molecules-logo

Journal Browser

Journal Browser

Biological and Pharmacological Activity of Plant Natural Compounds III

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (15 December 2022) | Viewed by 40017

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
1. Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
2. Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
Interests: plant medicinal chemistry; phytotherapy research; oncology; preclinical research; endocrinology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Given the success of the previous editions, we have decided to propose a third edition of the Special Issue entitled “Biological and Pharmacological Activity of Plant Natural Compounds”. The topic is the same, and so is the aim, to explore novel, uncommon, alternative uses of plant-derived compounds in human health and in preclinical settings. In addition, basic research on biological, pharmacological, biochemical, etc. properties of plants is welcome. Of course, both articles and reviews and collaborative research works can be prepared and submitted.

Prof. Dr. Raffaele Pezzani
Prof. Dr. Sara Vitalini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant natural products
  • biological and biochemical activity
  • phytotherapy
  • plant medicinal chemistry
  • plant extracts
  • phytochemicals
  • natural medicine

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 3246 KiB  
Article
Nephroprotective Effect of Diosmin against Cisplatin-Induced Kidney Damage by Modulating IL-1β, IL-6, TNFα and Renal Oxidative Damage
by Tarique Anwer, Saeed Alshahrani, Ahmad M. H. Somaili, Abdullah H. Khubrani, Rayan A. Ahmed, Abdulmajeed M. Jali, Ayed Alshamrani, Hina Rashid, Yousra Nomeir, Mohammad Khalid and Mohammad Firoz Alam
Molecules 2023, 28(3), 1302; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules28031302 - 30 Jan 2023
Cited by 3 | Viewed by 2307
Abstract
Cisplatin (CP) is a platinum compound of the alkylating agent class that is used for the treatment of various types of cancer. However, CP treatments in cancer patients are accountable for nephrotoxicity, as it is a major adverse effect. Hence, this research study [...] Read more.
Cisplatin (CP) is a platinum compound of the alkylating agent class that is used for the treatment of various types of cancer. However, CP treatments in cancer patients are accountable for nephrotoxicity, as it is a major adverse effect. Hence, this research study was proposed to investigate the nephroprotective effect of diosmin, a flavonoid glycoside of hesperidin derivatives against cisplatin-induced kidney damage. Wistar rats received a single intraperitoneal (i.p) injection of CP (7.5 mg/kg, i.p) to induce nephrotoxicity. The administration of CP significantly (p < 0.001) increased the markers of kidney function test (creatinine, blood urea nitrogen, and uric acid) and demonstrated histopathological changes in the kidney of the CP-treated nephrotoxic group. In addition, the CP-treated nephrotoxic group demonstrated a significant (p < 0.001) increase in lipid peroxidation (LPO) levels and depleted activities of reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT).However, diosmin (100 and 200 mg/kg) treatments significantly reduced the elevated levels of kidney function test parameters and restored structural changes in the kidney (p < 0.001). The administration of diosmin (100 and 200 mg/kg) significantly (p < 0.001) reduced LPO levels, increased GSH content and showed improvements in the activities of GPx, GR, SOD and CAT. The markers of inflammatory cytokines such as IL-1β, IL-6 and TNFα significantly (p < 0.001) increased in the CP-treated nephrotoxic group, whereas diosmin (100 and 200 mg/kg) treatments significantly (p < 0.001) reduced the elevated levels of these cytokines. The findings of this research demonstrate the nephroprotective effect of diosmin against CP-induced kidney damage. Therefore, we conclude that diosmin may be used as a supplement in the management of nephrotoxicity associated with CP treatments in cancer patients. Full article
Show Figures

Figure 1

17 pages, 3865 KiB  
Article
Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies
by Fekade Beshah Tessema, Yilma Hunde Gonfa, Tilahun Belayneh Asfaw, Tigist Getachew Tadesse, Mesfin Getachew Tadesse, Archana Bachheti, Devi Prasad Pandey, Saikh M. Wabaidur, Kholood A. Dahlous, Ivan Širić, Pankaj Kumar, Vinod Kumar, Sami Abou Fayssal and Rakesh Kumar Bachheti
Molecules 2023, 28(3), 1111; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules28031111 - 22 Jan 2023
Cited by 3 | Viewed by 1788
Abstract
Shigellosis is one of the major causes of death in children worldwide. Flavonoids and phenolic acids are expected to demonstrate anti-shigellosis activity and anti-diarrheal properties. The aerial part of A. integrifolia is commonly used against diarrhea. This study aimed to identify flavonoids and [...] Read more.
Shigellosis is one of the major causes of death in children worldwide. Flavonoids and phenolic acids are expected to demonstrate anti-shigellosis activity and anti-diarrheal properties. The aerial part of A. integrifolia is commonly used against diarrhea. This study aimed to identify flavonoids and phenolic acids responsible for this therapeutic purpose. Antioxidant activity, total phenol content, and total flavonoid content were determined. The antibacterial activity of the aerial part against Shigella spp. was also tested using the agar well diffusion method. HPLC analysis was performed using UHPLC-DAD for different extracts of the aerial part. Autodock Vina in the PyRx platform was used to screen responsible components. Ciprofloxacin was used as a reference drug. An enzyme taking part in pyrimidine biosynthesis was used as a target protein. Molecular docking results were visualized using Discovery Studio and LigPlot1.4.5 software. Antioxidant activity, total phenol content, and total flavonoid content are more significant for the aerial part of A. integrifolia. From HPLC analysis, the presence of the flavonoids, quercetin, myricetin, and rutin and the phenolic acids gallic acid, chlorogenic acid, and syringic acid were identified from the aerial part of A. integrifolia. Regarding the antibacterial activity, the aerial part shows considerable activity against Shigella spp. Binding energies, RMSD and Ki values, interaction type, and distance are considered to identify the components most likely responsible for the therapeutic effects and observed activity. Antioxidant activity, total phenol content, and total flavonoid content of the aerial part are in line with anti-shigellosis activity. The top five components that are most likely potentially responsible for therapeutic purposes and anti-shigellosis activity are chlorogenic acid, rutin, dihydroquercetin, dihydromyricetin, and kaempferol. Full article
Show Figures

