ijms-logo

Journal Browser

Journal Browser

Molecular Research of Epidermal Stem Cells 2020

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (31 October 2020) | Viewed by 9603

Special Issue Editor


E-Mail Website
Guest Editor
Department of Dermatology, NYU School of Medicine, New York, NY, USA
Interests: molecular biology and genetics of human keratin genes; transcriptional profiling of skin cells using DNA microarrays; effects of UV light on skin; signal transduction in skin during inflammatory and proliferative processes; epidermal stem cells and differentiation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Arguably among the most exciting research areas, stem cell biology recently burst out with extraordinary thrill and promise. Because of its accessibility, epidermis was among the first organs targeted by stem cell researchers. Several crucial discoveries relating to stem cells biology originated in skin research, the origins of cancers, the influence of the niche, role in wound healing and use in gene replacement therapy, to name a few. The field is fast-moving, but sufficiently mature to warrant a special inclusive and comprehensive overview to define its range, challenges and future directions.

The goal of this special issue is to provide a summary of the field, describe its impact as well as introduce the recent advances in the Molecular Research of Epidermal Stem Cells. Both keratinocyte and melanocyte stem cells will be addressed, mainly those in the hair follicles, but the extrafollicular ones as well. This issue will address the markers of epidermal stem cells, the role of the niche, the regulatory processes governing quiescence and emergence into proliferation, epigenetics, interface of stem cells with cancer and wound healing, and their use in treating dermatologic disorders.

Dr. Miroslav Blumenberg
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bulge region
  • cancer
  • epidermis
  • epigenetics
  • gene replacement therapy
  • hair
  • ichthyosis
  • melanocyte
  • niche
  • sebaceous gland
  • skin
  • wound healing

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2567 KiB  
Article
BC-Box Motif in SOCS6 Induces Differentiation of Epidermal Stem Cells into GABAnergic Neurons
by Tetsuya Yoshizumi, Atsuhiko Kubo, Hidetoshi Murata, Masamichi Shinonaga and Hiroshi Kanno
Int. J. Mol. Sci. 2020, 21(14), 4947; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21144947 - 13 Jul 2020
Cited by 7 | Viewed by 2082
Abstract
The BC-box motif in suppressor of cytokine signaling 6 (SOCS6) promotes the neuronal differentiation of somatic stem cells, including epidermal stem cells. SOCS6 protein belongs to the group of SOCS proteins and inhibits cytokine signaling. Here we showed that epidermal stem cells were [...] Read more.
The BC-box motif in suppressor of cytokine signaling 6 (SOCS6) promotes the neuronal differentiation of somatic stem cells, including epidermal stem cells. SOCS6 protein belongs to the group of SOCS proteins and inhibits cytokine signaling. Here we showed that epidermal stem cells were induced to differentiate into GABAnergic neurons by the intracellular delivery of a peptide composed of the amino-acid sequences encoded by the BC-box motif in SOCS6 protein. The BC-box motif (SLQYLCRFVI) in SOCS6 corresponded to the binding site of elongin BC. GABAnergic differentiation mediated by the BC-box motif in SOCS6 protein was caused by ubiquitination of JAK2 and inhibition of the JAK2-STAT3 pathway. Furthermore, GABAnergic neuron-like cells generated from epidermal stem cells were transplanted into the brain of a rodent ischemic model. Then, we demonstrated that these transplanted cells were GAD positive and that the cognitive function of the ischemic model rodents with the transplanted cells was improved. This study could contribute to not only elucidating the mechanism of GABAnergic neuronal differentiation but also to neuronal regenerative medicine utilizing GABAnergic neurons. Full article
(This article belongs to the Special Issue Molecular Research of Epidermal Stem Cells 2020)
Show Figures

Figure 1

16 pages, 2835 KiB  
Article
Interaction of Deubiquitinase 2A-DUB/MYSM1 with DNA Repair and Replication Factors
by Carsten Kroeger, Reinhild Roesler, Sebastian Wiese, Adelheid Hainzl and Martina Vanessa Gatzka
Int. J. Mol. Sci. 2020, 21(11), 3762; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21113762 - 26 May 2020
Cited by 5 | Viewed by 3850
Abstract
The deubiquitination of histone H2A on lysine 119 by 2A-DUB/MYSM1, BAP1, USP16, and other enzymes is required for key cellular processes, including transcriptional activation, apoptosis, and cell cycle control, during normal hematopoiesis and tissue development, and in tumor cells. Based on our finding [...] Read more.
The deubiquitination of histone H2A on lysine 119 by 2A-DUB/MYSM1, BAP1, USP16, and other enzymes is required for key cellular processes, including transcriptional activation, apoptosis, and cell cycle control, during normal hematopoiesis and tissue development, and in tumor cells. Based on our finding that MYSM1 colocalizes with γH2AX foci in human peripheral blood mononuclear cells, leukemia cells, and melanoma cells upon induction of DNA double-strand breaks with topoisomerase inhibitor etoposide, we applied a mass spectrometry-based proteomics approach to identify novel 2A-DUB/MYSM1 interaction partners in DNA-damage responses. Differential display of MYSM1 binding proteins significantly enriched after exposure of 293T cells to etoposide revealed an interacting network of proteins involved in DNA damage and replication, including factors associated with poor melanoma outcome. In the context of increased DNA-damage in a variety of cell types in Mysm1-deficient mice, in bone marrow cells upon aging and in UV-exposed Mysm1-deficient skin, our current mass spectrometry data provide additional evidence for an interaction between MYSM1 and key DNA replication and repair factors, and indicate a potential function of 2A-DUB/MYSM1 in DNA repair processes. Full article
(This article belongs to the Special Issue Molecular Research of Epidermal Stem Cells 2020)
Show Figures

Graphical abstract

Review

Jump to: Research

14 pages, 1779 KiB  
Review
Development and Maintenance of Epidermal Stem Cells in Skin Adnexa
by Jaroslav Mokry and Rishikaysh Pisal
Int. J. Mol. Sci. 2020, 21(24), 9736; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21249736 - 20 Dec 2020
Cited by 11 | Viewed by 3346
Abstract
The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with [...] Read more.
The skin surface is modified by numerous appendages. These structures arise from epithelial stem cells (SCs) through the induction of epidermal placodes as a result of local signalling interplay with mesenchymal cells based on the Wnt–(Dkk4)–Eda–Shh cascade. Slight modifications of the cascade, with the participation of antagonistic signalling, decide whether multipotent epidermal SCs develop in interfollicular epidermis, scales, hair/feather follicles, nails or skin glands. This review describes the roles of epidermal SCs in the development of skin adnexa and interfollicular epidermis, as well as their maintenance. Each skin structure arises from distinct pools of epidermal SCs that are harboured in specific but different niches that control SC behaviour. Such relationships explain differences in marker and gene expression patterns between particular SC subsets. The activity of well-compartmentalized epidermal SCs is orchestrated with that of other skin cells not only along the hair cycle but also in the course of skin regeneration following injury. This review highlights several membrane markers, cytoplasmic proteins and transcription factors associated with epidermal SCs. Full article
(This article belongs to the Special Issue Molecular Research of Epidermal Stem Cells 2020)
Show Figures

Graphical abstract

Back to TopTop