstly discuss the optimization of the SiC impregnation/thermal treatment sequences for the N-C phase growth as well as on the role of aromatic contaminants in concentrations as high as 4 vol.% on the catalyst performance and its stability on run. A long-term desulfurization process (up to 720 h), in the presence of intermittent toluene rates (as aromatic contaminant) and variable operative temperatures, has been used to validate the excellent performance of our optimized N-C2/SiC catalyst as well as to rationalize its unique stability and coke-resistance on run. Full article
(This article belongs to the Special Issue Catalysts and Processes for H2S Conversion to Sulfur)
Show Figures

Graphical abstract

Article
A Stereoselective, Multicomponent Catalytic Carbonylative Approach to a New Class of α,β-Unsaturated γ-Lactam Derivatives
Catalysts 2021, 11(2), 227; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11020227 - 09 Feb 2021
Cited by 4
Abstract
We report a stereoselective, multicomponent catalytic carbonylative approach to a new class of α,β-unsaturated γ-lactam derivatives with potential biological activity, that are, alkyl (Z)-2-(2-oxopyrrolidin-3-ylidene)acetates. Our method is based on the catalytic assembly of readily available building blocks, namely, homopropargylic amines, carbon [...] Read more.
We report a stereoselective, multicomponent catalytic carbonylative approach to a new class of α,β-unsaturated γ-lactam derivatives with potential biological activity, that are, alkyl (Z)-2-(2-oxopyrrolidin-3-ylidene)acetates. Our method is based on the catalytic assembly of readily available building blocks, namely, homopropargylic amines, carbon monoxide, an alcohol, and oxygen (from air). These simple substrates are efficiently activated in ordered sequence under the action of a very simple catalytic system, consisting of PdI2 in conjunction with KI to give the γ-lactam products in 47–85% yields. Carbonylation reactions are carried out at 100 °C for 2–5 h under 40 atm of a 4:1 mixture of CO‒air, with 0.5–5 mol% of PdI2 and 5–50 mol% of KI. Full article
(This article belongs to the Special Issue Polycyclic Heterocycles by Catalyzed Processes)
Show Figures

Graphical abstract

Article
Biocatalytic Transformation of 5-Hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a Newly Isolated Fusarium striatum Strain
Catalysts 2021, 11(2), 216; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11020216 - 06 Feb 2021
Cited by 4
Abstract
The compound 2,5-di(hydroxymethyl)furan (DHMF) is a high-value chemical block that can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated, and F. striatum [...] Read more.
The compound 2,5-di(hydroxymethyl)furan (DHMF) is a high-value chemical block that can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated, and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evaluated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The process was successfully scaled-up at bioreactor scale (1.3 L working volume) with excellent DHMF production yields (95%) and selectivity (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate. Full article
(This article belongs to the Special Issue Biocatalysis and Whole-Cell Biotransformation in Biomanufacturing)
Show Figures

Graphical abstract

Article
Mesoporous Methyl-Functionalized Titanosilicate Produced by Aerosol Process for the Catalytic Epoxidation of Olefins
Catalysts 2021, 11(2), 196; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11020196 - 02 Feb 2021
Cited by 6
Abstract
Titanosilicates (Ti-SiO2) are well-known catalysts for the epoxidation of olefins. Isolated Ti inserted in the silica framework in tetrahedral coordination are the active species. Recently, adjusting the hydrophobic/hydrophilic balance of such catalysts’ surfaces has appeared as a promising tool to further [...] Read more.
Titanosilicates (Ti-SiO2) are well-known catalysts for the epoxidation of olefins. Isolated Ti inserted in the silica framework in tetrahedral coordination are the active species. Recently, adjusting the hydrophobic/hydrophilic balance of such catalysts’ surfaces has appeared as a promising tool to further boost their performance. However, adjusting the hydrophobic/hydrophilic balance via a one-pot classical sol-gel generally leads to a decrease in the Ti dispersion and/or collapse of the pore network. To overcome this limitation, hydrophobic mesoporous Ti-SiO2 were here synthesized by aerosol-assisted one-pot sol–gel, which allowed the simultaneous control of their Ti loading, degree of methyl-functionalization, and textural properties. Methyl-functionalization was achieved by a partial substitution of tetraethoxy silane (TEOS) by methyltriethoxy silane (MTES) in different ratios. Solid-state 29Si-NMR, FTIR, TGA, and vapor-phase water adsorption showed that methyl moieties were effectively incorporated, conferring a hydrophobic property to the Ti-SiO2 catalysts. ICP-AES, DRUV, XPS, and N2 physisorption demonstrated that Ti dispersion and textural properties were both successfully preserved upon the incorporation of the methyl moieties. In the epoxidation of cyclooctene with tert-butyl hydroperoxide as oxidant, the hydrophobic Ti-SiO2 showed higher catalytic performance than pristine Ti-SiO2 prepared without MTES. In addition to disentangling the positive effect of adjusting the hydrophobic/hydrophilic balance of epoxidation catalysts on their performance, this contribution highlights the advantages of the aerosol procedure to synthesize mesoporous functionalized catalysts with very high dispersion of active sites. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

Article
Extra-Heavy Oil Aquathermolysis Using Nickel-Based Catalyst: Some Aspects of In-Situ Transformation of Catalyst Precursor
Catalysts 2021, 11(2), 189; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11020189 - 01 Feb 2021
Cited by 5
Abstract
In the present work, we studied the catalytic performance of an oil-soluble nickel-based catalyst during aquathermolysis of oil-saturated crushed cores from Boca de Jaruco extra-heavy oil field. The decomposition of nickel tallate and some aspects of in-situ transformation of the given catalyst precursor [...] Read more.
In the present work, we studied the catalytic performance of an oil-soluble nickel-based catalyst during aquathermolysis of oil-saturated crushed cores from Boca de Jaruco extra-heavy oil field. The decomposition of nickel tallate and some aspects of in-situ transformation of the given catalyst precursor under the steam injection conditions were investigated in a high-pressure batch reactor using XRD and SEM analysis methods. The changes in physical and chemical properties of core extracts after the catalytic aquathermolysis process with various duration were studied using gas chromatography for analyzing gas products, SARA analysis, GC-MS of saturated and aromatic fractions, FT-IR spectrometer, elemental analysis, and matrix-activated laser desorption/ionization (MALDI). The results showed that nickel tallate in the presence of oil-saturated crushed core under the injection of steam at 300 °C transforms mainly into nonstoichiometric forms of nickel sulfide. According to the SEM images, the size of nickel sulfide particles was in the range of 80–100 nm. The behavior of main catalytic aquathermolysis gas products such as CH4, CO2, H2S, and H2 depending on the duration of the process was analyzed. The catalytic upgrading at 300 °C provided decrease in the content of resins and asphaltenes, and increase in saturated hydrocarbon content. Moreover, the content of low-molecular alkanes, which were not detected before the catalytic aquathermolysis process, dramatically increased in saturates fraction after catalytic aquathermolysis reactions. In addition, the aromatics hydrocarbons saturated with high molecular weight polycyclic aromatic compounds—isomers of benzo(a)fluorine, which were initially concentrated in resins and asphaltenes. Nickel sulfide showed a good performance in desulfurization of high-molecular components of extra-heavy oil. The cracking of the weak C–S bonds, which mainly concentrated in resins and asphaltenes, ring-opening reactions, detachment of alkyl substitutes from asphaltenes and inhibition of polymerization reactions in the presence of catalytic complex reduced the average molecular mass of resins (from 871.7 to 523.3 a.m.u.) and asphaltenes (from 1572.7 to 1072.3 a.m.u.). Thus, nickel tallate is a promising catalyst to promote the in-situ upgrading of extra-heavy oil during steam injection techniques. Full article
(This article belongs to the Special Issue Heavy Oil In Situ Upgrading and Catalysis)
Show Figures