Figure 1

14 pages, 306 KiB  
Article
Almond [Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars (‘Tuono’, ‘Pizzuta’, ‘Romana’)
by Simona Fabroni, Angela Trovato, Gabriele Ballistreri, Susanna Aurora Tortorelli, Paola Foti, Flora Valeria Romeo and Paolo Rapisarda
Molecules 2023, 28(2), 605; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules28020605 - 06 Jan 2023
Cited by 2 | Viewed by 1439
Abstract
In this study we developed a new extract, by the use of conventional solid-solvent extraction and a food-grade hydroalcoholic solvent, rich in phenolic and triterpenoid components from almon hull to be employed as functional ingredient in food, pharma and cosmetic sectors. Two autochthonous [...] Read more.
In this study we developed a new extract, by the use of conventional solid-solvent extraction and a food-grade hydroalcoholic solvent, rich in phenolic and triterpenoid components from almon hull to be employed as functional ingredient in food, pharma and cosmetic sectors. Two autochthonous Sicilian cultivars (‘Pizzuta’ and ‘Romana’) and an Apulian modern cultivar (‘Tuono’) have been tested for the production of the extract. Results showed that the two Sicilian varieties, and in particular the ‘Romana’ one, present the best characteristics to obtain extracts rich in triterpenoids and hydroxycinnamic acids, useful for the production of nutraceutical supplements. About triterpenoids, the performance of the hydroalcoholic extraction process allowed to never go below 46% of recovery for ‘Pizzuta’ samples, with significantly higher percentages of recovery for ‘Tuono’ and ‘Romana’ extracts (62.61% and 73.13%, respectively) while hydroxycinnamic acids were recovered at higher recovery rate (84%, 89% and 88% for ‘Pizzuta’, ‘Romana’ and ‘Tuono’ extracts, respectively). Invitro antioxidant and antimicrobial activities exerted by the extracts showed promising results with P. aeruginosa being the most affected strain, inhibited up to the 1/8 dilution with ‘Romana’ extract. All the three tested extracts exerted an antimicrobial action up to 1/4 dilutions but ‘Romana’ and ‘Pizzuta’ extracts always showed the greatest efficacy. Full article
21 pages, 4800 KiB  
Article
Molecular Docking of Bacterial Protein Modulators and Pharmacotherapeutics of Carica papaya Leaves as a Promising Therapy for Sepsis: Synchronising In Silico and In Vitro Studies
by Juveria Usmani, Hina Kausar, Saleem Akbar, Ali Sartaj, Showkat R. Mir, Mohammed Jaseem Hassan, Manju Sharma, Razi Ahmad, Summaya Rashid and Mohd Nazam Ansari
Molecules 2023, 28(2), 574; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules28020574 - 06 Jan 2023
Cited by 3 | Viewed by 1891
Abstract
Sepsis is a serious health concern globally, which necessitates understanding the root cause of infection for the prevention of proliferation inside the host’s body. Phytochemicals present in plants exhibit antibacterial and anti-proliferative properties stipulated for sepsis treatment. The aim of the study was [...] Read more.
Sepsis is a serious health concern globally, which necessitates understanding the root cause of infection for the prevention of proliferation inside the host’s body. Phytochemicals present in plants exhibit antibacterial and anti-proliferative properties stipulated for sepsis treatment. The aim of the study was to determine the potential role of Carica papaya leaf extract for sepsis treatment in silico and in vitro. We selected two phytochemical compounds, carpaine and quercetin, and docked them with bacterial proteins, heat shock protein (PDB ID: 4PO2), surfactant protein D (PDB ID: 1PW9), and lactobacillus bacterial protein (PDB ID: 4MKS) against imipenem and cyclophosphamide. Quercetin showed the strongest interaction with 1PW9 and 4MKS proteins. The leaves were extracted using ethanol, methanol, and water through Soxhlet extraction. Total flavonoid content, DPPH assay, HPTLC, and FTIR were performed. In vitro cytotoxicity of ethanol extract was screened via MTT assay on the J774 cell line. Ethanol extract (EE) possessed the maximum number of phytocomponents, the highest amount of flavonoid content, and the maximum antioxidant activity compared to other extracts. FTIR analysis confirmed the presence of N-H, O-H, C-H, C=O, C=C, and C-Cl functional groups in ethanol extract. Cell viability was highest (100%) at 25 µg/mL of EE. The present study demonstrated that the papaya leaves possessed antibacterial and cytotoxic activity against sepsis infection. Full article
Show Figures

