ijms-logo

Journal Browser

Journal Browser

Innovative Molecular Target and Therapeutic Approaches in Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis (NAFLD/NASH) 3.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 35981

Special Issue Editors

Special Issue Information

Dear Colleagues,

Nonalcoholic fatty liver disease (NAFLD) is among the most common liver diseases worldwide, affecting up to 20%–30% of the human population. NAFLD is usually associated with the metabolic syndrome that is characterized by increased abdominal fat, insulin resistance, high blood pressure, and high blood triglycerides. In about 10% of individuals, NAFLD progresses to steatohepatitis (NASH), with a long-term risk of cirrhosis and hepatocellular carcinoma, among the most important causes of liver transplantation in US with consequent relevant social and economic impact. Nonetheless, specific pharmacological targets and treatment have not been found yet, leaving important medical needs still to be met. The Special Issue, “Innovative Molecular Target and Therapeutic Approaches in Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis (NAFLD/NASH)”, of the International Journal of Molecular Sciences, will include a selection of original research papers and reviews on novel molecular and cellular targets to prevent and treat NAFLD. This Special Issue will also include an update on the management of liver steatosis, inflammation, and fibrosis.

Dr. Mariapia Vairetti
Dr. Giuseppe Colucci
Dr. Andrea Ferrigno
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • fatty liver
  • steatosis
  • steatohepatitis
  • inflammation
  • fibrosis
  • cytochines
  • chemokine receptors
  • insulin sensitizing drugs
  • farnesoid X receptor agonists
  • bile acids
  • oxidative stress
  • mitochondrial function
  • peroxisome proliferator-activated receptors (PPARs)

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 168 KiB  
Editorial
Innovative Molecular Targets and Therapeutic Approaches in Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis (NAFLD/NASH) 3.0
by Mariapia Vairetti, Giuseppe Colucci and Andrea Ferrigno
Int. J. Mol. Sci. 2024, 25(7), 4010; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms25074010 - 03 Apr 2024
Viewed by 482
Abstract
The aim of this Special Issue is to provide an update on the diagnosis and treatment of nonalcoholic fatty liver disease (NAFLD), which is the most prevalent liver disease worldwide; however, there are still no specific treatment agents [...] Full article

Research

Jump to: Editorial, Review

17 pages, 1110 KiB  
Article
Circulating Citrate Is Associated with Liver Fibrosis in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis
by Waseem Amjad, Irina Shalaurova, Erwin Garcia, Eke G. Gruppen, Robin P. F. Dullaart, Alex M. DePaoli, Z. Gordon Jiang, Michelle Lai and Margery A. Connelly
Int. J. Mol. Sci. 2023, 24(17), 13332; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms241713332 - 28 Aug 2023
Cited by 1 | Viewed by 1149
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with mitochondrial damage. Circulating mitochondrial metabolites may be elevated in NAFLD but their associations with liver damage is not known. This study aimed to assess the association of key mitochondrial metabolites with the degree of liver [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is associated with mitochondrial damage. Circulating mitochondrial metabolites may be elevated in NAFLD but their associations with liver damage is not known. This study aimed to assess the association of key mitochondrial metabolites with the degree of liver fibrosis in the context of NAFLD and nonalcoholic steatohepatitis (NASH). Cross-sectional analyses were performed on two cohorts of biopsy-proven NAFLD and/or NASH subjects. The association of circulating mitochondrial metabolite concentrations with liver fibrosis was assessed using linear regression analysis. In the single-center cohort of NAFLD subjects (n = 187), the mean age was 54.9 ±13.0 years, 40.1% were female and 86.1% were White. Type 2 diabetes (51.3%), hypertension (43.9%) and obesity (72.2%) were prevalent. Those with high citrate had a higher proportion of moderate/significant liver fibrosis (stage F ≥ 2) (68.4 vs. 39.6%, p = 0.001) and advanced fibrosis (stage F ≥ 3) (31.6 vs. 13.6%, p = 0.01). Citrate was associated with liver fibrosis independent of age, sex, NAFLD activity score and metabolic syndrome (per 1 SD increase: β = 0.19, 95% CI: 0.03–0.35, p = 0.02). This association was also observed in a cohort of NASH subjects (n = 176) (β = 0.21, 95% CI: 0.07–0.36, p = 0.005). The association of citrate with liver fibrosis was observed in males (p = 0.005) but not females (p = 0.41). In conclusion, circulating citrate is elevated and associated with liver fibrosis, particularly in male subjects with NAFLD and NASH. Mitochondrial function may be a target to consider for reducing the progression of liver fibrosis and NASH. Full article
Show Figures