Graphical abstract

Article
Abatement of 1,2,4-Trichlorobencene by Wet Peroxide Oxidation Catalysed by Goethite and Enhanced by Visible LED Light at Neutral pH
Catalysts 2021, 11(1), 139; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010139 - 19 Jan 2021
Cited by 4
Abstract
There is significant environmental concern about chlorinated organic compounds (COCs) in wastewater, surface water, and groundwater due to their low biodegradability and high persistence. In this work, 1,2,4-trichlorobenzene (124-TCB) was selected as a model compound to study its abatement using wet peroxide oxidation [...] Read more.
There is significant environmental concern about chlorinated organic compounds (COCs) in wastewater, surface water, and groundwater due to their low biodegradability and high persistence. In this work, 1,2,4-trichlorobenzene (124-TCB) was selected as a model compound to study its abatement using wet peroxide oxidation at neutral pH with goethite as a heterogeneous catalyst, which was enhanced with visible monochromatic light-emitting diode (LED) light (470 nm). A systematic study of the main operating variables (oxidant and catalyst concentration and irradiance) was accomplished to investigate their influence in the abatement of 124-TCB in water. The reaction was carried out in a well-mixed reactor of glass irradiated by a visible LED light. The hydrogen peroxide concentration was tested from 0 to 18 mM, the goethite concentration within the range 0.1–1.0 g·L−1 and the irradiance from 0.10 to 0.24 W·cm−2 at neutral pH. It was found that this oxidation method is a very efficient technique to abate 124-TCB, reaching a pollutant conversion of 0.9 when using 0.1 g·L−1 of goethite, 18 mM of H2O2, and 0.24 of W·cm−2. Moreover, the system performance was evaluated using the photonic efficiency (ratio of the moles of 124-TCB abated and the moles of photons arriving at the reactor window). The maximum photonic efficiencies were obtained using the lowest lamp powers and moderate to high catalyst loads. Full article
(This article belongs to the Special Issue Green Catalysts: Application to Waste and Groundwater Treatment)
Show Figures

Figure 1

Article
CO Oxidation Efficiency and Hysteresis Behavior over Mesoporous Pd/SiO2 Catalyst
Catalysts 2021, 11(1), 131; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010131 - 16 Jan 2021
Cited by 4
Abstract
Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO [...] Read more.
Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (Tig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than Tig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at Tig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition. Full article
(This article belongs to the Special Issue Sustainable and Environmental Catalysis)
Show Figures

Graphical abstract

Article
Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx
Catalysts 2021, 11(1), 109; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010109 - 14 Jan 2021
Cited by 5
Abstract
Titanium oxide (TiO2) is a potential photocatalyst for removing toxic NOx from the atmosphere. Its practical application is, however, significantly limited by its low absorption into visible light and a high degree of charge recombination. The overall photocatalytic activity of [...] Read more.
Titanium oxide (TiO2) is a potential photocatalyst for removing toxic NOx from the atmosphere. Its practical application is, however, significantly limited by its low absorption into visible light and a high degree of charge recombination. The overall photocatalytic activity of TiO2 remains too low since it can utilize only about 4–5% of solar energy. Nitrogen doping into the TiO2 lattice takes advantage of utilizing a wide range of solar radiation by increasing the absorption capability towards the visible light region. In this work, N-doped TiO2, referred to as TC, was synthesized by a simple co-precipitation of tri-thiocyanuric acid (TCA) with P25 followed by heat treatment at 550 degrees C. The resulting nitrogen doping increased the visible-light absorption and enhanced the separation/transfer of photo-excited charge carriers by capturing holes by reduced titanium ions. As a result, TC samples exhibited excellent photocatalytic activities of 59% and 51% in NO oxidation under UV and visible light irradiation, in which the optimum mass ratio of TCA to P25 was found to be 10. Full article
(This article belongs to the Special Issue Commemorative Issue in Honor of Professor Akira Fujishima)
Show Figures

Graphical abstract

Article
Electrocatalytic Oxidation of Glucose on Boron and Nitrogen Codoped Graphene Quantum Dot Electrodes in Alkali Media
Catalysts 2021, 11(1), 101; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010101 - 13 Jan 2021
Cited by 4
Abstract
A novel solvothermal technique has been developed in the presence of C/N/B precursor for synthesizing B-N-coped graphene quantum dots (GQDs) as non-metal electrocatalysts towards the catalytic glucose oxidation reaction (GOR). Both N-doped GQD and B-N-codoped GQD particles (~4.0 nm) possess a similar oxidation [...] Read more.
A novel solvothermal technique has been developed in the presence of C/N/B precursor for synthesizing B-N-coped graphene quantum dots (GQDs) as non-metal electrocatalysts towards the catalytic glucose oxidation reaction (GOR). Both N-doped GQD and B-N-codoped GQD particles (~4.0 nm) possess a similar oxidation and amidation level. The B-N-codoped GQD contains a B/C ratio of 3.16 at.%, where the B dopants were formed through different bonding types (i.e., N‒B, C‒B, BC2O, and BCO2) inserted into or decorated on the GQDs. The cyclic voltammetry measurement revealed that the catalytic activity of B-N-codoped GQD catalyst is significantly higher compared to the N-doped GQDs (~20% increase). It was also shown that the GOR activity was substantially enhanced due to the synergistic effect of B and N dopants within the GQD catalysts. Based on the analysis of Tafel plots, the B-N-codoped-GQD catalyst electrode displays an ultra-high exchange current density along with a reduced Tafel slope. The application of B-N-codoped GQD electrodes significantly enhances the catalytic activity and results in facile reaction kinetics towards the glucose oxidation reaction. Accordingly, the novel design of GQD catalyst demonstrated in this work sets the stage for designing inexpensive GQD-based catalysts as an alternative for precious metal catalysts commonly used in bio-sensors, fuel cells, and other electrochemical devices. Full article
(This article belongs to the Special Issue Recent Advances in Biocatalysis and Metabolic Engineering)
Show Figures

Graphical abstract

Article
ZIF-67 Derived MnO2 Doped Electrocatalyst for Oxygen Reduction Reaction
Catalysts 2021, 11(1), 92; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010092 - 12 Jan 2021
Cited by 5
Abstract
In this study, zeolitic imidazolate framework (ZIF-67) derived nano-porous carbon structures that were further hybridized with MnO2 were tested for oxygen reduction reaction (ORR) as cathode material for fuel cells. The prepared electrocatalyst was characterized by X-ray powder diffraction (XRD), scanning electron [...] Read more.
In this study, zeolitic imidazolate framework (ZIF-67) derived nano-porous carbon structures that were further hybridized with MnO2 were tested for oxygen reduction reaction (ORR) as cathode material for fuel cells. The prepared electrocatalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). Cyclic voltammetry was performed on these materials at different scan rates under dissolved oxygen in basic media (0.1 M KOH), inert and oxygen rich conditions to obtain their I–V curves. Electrochemical impedance spectroscopy (EIS) and Chronoamperometry was also performed to observe the materials’ impedance and stability. We report improved performance of hybridized catalyst for ORR based on cyclic voltammetry and EIS results, which show that it can be a potential candidate for fuel cell applications. Full article
(This article belongs to the Special Issue MOFs for Advanced Applications)
Show Figures