Figure 1

16 pages, 2677 KiB  
Article
Synchronous Extraction, Antioxidant Activity Evaluation, and Composition Analysis of Carbohydrates and Polyphenols Present in Artichoke Bud
by Xiao Lin, Xian-Kun Lu, Kai-Hao Zhu, Xin-Yang Jiang, Jiong-Chao Chen, Pei-Zheng Yan and Dong-Sheng Zhao
Molecules 2022, 27(24), 8962; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27248962 - 16 Dec 2022
Cited by 4 | Viewed by 1407
Abstract
This study investigated the optimization of ultrasonic-assisted aqueous two-phase synchronous extraction of carbohydrates and polyphenols present in artichoke bud, evaluated their antioxidant activities in vitro, and analyzed the composition of carbohydrates and polyphenols by high-performance liquid chromatography (HPLC). The powder mass, ultrasonic time, [...] Read more.
This study investigated the optimization of ultrasonic-assisted aqueous two-phase synchronous extraction of carbohydrates and polyphenols present in artichoke bud, evaluated their antioxidant activities in vitro, and analyzed the composition of carbohydrates and polyphenols by high-performance liquid chromatography (HPLC). The powder mass, ultrasonic time, ammonium sulfate concentration, and alcohol–water ratio were considered the influencing factors based on the single-factor experiment results, and a dual-response surface model was designed to optimize the synchronous extraction process to extract carbohydrates and polyphenols. The antioxidant activity was evaluated by measuring the scavenging capacity of ABTS+· and DPPH· and the reducing capacity of Fe3+. The optimal process conditions in this study were as follows: the powder mass of 1.4 g, ammonium sulfate concentration of 0.34 g/mL, alcohol–water ratio of 0.4, and ultrasonic time of 43 min. The polyphenol content in artichoke bud was 5.32 ± 0.13 mg/g, and the polysaccharide content was 74.78 ± 0.11 mg/g. An experiment on in vitro antioxidant activity showed that both carbohydrates and polyphenols had strong antioxidant activities, and the antioxidant activity of polyphenols was stronger than that of carbohydrates. The HPLC analysis revealed that the carbohydrates in artichoke bud were mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose, and the molar ratio was 10.77:25.22:2.37:15.74:125.39:48.62:34.70. The polyphenols comprised chlorogenic acid, 4-dicaffeoylquinic acid, caffeic acid, 1,3-dicaffeoylqunic acid, isochlorogenic acid B, isochlorogenic acid A, cynarin, and isochlorogenic acid C, and the contents were 0.503, 0.029, 0.022, 0.017, 0.008, 0.162, 1.621, 0.030 mg/g, respectively. This study also showed that the carbohydrates and polyphenols in artichoke bud could be important natural antioxidants, and the composition analysis of HPLC provided directions for their future research. Carbohydrates and polyphenols in artichoke buds can be separated and enriched using the optimized process technology, and it is an effective means of extracting ingredients from plants. Full article
Show Figures