Figure 1

18 pages, 10703 KiB  
Article
Production, Exacerbating Effect, and EV-Mediated Transcription of Hepatic CCN2 in NASH: Implications for Diagnosis and Therapy of NASH Fibrosis
by Xinlei Li, Ruju Chen, Sherri Kemper and David R. Brigstock
Int. J. Mol. Sci. 2023, 24(16), 12823; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms241612823 - 15 Aug 2023
Viewed by 1031
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic [...] Read more.
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic pathways are under-explored. Cell communication network factor 2 (CCN2) is a well-characterized pro-fibrotic molecule, but its production in and contribution to NASH fibrosis requires further study. Hepatic CCN2 expression was significantly induced in NASH patients with F3–F4 fibrosis and was positively correlated with hepatic Col1A1, Col1A2, Col3A1, or αSMA expression. When wild-type (WT) or transgenic (TG) Swiss mice expressing enhanced green fluorescent protein (EGFP) under the control of the CCN2 promoter were fed up to 7 weeks with control or choline-deficient, amino-acid-defined diet with high (60%) fat (CDAA-HF), the resulting NASH-like hepatic pathology included a profound increase in CCN2 or EGFP immunoreactivity in activated hepatic stellate cells (HSC) and in fibroblasts and smooth muscle cells of the vasculature, with little or no induction of CCN2 in other liver cell types. In the context of CDAA-HF diet-induced NASH, Balb/c TG mice expressing human CCN2 under the control of the albumin promoter exhibited exacerbated deposition of interstitial hepatic collagen and activated HSC compared to WT mice. In vitro, palmitic acid-treated hepatocytes produced extracellular vesicles (EVs) that induced CCN2, Col1A1, and αSMA in HSC. Hepatic CCN2 may aid the assessment of NASH fibrosis severity and, together with pro-fibrogenic EVs, is a therapeutic target for reducing NASH fibrosis. Full article
Show Figures

Figure 1

17 pages, 2534 KiB  
Article
MCD Diet Modulates HuR and Oxidative Stress-Related HuR Targets in Rats
by Andrea Ferrigno, Lucrezia Irene Maria Campagnoli, Annalisa Barbieri, Nicoletta Marchesi, Alessia Pascale, Anna Cleta Croce, Mariapia Vairetti and Laura Giuseppina Di Pasqua
Int. J. Mol. Sci. 2023, 24(12), 9808; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24129808 - 06 Jun 2023
Viewed by 1545
Abstract
The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, [...] Read more.
The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, the stability of MnSOD and HO-1 mRNA. These two enzymes protect the liver cells from oxidative damage caused by excessive fat accumulation. Our aim was to investigate the expression of HuR and its targets in a methionine-choline deficient (MCD) model of NAFLD. To this aim, we fed male Wistar rats with an MCD diet for 3 and 6 weeks to induce NAFLD; then, we evaluated the expression of HuR, MnSOD, and HO-1. The MCD diet induced fat accumulation, hepatic injury, oxidative stress, and mitochondrial dysfunction. A HuR downregulation was also observed in association with a reduced expression of MnSOD and HO-1. Moreover, the changes in the expression of HuR and its targets were significantly correlated with oxidative stress and mitochondrial injury. Since HuR plays a protective role against oxidative stress, targeting this protein could be a therapeutic strategy to both prevent and counteract NAFLD. Full article
Show Figures