Figure 1

Article
Morphology-Controlled Synthesis of ZnO Nanostructures for Caffeine Degradation and Escherichia coli Inactivation in Water
Catalysts 2021, 11(1), 63; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010063 - 05 Jan 2021
Cited by 4
Abstract
Photocatalytic and antibacterial activity of nanoparticles are strongly governed by their morphology. By varying the type of solvent used, one can obtain different shapes of ZnO nanoparticles and tune the amount of reactive oxygen species (ROS) and metal ion (Zn2+) generation, [...] Read more.
Photocatalytic and antibacterial activity of nanoparticles are strongly governed by their morphology. By varying the type of solvent used, one can obtain different shapes of ZnO nanoparticles and tune the amount of reactive oxygen species (ROS) and metal ion (Zn2+) generation, which in turn dictates their activity. ZnO nanostructures were fabricated via facile wet chemical method by varying the type of solvents. Solar light assisted photocatalytic degradation of caffeine and antibacterial activity against E. coli were examined in presence ZnO nanostructures. In addition to an elaborate nanoparticle characterization, adsorption and kinetic experiments were performed to determine the ability of nanostructures to degrade caffeine. Zone of inhibition, time kill assay and electron microscopy imaging were carried out to assess the antibacterial activity. Experimental findings indicate that ZnO nanospheres generated maximum ROS and Zn2+ ions followed by ZnO nanopetals and ZnO nanorods. As a result, ZnO nanospheres exhibited highest degradation of caffeine as well as killing of E. coli. While ROS is mainly responsible for the photocatalytic activity of nanostructures, their antibacterial activity is mostly due to the combination of ROS, metal ion, physical attrition and cell internalization. Full article
(This article belongs to the Special Issue Sustainable and Environmental Catalysis)
Show Figures

Graphical abstract

Article
Application of Mineral Iron-Based Natural Catalysts in Electro-Fenton Process: A Comparative Study
Catalysts 2021, 11(1), 57; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010057 - 02 Jan 2021
Cited by 8
Abstract
The potential use of novel iron based mineral catalysts as an effective and available material for electrocatalytic oxidation of refractory contaminants by heterogeneous electro-Fenton (HEF) process was studied for the first time. For this purpose, four natural catalysts, namely ilmenite (FeTiO3), [...] Read more.
The potential use of novel iron based mineral catalysts as an effective and available material for electrocatalytic oxidation of refractory contaminants by heterogeneous electro-Fenton (HEF) process was studied for the first time. For this purpose, four natural catalysts, namely ilmenite (FeTiO3), pyrite (FeS2), chromite (FeCr2O4), and chalcopyrite (CuFeS2) were selected as the source of ferrous iron (Fe2+) ions. The catalyst samples were appropriately characterized by X-ray diffraction (XRD) and RAMAN analysis. The degradation kinetics and mineralization rate of 0.2 mM antibiotic cefazolin (CFZ), as a contaminant of emerging concern, were comparatively investigated by HEF using the catalysts mentioned above. The effect of important experimental parameters such as catalysts loading and current on the process efficiency was investigated. Moreover, the performance of these new mineral catalysts was compared in term of CFZ degradation kinetics, mineralization power, mineralization current efficiency and electrical energy consumption. A greater enhancement in degradation/mineralization of CFZ was obtained when using chalcopyrite as the catalyst in HEF. The stability and reusability experiments demonstrated negligible decrease in catalytic activity of chalcopyrite after five consecutive runs. Besides, the rate constant for CFZ oxidation by hydroxyl radicals was estimated according the pseudo-first-order reaction kinetics. The empirical assessment, in addition to economic evaluation, confirmed that iron based mineral catalysts and specifically chalcopyrite could be an appropriate and cost-effective alternative catalyst for HEF due to its high catalytic activity, availability, eco-friendly nature and low energy consumption compared to other synthesized catalysts. Full article
(This article belongs to the Special Issue Green Catalysts: Application to Waste and Groundwater Treatment)
Show Figures

Graphical abstract

Article
Photocatalytic Pretreatment of Commercial Lignin Using TiO2-ZnO Nanocomposite-Derived Advanced Oxidation Processes for Methane Production Synergy in Lab Scale Continuous Reactors
Catalysts 2021, 11(1), 54; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010054 - 02 Jan 2021
Cited by 4
Abstract
The photocatalytic pretreatment of lignocellulosic biomass to oxidize lignin and increase biomass stability has gained attention during the last few years. Conventional pretreatment methods are limited by the fact that they are expensive, non-renewable and contaminate the anaerobic digestate later on. The present [...] Read more.
The photocatalytic pretreatment of lignocellulosic biomass to oxidize lignin and increase biomass stability has gained attention during the last few years. Conventional pretreatment methods are limited by the fact that they are expensive, non-renewable and contaminate the anaerobic digestate later on. The present study was focused to develop a metal-derived photocatalyst that can work with visible electromagnetic spectra light and oxidize commercial lignin liquor. During this project the advanced photocatalytic oxidation of lignin was achieved by using a quartz cube tungsten T3 Halogen 100 W lamp with a laboratory manufactured TiO2-ZnO nanoparticle (nanocomposite) in a self-designed apparatus. The products of lignin oxidation were confirmed to be vanillic acid (9.71 ± 0.23 mg/L), ferrulic acid (7.34 ± 0.16 mg/L), benzoic acid (6.12 ± 0.17 mg/L) and p-coumaric acid (3.80 ± 0.13 mg/L). These all products corresponded to 85% of the lignin oxidation products that were detectable, which is significantly more than any previously reported lignin pretreatment with even more intensity. Furthermore, all the pretreatment samples were supplemented in the form of feedstock diluent in uniformly operating continuously stirred tank reactors (CSTRs). The results of pretreatment revealed 85% lignin oxidation and later on these products did not hinder the CSTR performance at any stage. Moreover, the synergistic effects of pretreated lignin diluent were seen that resulted in 39% significant increase in the methane yield of the CSTR with constant operation. Finally, the visible light and nanoparticles alone could not pretreat lignin and when used as diluent, halted and reduced the methane yield by 37% during 4th HRT. Full article
(This article belongs to the Special Issue Catalytic Conversion of Lignins for Valuable Chemicals)
Show Figures

Figure 1

Article
Novel Preparation of Cu and Fe Zirconia Supported Catalysts for Selective Catalytic Reduction of NO with NH3
Catalysts 2021, 11(1), 55; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010055 - 02 Jan 2021
Cited by 4
Abstract
Copper and iron promoted ZrO2 catalysts were prepared by one-pot synthesis using urea. The studied catalysts were characterized by XRD, N2 physisorption, XPS, NH3-TPD, and tested in the selective catalytic reduction of NO with NH3 (NH3-SCR) [...] Read more.
Copper and iron promoted ZrO2 catalysts were prepared by one-pot synthesis using urea. The studied catalysts were characterized by XRD, N2 physisorption, XPS, NH3-TPD, and tested in the selective catalytic reduction of NO with NH3 (NH3-SCR) in the absence and presence of water vapor under the experimental conditions representative of exhaust gases from stationary sources. The influence of SO2 on catalytic performance was also investigated. Among the studied catalysts, the Fe-Zr sample showed the most promising results in NH3-SCR, being active and highly selective to N2. The addition of SO2 markedly improved NO and NH3 conversions during NH3-SCR in the presence of H2O. The improvement in acidic surface properties is believed to be the cause. Full article
(This article belongs to the Special Issue Selective Catalytic Reduction of NOx by NH3)
Show Figures