Figure 1

11 pages, 1165 KiB  
Article
The Detailed Pharmacodynamics of the Gut Relaxant Effect and GC-MS Analysis of the Grewia tenax Fruit Extract: In Vivo and Ex Vivo Approach
by Najeeb Ur Rehman, Mohd Nazam Ansari, Wasim Ahmad and Mohd Amir
Molecules 2022, 27(24), 8880; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27248880 - 14 Dec 2022
Cited by 1 | Viewed by 1383
Abstract
The study was performed to assess and rationalize the traditional utilization of the fruit part of Grewia tenax (G. tenax). The phytoconstituents present in the methanolic extract were analyzed using Gas-Chromatography-Mass Spectroscopy (GC-MS), while the anti-diarrheal activity was investigated in [...] Read more.
The study was performed to assess and rationalize the traditional utilization of the fruit part of Grewia tenax (G. tenax). The phytoconstituents present in the methanolic extract were analyzed using Gas-Chromatography-Mass Spectroscopy (GC-MS), while the anti-diarrheal activity was investigated in the Swiss albino mice against castor oil-provoked diarrhea in vivo. The antispasmodic effect and the possible pharmacodynamics of the observed antispasmodic effect were determined in an isolated rat ileum using the organ bath setup as an ex vivo model. GC-MS findings indicate that G. tenax is rich in alcohol (6,6-dideutero-nonen-1-ol-3) as the main constituent (20.98%), while 3-Deoxy-d-mannoic lactone (15.36%) was detected as the second major constituents whereas methyl furfural, pyranone, carboxylic acid, vitamin E, fatty acid ester, hydrocarbon, steroids, sesquiterpenes, phytosterols, and ketones were verified as added constituents in the methanolic extract. In mice, the orally administered G. tenax inhibited the diarrheal episodes significantly (p < 0.05) at 200 mg/kg (40% protection), and this protection was escalated to 80% with the next higher dose of 400 mg/kg. Loperamide (10 mg/kg), a positive control drug, imparted 100% protection, whereas no protection was shown by saline. In isolated rat ileum, G. tenax completely inhibited the carbamylcholine (CCh; 1 µM) and KCl (high K+; 80 mM)-evoked spasms in a concentrations-mediated manner (0.03 to 3 mg/mL) by expressing equal potencies (p > 0.05) against both types of evoked spasms, similar to papaverine, having dual inhibitory actions at phosphodiesterase enzyme (PDE) and Ca2+ channels (CCB). Similar to papaverine, the inhibitory effect of G. tenax on PDE was further confirmed indirectly when G. tenax (0.1 and 0.3 mg/mL) preincubated ileal tissues shifted the isoprenaline-relaxation curve towards the left. Whereas, pre-incubating the tissue with 0.3 and 1 mg/mL of G. tenax established the CCB-like effect by non-specific inhibition of CaCl2–mediated concentration-response curves towards the right with suppression of the maximum peaks, similar to verapamil, a standard CCB. Thus, the present investigation revealed the phytochemical constituents and explored the detailed pharmacodynamic basis for the curative use of G. tenax in diarrhea and hyperactive gut motility disorders. Full article
Show Figures

Figure 1

15 pages, 3327 KiB  
Article
Native Mass Spectrometry Coupled to Spectroscopic Methods to Investigate the Effect of Soybean Isoflavones on Structural Stability and Aggregation of Zinc Deficient and Metal-Free Superoxide Dismutase
by Xinyu Bian, Xiaoyu Zhuang, Junpeng Xing, Shu Liu, Zhiqiang Liu and Fengrui Song
Molecules 2022, 27(21), 7303; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27217303 - 27 Oct 2022
Cited by 2 | Viewed by 1115
Abstract
The deficiency or wrong combination of metal ions in Cu, Zn-superoxide dismutase (SOD1), is regarded as one of the main factors causing the aggregation of SOD1 and then inducing amyotrophic lateral sclerosis (ALS). A ligands-targets screening process based on native electrospray ionization ion [...] Read more.
The deficiency or wrong combination of metal ions in Cu, Zn-superoxide dismutase (SOD1), is regarded as one of the main factors causing the aggregation of SOD1 and then inducing amyotrophic lateral sclerosis (ALS). A ligands-targets screening process based on native electrospray ionization ion mobility mass spectrometry (ESI-IMS-MS) was established in this study. Four glycosides including daidzin, sophoricoside, glycitin, and genistin were screened out from seven soybean isoflavone compounds and were found to interact with zinc-deficient or metal-free SOD1. The structure and conformation stability of metal-free and zinc-deficient SOD1 and their complexes with the four glycosides was investigated by collision-induced dissociation (CID) and collision-induced unfolding (CIU). The four glycosides could strongly bind to the metal-free and copper recombined SOD1 and enhance the folding stability of these proteins. Additionally, the ThT fluorescence assay showed that these glycosides could inhibit the toxic aggregation of the zinc-deficient or metal-free SOD1. The competitive interaction experiments together with molecular docking indicate that glycitin, which showed the best stabilizing effects, binds with SOD1 between β-sheet 6 and loop IV. In short, this study provides good insight into the relationship between inhibitors and different SOD1s. Full article
Show Figures