Figure 1

11 pages, 3437 KiB  
Article
Hepatic Pin1 Expression, Particularly in Nuclei, Is Increased in NASH Patients in Accordance with Evidence of the Role of Pin1 in Lipid Accumulation Shown in Hepatoma Cell Lines
by Machi Kanna, Yusuke Nakatsu, Takeshi Yamamotoya, Akifumi Kushiyama, Midori Fujishiro, Hideyuki Sakoda, Hiraku Ono, Koji Arihiro and Tomoichiro Asano
Int. J. Mol. Sci. 2023, 24(10), 8847; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24108847 - 16 May 2023
Cited by 2 | Viewed by 1118
Abstract
Our previous studies using rodent models have suggested an essential role for Pin1 in the pathogenesis of non-alcoholic steatohepatitis (NASH). In addition, interestingly, serum Pin1 elevation has been reported in NASH patients. However, no studies have as yet examined the Pin1 expression level [...] Read more.
Our previous studies using rodent models have suggested an essential role for Pin1 in the pathogenesis of non-alcoholic steatohepatitis (NASH). In addition, interestingly, serum Pin1 elevation has been reported in NASH patients. However, no studies have as yet examined the Pin1 expression level in human NASH livers. To clarify this issue, we investigated the expression level and subcellular distribution of Pin1 in liver specimens obtained using needle-biopsy samples from patients with NASH and healthy liver donors. Immunostaining using anti-Pin1 antibody revealed the Pin1 expression level to be significantly higher, particularly in nuclei, in the livers of NASH patients than those of healthy donors. In the samples from patients with NASH, the amount of nuclear Pin1 was revealed to be negatively related to serum alanine aminotransferase (ALT), while tendencies to be associated with other serum parameters such as aspartate aminotransferase (AST) and platelet number were noted but did not reach statistical significance. Such unclear results and the lack of a significant relationship might well be attributable to our small number of NASH liver samples (n = 8). Moreover, in vitro, it was shown that addition of free fatty acids to medium induced lipid accumulation in human hepatoma HepG2 and Huh7 cells, accompanied with marked increases in nuclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), in accordance with the aforementioned observations in human NASH livers. In contrast, suppression of Pin1 gene expression using siRNAs attenuated the free fatty acid-induced lipid accumulation in Huh7 cells. Taken together, these observations strongly suggest that increased expression of Pin1, particularly in hepatic nuclei, contributes to the pathogenesis of NASH with lipid accumulation. Full article
Show Figures

Figure 1

21 pages, 4089 KiB  
Article
MPEP Attenuates Intrahepatic Fat Accumulation in Obese Mice
by Andrea Ferrigno, Marta Cagna, Oriana Bosco, Michelangelo Trucchi, Clarissa Berardo, Ferdinando Nicoletti, Mariapia Vairetti and Laura G. Di Pasqua
Int. J. Mol. Sci. 2023, 24(7), 6076; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24076076 - 23 Mar 2023
Cited by 1 | Viewed by 1617
Abstract
The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with [...] Read more.
The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with MPEP or vehicle. After 7 weeks, liver biopsies were collected, and nuclei were isolated from fresh tissue. Lipid droplet area and collagen deposition were evaluated on tissue slices; total lipids, lipid peroxidation, and ROS were evaluated on tissue homogenates; PPARα, SREBP-1, mTOR, and NF-κB were assayed on isolated nuclei by Western Blot. Target genes of the above-mentioned factors were assayed by RT-PCR. Reduced steatosis and hepatocyte ballooning were observed in the MPEP group with respect to the vehicle group. Concomitantly, increased nuclear PPARα and reduced nuclear SREBP-1 levels were observed in the MPEP group. Similar trends were obtained in target genes of PPARα and SREBP-1, Acox1 and Acc1, respectively. MPEP administration also reduced oxidative stress and NF-κB activation, probably via NF-κB inhibition. Levels of common markers of inflammation (Il-6, Il1β and Tnf-α) and oxidative stress (Nrf2) were significantly reduced. mTOR, as well as collagen deposition, were unchanged. Concluding, MPEP, a selective mGluR5 negative allosteric modulator, reduces both fat accumulation and oxidative stress in a 7-week murine model of steatosis. Although underlying mechanisms need to be further investigated, this is the first in vivo study showing the beneficial effects of MPEP in a murine model of steatosis. Full article
Show Figures