Graphical abstract

Article
Ordered Mesoporous Carbon as a Support for Palladium-Based Hydrodechlorination Catalysts
Catalysts 2021, 11(1), 23; https://0-doi-org.brum.beds.ac.uk/10.3390/catal11010023 - 28 Dec 2020
Cited by 4
Abstract
Ordered mesoporous carbon (OMC) was employed as a support for palladium nanoparticles in catalysts for the gas phase hydrodechlorination (HDC) of trichloromethane (TCM). 1 wt% palladium was incorporated using three methods: incipient wetness (IW); a dilute solution (DS) method; and a solid-liquid (SL) [...] Read more.
Ordered mesoporous carbon (OMC) was employed as a support for palladium nanoparticles in catalysts for the gas phase hydrodechlorination (HDC) of trichloromethane (TCM). 1 wt% palladium was incorporated using three methods: incipient wetness (IW); a dilute solution (DS) method; and a solid-liquid (SL) method. The effect of the preparation method on catalyst structure and activity was investigated. Catalyst composition and nanostructure were studied using gas physisorption, high specification transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic conversion and product selectivities were determined in steady-state activity tests at temperatures between 70 and 300 °C. Two of the catalysts (IW and DS) showed excellent dispersion of fine Pd nanoparticles of average diameter ~2 nm. These materials showed excellent activity for HDC of TCM which compares favourably with the performance reported for Pd on amorphous carbon catalysts. In addition, they showed relatively high selectivities to the more valuable higher hydrocarbons. However, the SL method gave rise to catalysts with larger particles (~3 nm) and a less uniform palladium distribution. This resulted in lower conversion and lower selectivities to higher hydrocarbons and in more severe catalyst deactivation at the highest reaction temperatures. Full article
(This article belongs to the Special Issue Progress in Catalytic Hydrodechlorination)
Show Figures

Figure 1

Article
Photocatalytic Degradation of Quinoline Yellow over Ag3PO4
Catalysts 2020, 10(12), 1461; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10121461 - 14 Dec 2020
Cited by 4
Abstract
In this study, the ability of Ag3PO4 to achieve the photocatalytic degradation of quinoline yellow (QY) a hazardous and recalcitrant dye, under UVA and visible light was investigated. The photocatalyst Ag3PO4 was synthesized through a precipitation method, [...] Read more.
In this study, the ability of Ag3PO4 to achieve the photocatalytic degradation of quinoline yellow (QY) a hazardous and recalcitrant dye, under UVA and visible light was investigated. The photocatalyst Ag3PO4 was synthesized through a precipitation method, and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), BET Brunauer–Emmett-Teller (BET) analysis, UV-Differential Reflectance Spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). Ag3PO4 could successfully induce the photocatalytic degradation of QY under UVA and visible light. Optimal parameters were 0.5 g·L−1 of the catalyst, 20 ppm of QY and pH~7. Ag3PO4 was 1.6-times more efficient than TiO2 Degussa P25 under UVA light in degrading QY. Total organic carbon (TOC) analyses confirmed the almost complete QY mineralization. At least eight intermediate degradation products were identified by liquid chromatography coupled to high resolution mass spectrometry. The stability of Ag3PO4 was satisfactory as less than 5% Ag metal appeared in XRD analyses after 3 reuse cycles. These results show that under optimized conditions Ag3PO4 can efficiently achieve quinolone yellow mineralization. Full article
(This article belongs to the Special Issue Understanding the Molecular Mechanisms of Photocatalysis)
Show Figures

Figure 1

Article
New Approach to Synthesis of Tetralin via Naphthalene Hydrogenation in Supercritical Conditions Using Polymer-Stabilized Pt Nanoparticles
Catalysts 2020, 10(11), 1362; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10111362 - 23 Nov 2020
Cited by 5
Abstract
Supercritical (SC) fluid technologies are well-established methods in modern green chemical synthesis. Using SC fluids as solvents instead of traditional liquids gives benefits of higher diffusivity and lower viscosity, which allows mass transfer intensification and, thus, an increased production rate of chemical transformations. [...] Read more.
Supercritical (SC) fluid technologies are well-established methods in modern green chemical synthesis. Using SC fluids as solvents instead of traditional liquids gives benefits of higher diffusivity and lower viscosity, which allows mass transfer intensification and, thus, an increased production rate of chemical transformations. Therefore, a conjugation of heterogeneous catalysis with SC media is a large step toward a green chemistry. Tetralin (TL) is an important hydrogen donor solvent used for biomass liquefaction. In industry, TL is obtained via catalytic hydrogenation of naphthalene (NL). Herein, for the first time we have demonstrated the NL hydrogenation with close to 100% selectivity to TL at almost full conversion in the SC hexane. The observed transformation rates in SC hexane were much higher allowing process intensification. The downstream processes can be also facilitated since hexane after depressurisation can be easily separated from the reaction products via simple rectification. The TL synthesis was studied in a batch reactor at variation of reaction temperature and overall pressure. For the first time for this process, low Pt-loaded (1 wt.%) nanoparticles stabilized within hyper-cross-linked aromatic polymer (HAP) were applied. The Pt/HAP catalyst was stable under reaction conditions (250 °C, 6 MPa) allowing its recovery and reuse. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Green Chemistry)
Show Figures

Graphical abstract

Article
Efficient Photocatalytic CO2 Reduction with MIL-100(Fe)-CsPbBr3 Composites
Catalysts 2020, 10(11), 1352; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10111352 - 20 Nov 2020
Cited by 5
Abstract
Bromide-based metal halide perovskites (MHPs) are promising photocatalysts with strong blue-green light absorption. Composite photocatalysts of MHPs with MIL-100(Fe), as a powerful photocatalyst itself, have been investigated to extend the responsiveness towards red light. The composites, with a high specific surface area, display [...] Read more.
Bromide-based metal halide perovskites (MHPs) are promising photocatalysts with strong blue-green light absorption. Composite photocatalysts of MHPs with MIL-100(Fe), as a powerful photocatalyst itself, have been investigated to extend the responsiveness towards red light. The composites, with a high specific surface area, display an enhanced solar light response, and the improved charge carrier separation in the heterojunctions is employed to maximize the photocatalytic performance. Optimization of the relative composition, with the formation of a dual-phase CsPbBr3 to CsPb2Br5 perovskite composite, shows an excellent photocatalytic performance with 20.4 μmol CO produced per gram of photocatalyst during one hour of visible light irradiation. Full article
(This article belongs to the Special Issue MOFs for Advanced Applications)
Show Figures

Graphical abstract

Article
Carbon Nitride-Perovskite Composites: Evaluation and Optimization of Photocatalytic Hydrogen Evolution in Saccharides Aqueous Solution
Catalysts 2020, 10(11), 1259; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10111259 - 30 Oct 2020
Cited by 6
Abstract
The application of hybrid photocatalysts made of carbon nitride and lead-free perovskites, namely DMASnBr3/g-C3N4 and PEA2SnBr4/g-C3N4, for the H2 evolution from saccharides aqueous solution is described. The novel composites [...] Read more.
The application of hybrid photocatalysts made of carbon nitride and lead-free perovskites, namely DMASnBr3/g-C3N4 and PEA2SnBr4/g-C3N4, for the H2 evolution from saccharides aqueous solution is described. The novel composites were tested and compared in terms of hydrogen evolution rate (HER) under simulated solar light, using Pt as a reference co-catalyst, and glucose as a representative sacrificial biomass. The conditions were optimized to maximize H2 generation by a design of experiments involving catalyst amount, glucose concentration and Pt loading. For both materials, such parameters affected significantly H2 photogeneration, with the best performance observed using 0.5 g L−1 catalyst, 0.2 M glucose and 0.5 wt% Pt. Under optimized conditions, DMASnBr3/g-C3N4 showed a 5-fold higher HER compared to PEA2SnBr4/g-C3N4, i.e., 925 µmoles g−1 h−1 and 190 µmoles g−1 h−1, respectively (RSD ≤ 11%, n = 4). The former composite, which affords an HER 15-fold higher in aqueous glucose than in neat water, provided H2 also with no metal co-catalyst (around 140 µmoles g−1 h−1), and it was reusable for at least three photoreactions. Encouraging results were also collected by explorative tests on raw starch solution (around 150 µmoles g−1 h−1). Full article
(This article belongs to the Special Issue Towards Green, Enhanced Photocatalysts for Hydrogen Evolution)
Show Figures