Figure 1

15 pages, 1129 KiB  
Article
Pharmacokinetic Herb-Drug Interactions of Glipizide with Andrographis paniculata (Burm. f.) and Andrographolide in Normal and Diabetic Rats by Validated HPLC Method
by Elza Sundhani, Agung Endro Nugroho, Arief Nurrochmad, Ika Puspitasari, Dita Amalia Prihati and Endang Lukitaningsih
Molecules 2022, 27(20), 6901; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27206901 - 14 Oct 2022
Cited by 7 | Viewed by 2195
Abstract
Co-administered medicinal herbs can modify a drug’s pharmacokinetics (PK), effectiveness, and toxicity. Andrographis paniculata (Burm. f.) ethanolic extract (APE) and andrographolide (AND) (a potent CYP2C9 inducer/inhibitor) can alter the pharmacokinetic parameters of glipizide (GLZ). This study aimed to determine the potential pharmacokinetics of [...] Read more.
Co-administered medicinal herbs can modify a drug’s pharmacokinetics (PK), effectiveness, and toxicity. Andrographis paniculata (Burm. f.) ethanolic extract (APE) and andrographolide (AND) (a potent CYP2C9 inducer/inhibitor) can alter the pharmacokinetic parameters of glipizide (GLZ). This study aimed to determine the potential pharmacokinetics of herb–drug interactions between GLZ and APE/AND in the plasma of normal and diabetic rats using the HPLC bioanalysis method. The glipizide bioanalytical method established with RP-HPLC/UV instrument was validated following the EMA guidelines. GLZ was administered alone and in combination with APE or AND to normal and diabetic rats. The GLZ pharmacokinetic parameters were estimated according to the correlation between concentration and sampling time using the PK solver program. A simple and rapid GLZ bioanalysis technique with a lower limit of quantitation of 25 ng/mL was developed and presented the following parameters: accuracy (error ≤ 15%), precision (CV ≤ 15%), selectivity, stability, and linearity (R2 = 0.998) at concentrations ranging 25–1500 ng/mL. APE administration significantly improved the Cmax and AUC0–t/AUC0–∞ GLZ values in normal and diabetic rats (p < 0.05). AND significantly reduced the bioavailability of GLZ in diabetic rats with small values of T 1/2, Cmax, and AUC0–t/AUC0–∞ (p < 0.05). This combination can be considered in administering medications because it can influence the pharmacological effects of GLZ. Full article
Show Figures

Graphical abstract

18 pages, 3259 KiB  
Article
Evaluation of Major Constituents of Medicinally Important Plants for Anti-Inflammatory, Antidiabetic and AGEs Inhibiting Properties: In Vitro and Simulatory Evidence
by Abdul Rafey, Adnan Amin, Muhammad Kamran, Muhammad Imran Aziz, Varda Athar, Shah Iram Niaz and Luc Pieters
Molecules 2022, 27(19), 6715; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27196715 - 09 Oct 2022
Cited by 2 | Viewed by 1207
Abstract
Diabetes mellitus (DM) is a global health concern that is associated with several micro- and macrovascular complications. We evaluated several important medicinal plant constituents, including polyphenols and flavonoids, for α-glucosidase inhibition, AGEs’ inhibitory activities using oxidative and no-oxidative assays, the inhibition of protein [...] Read more.
Diabetes mellitus (DM) is a global health concern that is associated with several micro- and macrovascular complications. We evaluated several important medicinal plant constituents, including polyphenols and flavonoids, for α-glucosidase inhibition, AGEs’ inhibitory activities using oxidative and no-oxidative assays, the inhibition of protein cross link formation, 15-lipoxydenase inhibition and molecular docking. The molecular docking studies showed high binding energies of flavonoids for transcriptional regulars 1IK3, 3TOP and 4F5S. In the α-glucosidase inhibition assay, a significant inhibition was noted for quercitrin (IC50 7.6 µg/mL) and gallic acid (IC50 8.2 µg/mL). In the AGEs inhibition assays, quercetin showed significant results in both non-oxidative and (IC50 0.04 mg/mL) and oxidative assays (IC50 0.051 mg/mL). Furthermore, quercitrin showed inhibitory activity in the non-oxidative (IC50 0.05 mg/mL) and oxidative assays (IC50 0.34 mg/mL). A significant inhibition of protein cross link formation was observed by SDS-PAGE analysis. Quercitrin (65%) and quercetin (62%) showed significant inhibition of 15-lipoxygenase. It was thus concluded that flavonoids and other polyphenols present in plant extracts can be effective in management of diabetes and allied co-morbidities. Full article
Show Figures

Figure 1

13 pages, 3815 KiB  
Article
Antioxidant and Antimicrobial Activities of Thai Edible Plant Extracts Prepared Using Different Extraction Techniques
by Pimmada Junsathian, Soichiro Nakamura, Shigeru Katayama and Saroat Rawdkuen
Molecules 2022, 27(19), 6489; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27196489 - 01 Oct 2022
Cited by 4 | Viewed by 1798
Abstract
This study investigated the antioxidant and antimicrobial activities of six Thai edible plant leaf extracts, including Cashew (CN), Chamuang (CM), Monpu (MP), Thurianthet (TT), Kradon (KD) and Pakliang (PL), extracted using ethanol extraction (EE), microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE). The leaf [...] Read more.
This study investigated the antioxidant and antimicrobial activities of six Thai edible plant leaf extracts, including Cashew (CN), Chamuang (CM), Monpu (MP), Thurianthet (TT), Kradon (KD) and Pakliang (PL), extracted using ethanol extraction (EE), microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE). The leaf extracts were characterized for percentage yield, total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and-ferric reducing antioxidant power (FRAP) activity, and antimicrobial activity against spoilage. MAE produced the highest percentage yields, among which MAE-extracted MP exhibited the highest yield. Furthermore, the highest TPC and TFC were obtained for MAE, with MAE-extracted KD and CN showing the highest TPC and TFC, respectively, among the samples. The highest DPPH and FRAP values were seen in MAE-processed CN, KD, and MP extracts. The inhibition zone of pathogenic bacteria, minimum inhibitory concentration, and minimum bacterial concentration were determined in all samples except TT. These findings indicate that, compared to EE and UAE, MAE improved the antioxidant and antimicrobial efficacy of the leaf extracts. The aforementioned extracts could be employed as natural food additives to prevent chemical and microbial spoilage of foods. Full article
Show Figures