Figure 1

16 pages, 3100 KiB  
Article
Beta-Caryophyllene Modifies Intracellular Lipid Composition in a Cell Model of Hepatic Steatosis by Acting through CB2 and PPAR Receptors
by Rosaria Scandiffio, Sara Bonzano, Erika Cottone, Sujata Shrestha, Simone Bossi, Silvia De Marchis, Massimo E. Maffei and Patrizia Bovolin
Int. J. Mol. Sci. 2023, 24(7), 6060; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24076060 - 23 Mar 2023
Cited by 3 | Viewed by 2299
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease; however, no specific pharmacological therapy has yet been approved for this condition. Plant-derived extracts can be an important source for the development of new drugs. The aim of this [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease; however, no specific pharmacological therapy has yet been approved for this condition. Plant-derived extracts can be an important source for the development of new drugs. The aim of this study was to investigate the effects of (E)-β-caryophyllene (BCP), a phytocannabinoid recently found to be beneficial against metabolic diseases, on HepG2 steatotic hepatocytes. Using a fluorescence-based lipid quantification assay and GC-MS analysis, we show that BCP is able to decrease lipid accumulation in steatotic conditions and to change the typical steatotic lipid profile by primarily reducing saturated fatty acids. By employing specific antagonists, we demonstrate that BCP action is mediated by multiple receptors: CB2 cannabinoid receptor, peroxisome proliferator-activated receptor α (PPARα) and γ (PPARγ). Interestingly, BCP was able to counteract the increase in CB2 and the reduction in PPARα receptor expression observed in steatotic conditions. Moreover, through immunofluorescence and confocal microscopy, we demonstrate that CB2 receptors are mainly intracellularly localized and that BCP is internalized in HepG2 cells with a maximum peak at 2 h, suggesting a direct interaction with intracellular receptors. The results obtained with BCP in normal and steatotic hepatocytes encourage future applications in the treatment of NAFLD. Full article
Show Figures

Figure 1

12 pages, 695 KiB  
Article
Metabolic Profile Reflects Stages of Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease
by Nila Jambulingam, Roberta Forlano, Benjamin Preston, Benjamin H. Mullish, Greta Portone, Yama Baheer, Michael Yee, Robert D. Goldin, Mark R. Thursz and Pinelopi Manousou
Int. J. Mol. Sci. 2023, 24(4), 3563; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24043563 - 10 Feb 2023
Cited by 1 | Viewed by 1828
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease worldwide, with fibrosis stage being the main predictor for clinical outcomes. Here, we present the metabolic profile of NAFLD patients with regards to fibrosis progression. We included all consecutive new [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease worldwide, with fibrosis stage being the main predictor for clinical outcomes. Here, we present the metabolic profile of NAFLD patients with regards to fibrosis progression. We included all consecutive new referrals for NAFLD services between 2011 and 2019. Demographic, anthropometric and clinical features and noninvasive markers of fibrosis were recorded at baseline and at follow-up. Significant and advanced fibrosis were defined using liver stiffness measurement (LSM) as LSM ≥ 8.1 kPa and LSM ≥ 12.1 kPa, respectively. Cirrhosis was diagnosed either histologically or clinically. Fast progressors of fibrosis were defined as those with delta stiffness ≥ 1.03 kPa/year (25% upper quartile of delta stiffness distribution). Targeted and untargeted metabolic profiles were analysed on fasting serum samples using Proton nuclear magnetic resonance (1H NMR). A total of 189 patients were included in the study; 111 (58.7%) underwent liver biopsy. Overall, 11.1% patients were diagnosed with cirrhosis, while 23.8% were classified as fast progressors. A combination of metabolites and lipoproteins could identify the fast fibrosis progressors (AUROC 0.788, 95% CI: 0.703–0.874, p < 0.001) and performed better than noninvasive markers. Specific metabolic profiles predict fibrosis progression in patients with nonalcoholic fatty liver disease. Algorithms combining metabolites and lipids could be integrated in the risk-stratification of these patients. Full article
Show Figures

Figure 1

14 pages, 4861 KiB  
Article
Ferulic Acid and P-Coumaric Acid Synergistically Attenuate Non-Alcoholic Fatty Liver Disease through HDAC1/PPARG-Mediated Free Fatty Acid Uptake
by Kaili Cui, Lichao Zhang, Xiaoqin La, Haili Wu, Ruipeng Yang, Hanqing Li and Zhuoyu Li
Int. J. Mol. Sci. 2022, 23(23), 15297; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms232315297 - 04 Dec 2022
Cited by 10 | Viewed by 1902
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and has become a growing public health concern worldwide. Polyphenols may improve high-fat diet (HFD)-related NAFLD. Our previous study found that ferulic acid (FA) and p-coumaric acid (p-CA) were the polyphenols with [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and has become a growing public health concern worldwide. Polyphenols may improve high-fat diet (HFD)-related NAFLD. Our previous study found that ferulic acid (FA) and p-coumaric acid (p-CA) were the polyphenols with the highest content in foxtail millet. In this study, we investigated the mechanism underlying the impact of ferulic acid and p-coumaric acid (FA/p-CA) on non-alcoholic fatty liver (NAFLD). The association of FA and p-CA with fatty liver was first analyzed by network pharmacology. Synergistic ameliorating of NAFLD by FA and p-CA was verified in oleic acid (OA) and palmitic acid (PA) (FFA)-treated hepatocytes. Meanwhile, FA/p-CA suppressed final body weight and TG content and improved liver dysfunction in HFD-induced NAFLD mice. Mechanistically, our data indicated that FA and p-CA bind to histone deacetylase 1 (HDAC1) to inhibit its expression. The results showed that peroxisome proliferator activated receptor gamma (PPARG), which is positively related to HDAC1, was inhibited by FA/p-CA, and further suppressed fatty acid binding protein (FABP) and fatty acid translocase (CD36). It suggests that FA/p-CA ameliorate NAFLD by inhibiting free fatty acid uptake via the HDAC1/PPARG axis, which may provide potential dietary supplements and drugs for prevention of NAFLD. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