Graphical abstract

Article
Mono vs. Difunctional Coumarin as Photoinitiators in Photocomposite Synthesis and 3D Printing
Catalysts 2020, 10(10), 1202; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10101202 - 17 Oct 2020
Cited by 9
Abstract
This work is devoted to investigate three coumarin derivatives (Coum1, Coum2, and Coum3), proposed as new photoinitiators of polymerization when combined with an additive, i.e., an iodonium salt, and used for the free radical polymerization (FRP) of acrylate monomers under mild irradiation conditions. [...] Read more.
This work is devoted to investigate three coumarin derivatives (Coum1, Coum2, and Coum3), proposed as new photoinitiators of polymerization when combined with an additive, i.e., an iodonium salt, and used for the free radical polymerization (FRP) of acrylate monomers under mild irradiation conditions. The different coumarin derivatives can also be employed in three component photoinitiating systems with a Iod/amine (ethyl 4-dimethylaminobenzoate (EDB) or N-phenylglycine (NPG)) couple for FRP upon irradiation with an LED @ 405 nm. These compounds showed excellent photoinitiating abilities, and high polymerization rates and final conversions (FC) were obtained. The originality of this work relies on the comparison of the photoinitiating abilities of monofunctional (Coum1 and Coum2) vs. difunctional (Coum3) compounds. Coum3 is a combined structure of Coum1 and Coum2, leading to a sterically hindered chemical structure with a relatively high molecular weight. As a general rule, a high molecular weight should reduce the migration of initiating molecules and favor photochemical properties such as photobleaching of the final polymer. As attempted, from the efficiency point of view, Coum3 can initiate the FRP, but a low reactivity was observed compared to the monofunctional compound (Coum1 and Coum2). Indeed, to study the photochemical and photophysical properties of these compounds, different parameters were taken into account, e.g., the light absorption and emission properties, steady state photolysis, and fluorescence quenching. To examine these different points, several techniques were used including UV-visible spectroscopy, real-time Fourier Transform Infrared Spectroscopy (RT-FTIR), fluorescence spectroscopy, and cyclic voltammetry. The photochemical mechanism involved in the polymerization process is also detailed. The best coumarins investigated in this work were used for laser writing (3D printing) experiments and also for photocomposite synthesis containing glass fibers. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

Article
Novel Push–Pull Dyes Derived from 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites
Catalysts 2020, 10(10), 1196; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10101196 - 15 Oct 2020
Cited by 12
Abstract
A series of eleven push–pull chromophores with specific structures have been designed for the free radical polymerization of acrylates, but also for the fabrication of photocomposites and 3D-printed structures. New photoinitiating systems comprising the different push–pull dyes showed excellent photochemical reactivities at 405 [...] Read more.
A series of eleven push–pull chromophores with specific structures have been designed for the free radical polymerization of acrylates, but also for the fabrication of photocomposites and 3D-printed structures. New photoinitiating systems comprising the different push–pull dyes showed excellent photochemical reactivities at 405 nm. Notably, polymerization reactions could be initiated with light-emitting diodes (LEDs) which constitute a unique opportunity to promote the free radical polymerization under mild conditions, i.e., low light intensity (e.g., sunlight) and under air. Photopolymerization is an active research field, and push–pull dyes have already been investigated for this purpose. Besides, it remains of crucial interest to investigate new reactive structures capable of efficiently initiating photopolymerization reactions. The plausible potential of these structures to act as efficient photoinitiators in vat photopolymerization (or 3D printing) and fabrication of photocomposites prompts us to select eleven new push–pull dyes to design multi-component photoinitiating systems activable with LEDs emitting at 405 nm. Precisely, a tertiary amine, i.e., ethyl dimethylaminobenzoate (EDB) used as an electron/hydrogen donor and an iodonium salt used as an electron acceptor were selected to behave as powerful co-initiators to construct three-component photoinitiating systems (PISs) with the different push–pull dyes. Among these new PISs, dye 8 and 9-based PISs could efficiently promote the free radical photopolymerization of acrylates upon exposure to a LED emitting at 405 nm also upon sunlight irradiation, highlighting their huge performance. Photoinitiating abilities could be explained on the basis of steady state photolysis experiments. Fluorescence measurements and electron spin resonance (ESR) spin-trapping experiments were also performed to obtain a deeper insight into the chemical mechanisms supporting the polymerization reaction and determine the way the initiating species, i.e., the radicals, are observed. Finally, two investigated dye-based PISs were applied to the fabrications of photocomposites. Three-dimensional patterns with excellent spatial resolutions were generated by the laser writing technique to identify the effects of photopolymerization of acrylates both in the absence and presence of fillers (silica). Interestingly, comparison between the 3D objects fabricated by the PISs/monomer systems and the PISs/monomer/filler photocomposites indicates that the newly designed photocomposites are suitable for practical applications. Full article
(This article belongs to the Special Issue Progression in Photocatalytic Materials for Efficient Performance)
Show Figures

Graphical abstract

Article
Biocatalysis at Extreme Temperatures: Enantioselective Synthesis of both Enantiomers of Mandelic Acid by Transesterification Catalyzed by a Thermophilic Lipase in Ionic Liquids at 120 °C
Catalysts 2020, 10(9), 1055; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10091055 - 14 Sep 2020
Cited by 6
Abstract
The use of biocatalysts in organic chemistry for catalyzing chemo-, regio- and stereoselective transformations has become an usual tool in the last years, both at lab and industrial scale. This is not only because of their exquisite precision, but also due to the [...] Read more.
The use of biocatalysts in organic chemistry for catalyzing chemo-, regio- and stereoselective transformations has become an usual tool in the last years, both at lab and industrial scale. This is not only because of their exquisite precision, but also due to the inherent increase in the process sustainability. Nevertheless, most of the interesting industrial reactions involve water-insoluble substrates, so the use of (generally not green) organic solvents is generally required. Although lipases are capable of maintaining their catalytic precision working in those solvents, reactions are usually very slow and consequently not very appropriate for industrial purposes. Increasing reaction temperature would accelerate the reaction rate, but this should require the use of lipases from thermophiles, which tend to be more enantioselective at lower temperatures, as they are more rigid than those from mesophiles. Therefore, the ideal scenario would require a thermophilic lipase capable of retaining high enantioselectivity at high temperatures. In this paper, we describe the use of lipase from Geobacillus thermocatenolatus as catalyst in the ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic to furnish both enantiomers of mandelic acid, an useful intermediate in the synthesis of many drugs and active products. The catalytic performance at high temperature in a conventional organic solvent (isooctane) and four imidazolium-based ionic liquids was assessed. The best results were obtained using 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIMBF4) and 1-ethyl-3-methyl imidazolium hexafluorophosphate (EMIMPF6) at temperatures as high as 120 °C, observing in both cases very fast and enantioselective kinetic resolutions, respectively leading exclusively to the (S) or to the (R)-enantiomer of mandelic acid, depending on the anion component of the ionic liquid. Full article
Show Figures