Figure 1

14 pages, 1347 KiB  
Article
Antifungal Activity of Lavandula angustifolia Essential Oil against Candida albicans: Time-Kill Study on Pediatric Sputum Isolates
by Stefan Mijatovic, Jelena Antic Stankovic, Ivana Colovic Calovski, Eleonora Dubljanin, Dejan Pljevljakusic, Dubravka Bigovic and Aleksandar Dzamic
Molecules 2022, 27(19), 6300; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27196300 - 24 Sep 2022
Cited by 3 | Viewed by 1983
Abstract
The aim of our study was to determine the susceptibility of 15 Candida albicans sputum isolates on fluconazole and caspofungin, as well as the antifungal potential of Lavandula angustifolia essential oil (LAEO). The commercial LAEO was analyzed using gas chromatography-mass spectrometry. The antifungal [...] Read more.
The aim of our study was to determine the susceptibility of 15 Candida albicans sputum isolates on fluconazole and caspofungin, as well as the antifungal potential of Lavandula angustifolia essential oil (LAEO). The commercial LAEO was analyzed using gas chromatography-mass spectrometry. The antifungal activity was evaluated using EUCAST protocol. A killing assay was performed to evaluate kinetics of 2% LAEO within 30 min treatment. LAEO with major constituents’ linalool (33.4%) and linalyl acetate (30.5%) effective inhibited grows of C. albicans in concentration range 0.5–2%. Fluconazole activity was noted in 67% of the isolates with MICs in range 0.06–1 µg/mL. Surprisingly, 40% of isolates were non-wild-type (non-WT), while MICs for WT ranged between 0.125–0.25 µg/mL. There were no significant differences in the LAEO MICs among fluconazole-resistant and fluconazole-susceptible sputum strains (p = 0.31) and neither among caspofungin non-WT and WT isolates (p = 0.79). The 2% LAEO rapidly achieved 50% growth reduction in all tested strains between 0.2 and 3.5 min. Within 30 min, the same LAEO concentration exhibited a 99.9% reduction in 27% isolates. This study demonstrated that 2% solution of LAEO showed a significant antifungal activity which is equally effective against fluconazole and caspofungin susceptible and less-susceptible strains. Full article
Show Figures

Figure 1

11 pages, 935 KiB  
Article
Nutrients and Main Secondary Metabolites Characterizing Extracts and Essential Oil from Fruits of Ammodaucus leucotrichus Coss. & Dur. (Western Sahara)
by Mohamed Lamin Abdi Bellau, Matteo Andrea Chiurato, Annalisa Maietti, Giancarlo Fantin, Paola Tedeschi, Nicola Marchetti, Massimo Tacchini, Gianni Sacchetti and Alessandra Guerrini
Molecules 2022, 27(15), 5013; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27155013 - 06 Aug 2022
Cited by 5 | Viewed by 1689
Abstract
The ethnobotany of the Sahrawi people considers various species of plants and crude drugs as food, cooking spices and traditional health remedies. From among these, the fruits of Ammodaucus leucotrichus Coss. & Dur. (Apiaceae), known as Saharan cumin, were chosen for our research. [...] Read more.
The ethnobotany of the Sahrawi people considers various species of plants and crude drugs as food, cooking spices and traditional health remedies. From among these, the fruits of Ammodaucus leucotrichus Coss. & Dur. (Apiaceae), known as Saharan cumin, were chosen for our research. The present paper reports a proximate composition and mineral element analysis of various samples of A. leucotrichus fruits, collected during the balsamic period (full fruiting) from plants grown in Bir Lehlu (Western Sahara) and purchased in a local market (Tindouf). These analyses pointed out interesting nutritional values of the crude drug. Decoction and alcoholic extract, analyzed by HPLC-DAD, evidenced ammolactone-A and R-perillaldehyde as the two main isolated constituents, particularly in the ethanolic extracts (ammolactone-A, market sample: 51.71 ± 0.39 mg/g dry extract; wild sample: 111.60 ± 1.80 mg/g dry extract; R-perillaldehyde, market sample: 145.95 ± 0.35 mg/g dry extract; wild sample: 221.40 ± 0.30 mg/g dry extract). The essential oils, obtained through hydrodistillation, were characterized by GC-MS and evidenced R-perillaldehyde (market sample: 53.21 ± 1.52%; wild sample: 74.01 ± 1.75%) and limonene (market sample: 35.15 ± 1.68%; wild sample: 19.90 ± 1.86%) as the most abundant compounds. The R configuration of perillaldehyde was ascertained and a complete description of the 1H and 13C NMR spectra of ammolactone-A was performed. Full article
Show Figures