13 pages, 1023 KiB  
Review
Recent Updates on the Therapeutic Prospects of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Liver Injuries
by Giuseppina Palladini, Laura Giuseppina Di Pasqua, Anna Cleta Croce, Andrea Ferrigno and Mariapia Vairetti
Int. J. Mol. Sci. 2023, 24(24), 17407; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms242417407 - 12 Dec 2023
Cited by 1 | Viewed by 1288
Abstract
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a membrane-anchored glycoprotein, negatively regulates various membrane proteins involved in the tissue governing extracellular matrix (ECM) remodeling such as metalloproteases (MMPs) and the sheddases ADAM10 and ADAM17. The significance of the present review is to [...] Read more.
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a membrane-anchored glycoprotein, negatively regulates various membrane proteins involved in the tissue governing extracellular matrix (ECM) remodeling such as metalloproteases (MMPs) and the sheddases ADAM10 and ADAM17. The significance of the present review is to summarize the current understanding of the pathophysiological role of RECK, a newly discovered signaling pathway associated with different liver injuries. Specifically, this review analyzes published data on the downregulation of RECK expression in hepatic ischemia/reperfusion (I/R) injury, liver-related cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), as well as in the progression of nonalcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). In addition, this review discusses the regulation of RECK by inducers, such as FXR agonists. The RECK protein has also been suggested as a potential diagnostic and prognostic marker for liver injury or as a biomarker with predictive value for drug treatment efficacy. Full article
Show Figures

Figure 1

38 pages, 2441 KiB  
Review
Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD
by Manuela Vitulo, Elisa Gnodi, Giulia Rosini, Raffaella Meneveri, Roberto Giovannoni and Donatella Barisani
Int. J. Mol. Sci. 2023, 24(16), 12748; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms241612748 - 13 Aug 2023
Cited by 4 | Viewed by 2124
Abstract
Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the [...] Read more.
Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the metabolic syndrome, such as central obesity and insulin-resistance, but a specific drug able to revert NAFL and prevent its evolution towards NASH is still lacking. With the liver being a key organ in metabolic processes, the potential therapeutic strategies are many, and range from directly targeting the lipid metabolism to the prevention of tissue inflammation. However, side effects have been reported for the drugs tested up to now. In this review, different approaches to the treatment of NAFLD are presented, including newer therapies and ongoing clinical trials. Particular focus is placed on the reverse cholesterol transport system and on the agonists for nuclear factors like PPAR and FXR, but also drugs initially developed for other conditions such as incretins and thyromimetics along with validated natural compounds that have anti-inflammatory potential. This work provides an overview of the different therapeutic strategies currently being tested for NAFLD, other than, or along with, the recommendation of weight loss. Full article
Show Figures

Figure 1

28 pages, 1026 KiB  
Review
Innovative Therapeutic Approaches in Non-Alcoholic Fatty Liver Disease: When Knowing Your Patient Is Key
by Marta Alonso-Peña, Maria Del Barrio, Ana Peleteiro-Vigil, Carolina Jimenez-Gonzalez, Alvaro Santos-Laso, Maria Teresa Arias-Loste, Paula Iruzubieta and Javier Crespo
Int. J. Mol. Sci. 2023, 24(13), 10718; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms241310718 - 27 Jun 2023
Cited by 2 | Viewed by 2239
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of NASH entails the activation of inflammatory and fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic comorbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range of interventions and drugs, with little success. Here, we propose a narrative review of the different phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD patients and personalized treatment is an innovative therapeutic approach that may lead to better therapeutic outcomes. Full article
Show Figures