Graphical abstract

Article
Deciphering the Mechanism of Silver Catalysis of “Click” Chemistry in Water by Combining Experimental and MEDT Studies
Catalysts 2020, 10(9), 956; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10090956 - 20 Aug 2020
Cited by 5
Abstract
A combined experimental study and molecular electron density theory (MEDT) analysis was carried out to investigate the click of 1,2,3-triazole derivatives by Ag(I)-catalyzed azide-alkyne cycloaddition (AgAAC) reaction as well as its corresponding mechanistic pathway. Such a synthetic protocol leads to the regioselective formation [...] Read more.
A combined experimental study and molecular electron density theory (MEDT) analysis was carried out to investigate the click of 1,2,3-triazole derivatives by Ag(I)-catalyzed azide-alkyne cycloaddition (AgAAC) reaction as well as its corresponding mechanistic pathway. Such a synthetic protocol leads to the regioselective formation of 1,4-disubstituted-1,2,3-triazoles in the presence of AgCl as catalyst and water as reaction solvent at room temperature and pressure. The MEDT was performed by applying Density Functional Theory (DFT) calculations at both B3LYP/6-31G(d,p) (LANL2DZ for Ag) and ωB97XD/6-311G(d,p) (LANL2DZ for Ag) levels with a view to decipher the observed regioselectivity in AgAAC reactions, and so to set out the number of silver(I) species and their roles in the formation of 1,4-disubstituted-1,2,3-triazoles. The comparison of the values of the energy barriers for the mono- and dinuclear Ag(I)-acetylide in the AgAAC reaction paths shows that the calculated energy barriers of dinuclear processes are smaller than those of the mononuclear one. The type of intramolecular interactions in the investigated AgAAC click chemistry reaction accounts for the regioselective formation of the 1,4-regiosisomeric triazole isomer. The ionic character of the starting compounds, namely Ag-acetylide, is revealed for the first time. This finding rules out any type of covalent interaction, involving the silver(I) complexes, along the reaction pathway. Electron localization function (ELF) topological analysis of the electronic structure of the stationary points reaffirmed the zw-type (zwitterionic-type) mechanism of the AgAAC reactions. Full article
(This article belongs to the Special Issue Computational Chemistry and Catalysis: Prediction and Design)
Show Figures

Graphical abstract

Article
Magnesium Effect in K/Co-Mg-Mn-Al Mixed Oxide Catalyst for Direct NO Decomposition
Catalysts 2020, 10(8), 931; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10080931 - 13 Aug 2020
Cited by 4
Abstract
Emission of nitric oxide represents a serious environmental problem since it contributes to the formation of acid rain and photochemical smog. Potassium-modified Co-Mn-Al mixed oxide is an effective catalyst for NO decomposition. However, there are problems related to the thermal instability of potassium [...] Read more.
Emission of nitric oxide represents a serious environmental problem since it contributes to the formation of acid rain and photochemical smog. Potassium-modified Co-Mn-Al mixed oxide is an effective catalyst for NO decomposition. However, there are problems related to the thermal instability of potassium species and a high content of toxic and expensive cobalt. The reported research aimed to determine whether these shortcomings can be overcome by replacing cobalt with magnesium. Therefore, a series of Co-Mg-Mn-Al mixed oxides with different Co/Mg molar ratio and promoted by various content of potassium was investigated. The catalysts were thoroughly characterized by atomic absorption spectroscopy (AAS), temperature-programmed reduction by hydrogen (TPR-H2), temperature-programmed desorption of CO2 (TPD-CO2), X-ray powder diffraction (XRD), N2 physisorption, species-resolved thermal alkali desorption (SR-TAD), and tested in direct NO decomposition with and without the addition of oxygen and water vapor. Partial substitution of magnesium for cobalt did not cause an activity decrease when the optimal molar ratio of K/Co on the normalized surface area was maintained; it means that the portion of expensive and toxic cobalt can be successfully replaced by magnesium without any decrease in catalytic activity. Full article
(This article belongs to the Special Issue Catalytic Decomposition of N2O and NO)
Show Figures

Figure 1

Article
Low Temperature Synthesis of Photocatalytic Mesoporous TiO2 Nanomaterials
Catalysts 2020, 10(8), 893; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10080893 - 07 Aug 2020
Cited by 5
Abstract
We report the synthesis of mesoporous TiO2 nanostructures based on the decomposition of TiOSO4 in aqueous alkaline solution at room temperature, followed by mild thermal treatment (110 °C) in an oven and suitable to yield up to 40 g of product [...] Read more.
We report the synthesis of mesoporous TiO2 nanostructures based on the decomposition of TiOSO4 in aqueous alkaline solution at room temperature, followed by mild thermal treatment (110 °C) in an oven and suitable to yield up to 40 g of product per batch. The duration of the thermal treatment was found to be crucial to control crystalline phase composition, specific surface area, surface chemistry and, accordingly, the photocatalytic properties of the obtained TiO2 nanocrystals. The thorough investigation of the prepared samples allowed us to explain the relationship between the structure of the obtained nanoparticles and their photocatalytic behavior, that was tested in a model reaction. In addition, the advantage of the mild treatment against a harsher calcination at 450 °C was illustrated. The proposed approach represents a facile and sustainable route to promptly access an effective photocatalyst, thus holding a significant promise for the development of solutions suitable to real technological application in environmental depollution. Full article
(This article belongs to the Special Issue Nanomaterials in Photo(Electro)catalysis)
Show Figures

Graphical abstract

Article
Degradation of Acid Orange 7 Azo Dye in Aqueous Solution by a Catalytic-Assisted, Non-Thermal Plasma Process
Catalysts 2020, 10(8), 888; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10080888 - 05 Aug 2020
Cited by 8
Abstract
The aim of this work was the optimization of the performance of the cold plasma technology coupled with a structured catalyst for the discoloration and mineralization of “acid orange 7” (AO7) azo dye. The structured catalyst consists of Fe2O3 immobilized [...] Read more.
The aim of this work was the optimization of the performance of the cold plasma technology coupled with a structured catalyst for the discoloration and mineralization of “acid orange 7” (AO7) azo dye. The structured catalyst consists of Fe2O3 immobilized on glass spheres, and it was prepared by the “dip coating” method and characterized by different chemico-physical techniques. The experiments were carried out in a dielectric barrier discharge (DBD) reactor. Thanks to the presence of the catalytic packed material, the complete discoloration and mineralization of the dye was achieved with voltage equal to 12 kV, lower than those generally used with this technology (approximately 20–40 kV). The best result in terms of discoloration and mineralization (80% after only 5 min both for discoloration and mineralization) was obtained with 0.25 wt% of Fe2O3 immobilized on the glass spheres, without formation of reaction by-products, as shown by the HPLC analysis. The optimized catalyst was reused for several reuse cycles without any substantial decrease of performances. Moreover, tests with radical scavengers evidenced that the most responsible oxidizing species for the degradation of AO7 dye was O2•−. Full article
Show Figures

Figure 1

Article
The Effect of Noble Metal (M: Ir, Pt, Pd) on M/Ce2O3-γ-Al2O3 Catalysts for Hydrogen Production via the Steam Reforming of Glycerol
Catalysts 2020, 10(7), 790; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10070790 - 15 Jul 2020
Cited by 5
Abstract
A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3H8O3. In [...] Read more.
A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3H8O3. In the work presented herein, CeO2–Al2O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption–desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2/CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Brønsted acid sites, which improved the hydrogenolysis and dehydrogenation–dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal–support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles. Full article
(This article belongs to the Special Issue The Design and Development of Precious Metal Catalysts)
Show Figures