Figure 1

16 pages, 1008 KiB  
Article
Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone
by Abraham Alberto Ramírez-Mendoza, Mario Alberto Ramírez-Herrera, Cesar Ricardo Cortez-Álvarez, Sendar Daniel Nery-Flores, Aldo Rafael Tejeda-Martínez, Marina María de Jesús Romero-Prado and María Luisa Mendoza-Magaña
Molecules 2022, 27(14), 4531; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27144531 - 15 Jul 2022
Cited by 3 | Viewed by 1623
Abstract
Ozone (O3) is an oxidating tropospheric pollutant. When O3 interacts with biological substrates, reactive oxygen and nitrogen species (RONS) are formed. Severe oxidative damage exhausts the endogenous antioxidant system, which leads to the decreased activity of antioxidant enzymes such as [...] Read more.
Ozone (O3) is an oxidating tropospheric pollutant. When O3 interacts with biological substrates, reactive oxygen and nitrogen species (RONS) are formed. Severe oxidative damage exhausts the endogenous antioxidant system, which leads to the decreased activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Curcumin (CUR) is a natural polyphenol with well-documented antioxidant and anti-inflammatory properties. The aim of this work is to evaluate the effects of curcumin on CAT, GPx, and SOD activity and the inhibition of oxidative damage after the acute and chronic exposure to O3. Fifty male Wistar rats were divided into five experimental groups: the intact control, CUR-fed control, exposed-to-O3 control, CUR-fed (preventive), and CUR-fed (therapeutic) groups. These two last groups received a CUR-supplemented diet while exposed to O3. These experiments were performed during acute- and chronic-exposure phases. In the preventive and therapeutic groups, the activity of plasma CAT, GPx, and SOD was increased during both exposure phases, with slight differences; concomitantly, lipid peroxidation and protein carbonylation were inhibited. For this reason, we propose that CUR could be used to enhance the activity of the antioxidant system and to diminish the oxidative damage caused by exposure to O3. Full article
Show Figures

Graphical abstract

15 pages, 2238 KiB  
Article
Optimisation of Vitamin B12 Extraction from Green Edible Seaweed (Ulva lactuca) by Applying the Central Composite Design
by Deny Susanti, Fatin Shazwani Ruslan, Muhammad Idham Shukor, Normawaty Mohammad Nor, Nurul Iman Aminudin, Muhamad Taher and Junaidi Khotib
Molecules 2022, 27(14), 4459; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27144459 - 12 Jul 2022
Cited by 5 | Viewed by 2613
Abstract
Vitamin B12, only found naturally in animal-based foods, is essential for brain functions and various chemical reactions in the human body. Insufficient vitamin B12 leads to vitamin B12 deficiency, common among strict vegetarians due to their limited intake of animal-based foods. Nevertheless, extensive [...] Read more.
Vitamin B12, only found naturally in animal-based foods, is essential for brain functions and various chemical reactions in the human body. Insufficient vitamin B12 leads to vitamin B12 deficiency, common among strict vegetarians due to their limited intake of animal-based foods. Nevertheless, extensive studies have demonstrated that macroalgae, specifically the Ulva lactuca species, are rich in vitamin B12 and could be further exploited in future dietary applications. In the current study, the ideal extraction method of vitamin B12 from dried U. lactuca was developed and optimised to achieve the maximum vitamin B12 yield. The effects of several extraction parameters, including the solvent-to-solvent, methanol:water (MeOH:H2O), and solute-to-solvent ratios, and pH on the total vitamin B12 content were analysed through a two-level factorial and central composite design. The highest vitamin B12 content, particularly cyanocobalamin (CN-Cbl), was recovered through the ultrasonic-assisted extraction (UAE) of oven-dried U. lactuca at 3 g:60 mL of solute-to-solvent and 25:75% of MeOH to H2O ratios at pH 4. The extraction of CN-Cbl from oven-dried U. lactuca that employed the UAE method has elevated CN-Cbl content recovery compared to other extraction methods. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 2692 KiB  
Review
Plant Spices as a Source of Antimicrobial Synergic Molecules to Treat Bacterial and Viral Co-Infections
by Nathália Barroso Almeida Duarte and Jacqueline Aparecida Takahashi
Molecules 2022, 27(23), 8210; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27238210 - 25 Nov 2022
Cited by 4 | Viewed by 2138
Abstract
The COVID-19 pandemic exposed the lack of antiviral agents available for human use, while the complexity of the physiological changes caused by coronavirus (SARS-CoV-2) imposed the prescription of multidrug pharmacotherapy to treat infected patients. In a significant number of cases, it was necessary [...] Read more.
The COVID-19 pandemic exposed the lack of antiviral agents available for human use, while the complexity of the physiological changes caused by coronavirus (SARS-CoV-2) imposed the prescription of multidrug pharmacotherapy to treat infected patients. In a significant number of cases, it was necessary to add antibiotics to the prescription to decrease the risk of co-infections, preventing the worsening of the patient’s condition. However, the precautionary use of antibiotics corroborated to increase bacterial resistance. Since the development of vaccines for COVID-19, the pandemic scenario has changed, but the development of new antiviral drugs is still a major challenge. Research for new drugs with synergistic activity against virus and resistant bacteria can produce drug leads to be used in the treatment of mild cases of COVID-19 and to fight other viruses and new viral diseases. Following the repurposing approach, plant spices have been searched for antiviral lead compounds, since the toxic effects of plants that are traditionally consumed are already known, speeding up the drug discovery process. The need for effective drugs in the context of viral diseases is discussed in this review, with special focus on plant-based spices with antiviral and antibiotic activity. The activity of plants against resistant bacteria, the diversity of the components present in plant extracts and the synergistic interaction of these metabolites and industrialized antibiotics are discussed, with the aim of contributing to the development of antiviral and antibiotic drugs. A literature search was performed in electronic databases such as Science Direct; SciELO (Scientific Electronic Library Online); LILACS (Latin American and Caribbean Literature on Health Sciences); Elsevier, SpringerLink; and Google Scholar, using the descriptors: antiviral plants, antibacterial plants, coronavirus treatment, morbidities and COVID-19, bacterial resistance, resistant antibiotics, hospital-acquired infections, spices of plant origin, coronaviruses and foods, spices with antiviral effect, drug prescriptions and COVID-19, and plant synergism. Articles published in English in the period from 2020 to 2022 and relevant to the topic were used as the main inclusion criteria. Full article
Show Figures