Figure 1

21 pages, 752 KiB  
Review
Non-Alcoholic Fatty Liver Disease: Translating Disease Mechanisms into Therapeutics Using Animal Models
by Amina Basha, Sarah C. May, Ryan M. Anderson, Niharika Samala and Raghavendra G. Mirmira
Int. J. Mol. Sci. 2023, 24(12), 9996; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24129996 - 10 Jun 2023
Cited by 1 | Viewed by 2124
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is a range of pathologies arising from fat accumulation in the liver in the absence of excess alcohol use or other causes of liver disease. Its complications include cirrhosis and liver failure, hepatocellular carcinoma, and eventual death. NAFLD is the most common cause of liver disease globally and is estimated to affect nearly one-third of individuals in the United States. Despite knowledge that the incidence and prevalence of NAFLD are increasing, the pathophysiology of the disease and its progression to cirrhosis remain insufficiently understood. The molecular pathogenesis of NAFLD involves insulin resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. Better insight into these molecular pathways would allow for therapies that target specific stages of NAFLD. Preclinical animal models have aided in defining these mechanisms and have served as platforms for screening and testing of potential therapeutic approaches. In this review, we will discuss the cellular and molecular mechanisms thought to contribute to NAFLD, with a focus on the role of animal models in elucidating these mechanisms and in developing therapies. Full article
Show Figures

Figure 1

17 pages, 1242 KiB  
Review
Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease
by Han Ah Lee and Hwi Young Kim
Int. J. Mol. Sci. 2023, 24(11), 9324; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24119324 - 26 May 2023
Cited by 5 | Viewed by 4329
Abstract
Nonalcoholic fatty liver disease (NAFLD) can lead to liver fibrosis and cirrhosis. Recently, glucagon-like peptide 1 receptor agonists (GLP-1RAs), a class of drugs used to treat type 2 diabetes and obesity, have shown therapeutic effects against NAFLD. In addition to reducing blood glucose [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) can lead to liver fibrosis and cirrhosis. Recently, glucagon-like peptide 1 receptor agonists (GLP-1RAs), a class of drugs used to treat type 2 diabetes and obesity, have shown therapeutic effects against NAFLD. In addition to reducing blood glucose levels and body weight, GLP-1RAs are effective in improving the clinical, biochemical, and histological markers of hepatic steatosis, inflammation, and fibrosis in patients with NAFLD. Additionally, GLP-1RAs have a good safety profile with minor side effects, such as nausea and vomiting. Overall, GLP-1RAs show promise as a potential treatment for NAFLD, and further studies are required to determine their long-term safety and efficacy. Full article
Show Figures

Figure 1

23 pages, 13334 KiB  
Review
Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis
by Yuezhi Zhu, Jen Kit Tan, Sok Kuan Wong and Jo Aan Goon
Int. J. Mol. Sci. 2023, 24(11), 9168; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24119168 - 23 May 2023
Cited by 2 | Viewed by 2588
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH. Full article
Show Figures

Figure 1

23 pages, 1183 KiB  
Review
Advances in the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease
by Xunzhe Yin, Xiangyu Guo, Zuojia Liu and Jin Wang
Int. J. Mol. Sci. 2023, 24(3), 2844; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms24032844 - 02 Feb 2023
Cited by 19 | Viewed by 7216
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that affects approximately one-quarter of the global adult population, posing a significant threat to human health with wide-ranging social and economic implications. The main characteristic of NAFLD is considered that the [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that affects approximately one-quarter of the global adult population, posing a significant threat to human health with wide-ranging social and economic implications. The main characteristic of NAFLD is considered that the excessive fat is accumulated and deposited in hepatocytes without excess alcohol intake or some other pathological causes. NAFLD is a progressive disease, ranging from steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma, liver transplantation, and death. Therefore, NAFLD will probably emerge as the leading cause of end-stage liver disease in the coming decades. Unlike other highly prevalent diseases, NAFLD has received little attention from the global public health community. Liver biopsy is currently considered the gold standard for the diagnosis and staging of NAFLD because of the absence of noninvasive and specific biomarkers. Due to the complex pathophysiological mechanisms of NAFLD and the heterogeneity of the disease phenotype, no specific pharmacological therapies have been approved for NAFLD at present, although several drugs are in advanced stages of development. This review summarizes the current evidence on the pathogenesis, diagnosis and treatment of NAFLD. Full article
Show Figures

Figure 1

Back to TopTop