Figure 1

Article
Synthesis and Characterization of Metal Modified Catalysts for Decomposition of Ibuprofen from Aqueous Solutions
Catalysts 2020, 10(7), 786; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10070786 - 14 Jul 2020
Cited by 5
Abstract
The presence of pharmaceuticals in surface water, drinking water, and wastewater has attracted significant concern because of the non-biodegradability, resistance, and toxicity of pharmaceutical compounds. The catalytic ozonation of an anti-inflammatory pharmaceutical, ibuprofen was investigated in this work. The reaction mixture was analyzed [...] Read more.
The presence of pharmaceuticals in surface water, drinking water, and wastewater has attracted significant concern because of the non-biodegradability, resistance, and toxicity of pharmaceutical compounds. The catalytic ozonation of an anti-inflammatory pharmaceutical, ibuprofen was investigated in this work. The reaction mixture was analyzed and measured by high-performance liquid chromatography (HPLC). Liquid chromatography-mass spectrometry (LC-MS) was used for the quantification of by-products during the catalytic ozonation process. Ibuprofen was degraded by ozonation under optimized conditions within 1 h. However, some intermediate oxidation products were detected during the ibuprofen ozonation process that were more resistant than the parent compound. To optimize the process, nine heterogeneous catalysts were synthesized using different preparation methods and used with ozone to degrade the ibuprofen dissolved in aqueous solution. The aim of using several catalysts was to reveal the effect of various catalyst preparation methods on the degradation of ibuprofen as well as the formation and elimination of by-products. Furthermore, the goal was to reveal the influence of various support structures and different metals such as Pd-, Fe-, Ni-, metal particle size, and metal dispersion in ozone degradation. Most of the catalysts improved the elimination kinetics of the by-products. Among these catalysts, Cu-H-Beta-150-DP synthesized by the deposition–precipitation process showed the highest decomposition rate. The regenerated Cu-H-Beta-150-DP catalyst preserved the catalytic activity to that of the fresh catalyst. The catalyst characterization methods applied in this work included nitrogen adsorption–desorption, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The large pore volume and small metal particle size contributed to the improved catalytic activity. Full article
Show Figures

Graphical abstract

Article
Exploring the Photothermo-Catalytic Performance of Brookite TiO2-CeO2 Composites
Catalysts 2020, 10(7), 765; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10070765 - 09 Jul 2020
Cited by 11
Abstract
The thermocatalytic, photocatalytic and photothermo-catalytic oxidation of some volatile organic compounds (VOCs), 2-propanol, ethanol and toluene, was investigated over brookite TiO2-CeO2 composites. The multi-catalytic approach based on the synergistic effect between solar photocatalysis and thermocatalysis led to the considerable decrease [...] Read more.
The thermocatalytic, photocatalytic and photothermo-catalytic oxidation of some volatile organic compounds (VOCs), 2-propanol, ethanol and toluene, was investigated over brookite TiO2-CeO2 composites. The multi-catalytic approach based on the synergistic effect between solar photocatalysis and thermocatalysis led to the considerable decrease in the conversion temperatures of the organic compounds. In particular, in the photothermo-catalytic runs, for the most active samples (TiO2-3 wt% CeO2 and TiO2-5 wt% CeO2), the temperature at which 90% of VOC conversion occurred was about 60 °C, 40 °C and 20 °C lower than in the thermocatalytic tests for 2-propanol, ethanol and toluene, respectively. Furthermore, the addition of cerium oxide to brookite TiO2 favored the total oxidation to CO2 already in the photocatalytic tests at room temperature. The presence of small amounts of cerium oxide allowed to obtain efficient brookite-based composites facilitating the space charge separation and increasing the lifetime of the photogenerated holes and electrons as confirmed by the characterization measurements. The possibility to concurrently utilize the photocatalytic properties of brookite and the redox properties of CeO2, both activated in the photothermal tests, is an attractive approach easily applicable to purify air from VOCs. Full article
(This article belongs to the Special Issue Recent Advances in TiO2 Photocatalysts)
Show Figures

Graphical abstract

Article
Immobilized Biocatalysts of Eversa® Transform 2.0 and Lipase from Thermomyces Lanuginosus: Comparison of Some Properties and Performance in Biodiesel Production
Catalysts 2020, 10(7), 738; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10070738 - 03 Jul 2020
Cited by 9
Abstract
Eversa® Transform (ET), and the lipase from Thermomyces lanuginosus (TLL), liquid commercial lipases formulations, have been immobilized on octyl agarose beads and their stabilities were compared. Immobilized and free ET forms were more thermostable than TLL formulations at pH 5.0, 7.0, and [...] Read more.
Eversa® Transform (ET), and the lipase from Thermomyces lanuginosus (TLL), liquid commercial lipases formulations, have been immobilized on octyl agarose beads and their stabilities were compared. Immobilized and free ET forms were more thermostable than TLL formulations at pH 5.0, 7.0, and 9.0, and the ET immobilized form was more stable in the presence of 90% methanol or dioxane at 25 °C and pH 7. Specific activity versus p-nitrophenyl butyrate was higher for ET than for TLL. However, after immobilization the differences almost disappeared because TLL was very hyperactivated (2.5-fold) and ET increased the activity only by 1.6 times. The enzymes were also immobilized in octadecyl methacrylate beads. In both cases, the loading was around 20 mg/g. In this instance, activity was similar for immobilized TLL and ET using triacetin, while the activity of immobilized ET was lower using (S)-methyl mandelate. When the immobilized enzymes were used to produce biodiesel from sunflower oil and methanol in tert-butanol medium, their performance was fairly similar. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

Article
CFD Simulations of Radiative Heat Transport in Open-Cell Foam Catalytic Reactors
Catalysts 2020, 10(6), 716; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10060716 - 26 Jun 2020
Cited by 8
Abstract
The heat transport management in catalytic reactors is crucial for the overall reactor performance. For small-scale dynamically-operated reactors, open-cell foams have shown advantageous heat transport characteristics over conventional pellet catalyst carriers. To design efficient and safe foam reactors as well as to deploy [...] Read more.
The heat transport management in catalytic reactors is crucial for the overall reactor performance. For small-scale dynamically-operated reactors, open-cell foams have shown advantageous heat transport characteristics over conventional pellet catalyst carriers. To design efficient and safe foam reactors as well as to deploy reliable engineering models, a thorough understanding of the three heat transport mechanisms, i.e., conduction, convection, and thermal radiation, is needed. Whereas conduction and convection have been studied extensively, the contribution of thermal radiation to the overall heat transport in open-cell foam reactors requires further investigation. In this study, we simulated a conjugate heat transfer case of a µCT based foam reactor using OpenFOAM and verified the model against a commercial computational fluid dynamics (CFD) code (STAR-CCM+). We further explicitly quantified the deviation made when radiation is not considered. We studied the effect of the solid thermal conductivity, the superficial velocity and surface emissivities in ranges that are relevant for heterogeneous catalysis applications (solid thermal conductivities 1–200 W m−1 K−1; superficial velocities 0.1–0.5 m s−1; surface emissivities 0.1–1). Moreover, the temperature levels correspond to a range of exo- and endothermal reactions, such as CO2 methanation, dry reforming of methane, and methane steam reforming. We found a significant influence of radiation on heat flows (deviations up to 24%) and temperature increases (deviations up to 400 K) for elevated temperature levels, low superficial velocities, low solid thermal conductivities and high surface emissivities. Full article
(This article belongs to the Special Issue Design of Heterogeneous Catalysts and Adsorbents)
Show Figures