Figure 1

15 pages, 3587 KiB  
Review
β-Cyclocitral: Emerging Bioactive Compound in Plants
by Mohammad Faizan, Sadia Haque Tonny, Shadma Afzal, Zeba Farooqui, Pravej Alam, S. Maqbool Ahmed, Fangyuan Yu and Shamsul Hayat
Molecules 2022, 27(20), 6845; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27206845 - 13 Oct 2022
Cited by 5 | Viewed by 2251
Abstract
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. [...] Read more.
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of βCC. We emphasize the βCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research. Full article
Show Figures

Figure 1

16 pages, 1502 KiB  
Review
Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy
by Weidong Qi, Wanxiang Qi, Dongwei Xiong and Miao Long
Molecules 2022, 27(19), 6545; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27196545 - 03 Oct 2022
Cited by 43 | Viewed by 4937
Abstract
Quercetin, as a flavonol compound found in plants, has a variety of biological activities. It is widely present in nature and the human diet, with powerful oxidative properties and biological activities. In this review, the antioxidant mechanism and broad-spectrum antibacterial properties of quercetin [...] Read more.
Quercetin, as a flavonol compound found in plants, has a variety of biological activities. It is widely present in nature and the human diet, with powerful oxidative properties and biological activities. In this review, the antioxidant mechanism and broad-spectrum antibacterial properties of quercetin are revealed; the intervention effects of quercetin on pesticide poisoning and the pathway of action are investigated; the toxic effects of main mycotoxins on the collection and the detoxification process of quercetin are summarized; whether it is able to reduce the toxicity of mycotoxins is proved; and the harmful effects of heavy metal poisoning on the collection, the prevention, and control of quercetin are evaluated. This review is expected to enrich the understanding of the properties of quercetin and promote its better application in clinical practice. Full article
Show Figures

Figure 1

26 pages, 1532 KiB  
Review
Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review
by Jun-O Jin, Dhananjay Yadav, Kajal Madhwani, Nidhi Puranik, Vishal Chavda and Minseok Song
Molecules 2022, 27(18), 6032; https://0-doi-org.brum.beds.ac.uk/10.3390/molecules27186032 - 16 Sep 2022
Cited by 24 | Viewed by 4698
Abstract
Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy [...] Read more.
Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy are the mainstays of cancer treatment worldwide, but their extensive side effects limit their curative effect. The quest for low-toxicity marine drugs to prevent and treat cancer is one of the current research priorities of researchers. Fucoidan, an algal sulfated polysaccharide, is a potent therapeutic lead candidate against cancer, signifying that far more research is needed. Fucoidan is a versatile, nontoxic marine-origin heteropolysaccharide that has received much attention due to its beneficial biological properties and safety. Fucoidan has been demonstrated to exhibit a variety of conventional bioactivities, such as antiviral, antioxidant, and immune-modulatory characteristics, and anticancer activity against a wide range of malignancies has also recently been discovered. Fucoidan inhibits tumorigenesis by prompting cell cycle arrest and apoptosis, blocking metastasis and angiogenesis, and modulating physiological signaling molecules. This review compiles the molecular and cellular aspects, immunomodulatory and anticancer actions of fucoidan as a natural marine anticancer agent. Specific fucoidan and membranaceous polysaccharides from Ecklonia cava, Laminaria japonica, Fucus vesiculosus, Astragalus, Ascophyllum nodosum, Codium fragile serving as potential anticancer marine drugs are discussed in this review. Full article
Show Figures

Figure 1

Back to TopTop