Graphical abstract

Article
Utilization of Waste Grooved Razor Shell (GRS) as a Catalyst in Biodiesel Production from Refined and Waste Cooking Oils
Catalysts 2020, 10(6), 703; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10060703 - 22 Jun 2020
Cited by 11
Abstract
Biodiesel is a potential alternative for fossil fuel. However, its large-scale application is held up by the disadvantage of a homogenous process, the scarce availability of raw materials and the production cost, which is higher than for fossil diesel. In this work, biodiesel [...] Read more.
Biodiesel is a potential alternative for fossil fuel. However, its large-scale application is held up by the disadvantage of a homogenous process, the scarce availability of raw materials and the production cost, which is higher than for fossil diesel. In this work, biodiesel production was carried out using both refined and used cooking oils. The process was investigated in a batch reactor, in the presence of CaO as a heterogeneous catalyst prepared by the calcination of the natural Waste Grooved Razor Shell (GRS). Characterizations by X-Ray Diffraction (XRD) and Thermal Gravimetric (TG)/Differential Thermal Analysis (DTA) showed that the as-received GRS consists of aragonite, (i.e., CaCO3) as the main component and of water and organic matter in a lower amount. After calcination at 900 °C, CaO was formed as the only crystalline phase. The effects of several experimental parameters in the transesterification reactions were studied, and their impact on the produced biodiesel properties was investigated. The studied variables were the methanol/oil molar ratio, the catalyst weight percentage (with respect to the oil mass), the calcination temperature of the parent GRS and the recycling and regeneration of the catalyst. The physico-chemical and fuel properties, i.e., viscosity, density and acid value of used oils and of the produced biodiesel, were determined by conventional methods (American Society for Testing and Materials (ASTM) methods) and compared with the European standards of biodiesel. The optimal identified conditions were the following: the use of a 15:1 methanol/oil molar ratio and 5 wt% of CaO with respect to the oil mass. After 3 h of reaction at 65 °C, the biodiesel yield was equal to 94% and 99% starting from waste and refined oils, respectively. Full article
Show Figures

Graphical abstract

Article
Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review
Catalysts 2020, 10(6), 691; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10060691 - 19 Jun 2020
Cited by 6
Abstract
The unified reaction valley approach (URVA) differs from mainstream mechanistic studies, as it describes a chemical reaction via the reaction path and the surrounding reaction valley on the potential energy surface from the van der Waals region to the transition state and far [...] Read more.
The unified reaction valley approach (URVA) differs from mainstream mechanistic studies, as it describes a chemical reaction via the reaction path and the surrounding reaction valley on the potential energy surface from the van der Waals region to the transition state and far out into the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting molecules is registered by a change in their normal vibrational modes and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction with curvature minima reflecting minimal change and curvature maxima, the location of important chemical events such as bond breaking/forming, charge polarization and transfer, rehybridization, etc. A unique decomposition of the path curvature into internal coordinate components provides comprehensive insights into the origins of the chemical changes taking place. After presenting the theoretical background of URVA, we discuss its application to four diverse catalytic processes: (i) the Rh catalyzed methanol carbonylation—the Monsanto process; (ii) the Sharpless epoxidation of allylic alcohols—transition to heterogenous catalysis; (iii) Au(I) assisted [3,3]-sigmatropic rearrangement of allyl acetate; and (iv) the Bacillus subtilis chorismate mutase catalyzed Claisen rearrangement—and show how URVA leads to a new protocol for fine-tuning of existing catalysts and the design of new efficient and eco-friendly catalysts. At the end of this article the pURVA software is introduced. The overall goal of this article is to introduce to the chemical community a new protocol for fine-tuning existing catalytic reactions while aiding in the design of modern and environmentally friendly catalysts. Full article
Show Figures

Graphical abstract

Article
Stable Continuous Production of γ-Valerolactone from Biomass-Derived Levulinic Acid over Zr–Al-Beta Zeolite Catalyst
Catalysts 2020, 10(6), 678; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10060678 - 17 Jun 2020
Cited by 9
Abstract
The one-pot conversion of biomass-derived platform molecules such as levulinic acid (LA) and furfural (FAL) into γ-valerolactone (GVL) is challenging because of the need for adequate multi-functional catalysts and high-pressure gaseous hydrogen. As a more sustainable alternative, here we describe the transfer hydrogenation [...] Read more.
The one-pot conversion of biomass-derived platform molecules such as levulinic acid (LA) and furfural (FAL) into γ-valerolactone (GVL) is challenging because of the need for adequate multi-functional catalysts and high-pressure gaseous hydrogen. As a more sustainable alternative, here we describe the transfer hydrogenation of LA to GVL using isopropanol as a hydrogen donor over a Zr-modified beta zeolite catalyst in a continuous fixed-bed reactor. A stable sustained production of GVL was achieved from the levulinic acid, with both high LA conversion (ca. 95%) and GVL yield (ca. 90%), for over at least 20 days in continuous operation at 170 °C. Importantly, the small decay in activity can be advantageously overcome by the means of a simple in situ thermal regeneration in the air atmosphere, leading to a complete recovery of the catalyst activity. Key to this outstanding result is the use of a Zr-modified dealuminated beta zeolite with a tailored Lewis/Brønsted acid sites ratio, which can synergistically catalyze the tandem steps of hydrogen transfer and acid-catalyzed transformations, leading to such a successful and stable production of GVL from LA. Full article
(This article belongs to the Special Issue Multifunctional Heterogeneous Catalysis)
Show Figures

Graphical abstract

Article
Defective TiO2 Core-Shell Magnetic Photocatalyst Modified with Plasmonic Nanoparticles for Visible Light-Induced Photocatalytic Activity
Catalysts 2020, 10(6), 672; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10060672 - 15 Jun 2020
Cited by 6
Abstract
In the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and [...] Read more.
In the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation and reuse of the nanometer-sized photocatalyst from the suspension after the treatment process. The obtained Fe3O4@SiO2/d-TiO2-Pt/Cu photocatalysts were characterized by X-ray diffractometry (XRD) and specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Further, the mechanism of phenol degradation and the role of four oxidative species (h+, e, OH, and O2) in the studied photocatalytic process were investigated. Full article
(This article belongs to the Special Issue Plasmonic Photocatalysts)
Show Figures

Figure 1

Article
A Three-Step Process for the Bioconversion of Whey Permeate into a Glucose-Free D-Tagatose Syrup
Catalysts 2020, 10(6), 647; https://0-doi-org.brum.beds.ac.uk/10.3390/catal10060647 - 09 Jun 2020
Cited by 6
Abstract
We have developed a sustainable three-stage process for the revaluation of cheese whey permeate into D-tagatose, a rare sugar with functional properties used as sweetener. The experimental conditions (pH, temperature, cofactors, etc.) for each step were independently optimized. In the first step, concentrated [...] Read more.
We have developed a sustainable three-stage process for the revaluation of cheese whey permeate into D-tagatose, a rare sugar with functional properties used as sweetener. The experimental conditions (pH, temperature, cofactors, etc.) for each step were independently optimized. In the first step, concentrated whey containing 180–200 g/L of lactose was fully hydrolyzed by β-galactosidase from Bifidobacterium bifidum (Saphera®) in 3 h at 45 °C. Secondly, glucose was selectively removed by treatment with Pichia pastoris cells for 3 h at 30 °C. The best results were obtained with 350 mg of cells (previously grown for 16 h) per mL of solution. Finally, L-arabinose isomerase US100 from Bacillus stearothermophilus was employed to isomerize D-galactose into D-tagatose at pH 7.5 and 65 °C, in presence of 0.5 mM MnSO4. After 7 h, the concentration of D-tagatose was approximately 30 g/L (33.3% yield, referred to the initial D-galactose present in whey). The proposed integrated process takes place under mild conditions (neutral pH, moderate temperatures) in a short time (13 h), yielding a glucose-free syrup containing D-tagatose and galactose in a ratio 1:2 (w/w). Full article
Show Figures

Figure 1