The Effects of Functional Foods in Obesity-Associated Metabolic Diseases

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals, Functional Foods, and Novel Foods".

Deadline for manuscript submissions: closed (15 January 2023) | Viewed by 67009

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
Interests: non-alcoholic fatty liver disease; obesity; inflammation; fibrosis; food bioactives; molecular nutrition

Special Issue Information

Dear Colleagues,

The global prevalence of obesity has markedly increased over the past few decades. World Health Organization (WHO) defined obesity as abnormal or excessive fat accumulations that may have adverse effects on health. With the rising obesity rates, the risk of death from obesity-associated chronic and metabolic diseases such as type 2 diabetes, cardiovascular diseases, nonalcoholic fatty liver diseases, hypertension, osteoarthritis, and specific type of cancers has significantly increased. Obesity has been known as a metabolic disorder associated with oxidative stress and chronic low-grade inflammation that leads to systemic changes in the whole body. Emerging evidence indicates functional foods and their bioactive compounds with antioxidative and anti-inflammatory effects can be used to prevent obesity and obesity-associated metabolic diseases. The scientific results of the impact of functional foods on obesity-associated metabolic diseases will support the valuable data on the benefit of consumption of functional foods. This Special Issue, “The effects of functional foods in obesity-associated metabolic diseases,” focuses on the effects and underlying mechanisms of functional foods and their bioactive compounds on preventing obesity and obesity-associated chronic metabolic diseases. A broad range of article types, such as original researchs, reviews, and clinical trials, related to the topics are welcome.

Prof. Dr. Bohkyung Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional foods
  • natural products
  • bioactive compounds
  • obesity
  • chronic diseases
  • metabolic disorders
  • molecular nutrition

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 4887 KiB  
Article
Huangshan Maofeng Green Tea Extracts Prevent Obesity-Associated Metabolic Disorders by Maintaining Homeostasis of Gut Microbiota and Hepatic Lipid Classes in Leptin Receptor Knockout Rats
by Guohuo Wu, Wei Gu, Huijun Cheng, Huimin Guo, Daxiang Li and Zhongwen Xie
Foods 2022, 11(19), 2939; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11192939 - 20 Sep 2022
Cited by 1 | Viewed by 1905
Abstract
Huangshan Maofeng green tea (HMGT) is one of the most well-known green teas consumed for a thousand years in China. Research has demonstrated that consumption of green tea effectively improves metabolic disorders. However, the underlying mechanisms of obesity prevention are still not well [...] Read more.
Huangshan Maofeng green tea (HMGT) is one of the most well-known green teas consumed for a thousand years in China. Research has demonstrated that consumption of green tea effectively improves metabolic disorders. However, the underlying mechanisms of obesity prevention are still not well understood. This study investigated the preventive effect and mechanism of long-term intervention of Huangshan Maofeng green tea water extract (HTE) on obesity-associated metabolic disorders in leptin receptor knockout (Lepr−/−) rats by using gut microbiota and hepatic lipidomics data. The Lepr−/− rats were administered with 700 mg/kg HTE for 24 weeks. Our results showed that HTE supplementation remarkably reduced excessive fat accumulation, as well as ameliorated hyperlipidemia and hepatic steatosis in Lepr−/− rats. In addition, HTE increased gut microbiota diversity and restored the relative abundance of the microbiota responsible for producing short chain fatty acids, including Ruminococcaceae, Faecalibaculum, Veillonellaceae, etc. Hepatic lipidomics analysis found that HTE significantly recovered glycerolipid and glycerophospholipid classes in the liver of Lepr−/− rats. Furthermore, nineteen lipid species, mainly from phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and triglycerides (TGs), were significantly restored increases, while nine lipid species from TGs and diglycerides (DGs) were remarkably recovered decreases by HTE in the liver of Lepr−/− rats. Our results indicated that prevention of obesity complication by HTE may be possible through maintaining homeostasis of gut microbiota and certain hepatic lipid classes. Full article
Show Figures

Figure 1

17 pages, 6101 KiB  
Article
Sargassum thunbergii Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Modulating AMPK Activation and the Gut Microbiota
by Dahee Kim, Jing Yan, Jinwoo Bak, Jumin Park, Heeseob Lee and Hyemee Kim
Foods 2022, 11(16), 2529; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11162529 - 21 Aug 2022
Cited by 7 | Viewed by 2423
Abstract
Sargassum thunbergii (Mertens ex Roth) Kuntze (ST) is a brown alga rich in indole-2-carboxaldehyde. This study aimed to investigate the anti-obesity effects of ethanol extract from ST in in vitro and in vivo models. In 3T3-L1 cells, ST extract significantly inhibited lipid accumulation [...] Read more.
Sargassum thunbergii (Mertens ex Roth) Kuntze (ST) is a brown alga rich in indole-2-carboxaldehyde. This study aimed to investigate the anti-obesity effects of ethanol extract from ST in in vitro and in vivo models. In 3T3-L1 cells, ST extract significantly inhibited lipid accumulation in mature adipocytes while lowering adipogenic genes (C/epba and Pparg) and enhancing metabolic sensors (Ampk, Sirt1), thermogenic genes (Pgc-1a, Ucp1), and proteins (p-AMPK/AMPK and UCP1). During animal investigation, mice were administered a chow diet, a high-fat diet (HF), or an HF diet supplemented with ST extract (at dosages of 150 and 300 mg/kg bw per day) for 8 weeks (n = 10/group). ST extract administration decreased weight gain, white adipose tissue weight, LDL-cholesterol, and serum leptin levels while improving glucose intolerance. In addition, ST extract increased the expression of Ampk and Sirt1 in adipose tissue and in the liver, as well as p-AMPK/AMPK ratio in the liver, compared to HF-fed mice. The abundance of Bacteroides vulgatus and Faecalibacterium prausnitzii in the feces increased in response to ST extract administration, although levels of Romboutsia ilealis decreased compared with those in HF-fed mice. ST extract could prevent obesity in HF-fed mice via the modulation of AMPK activation and gut microbiota composition. Full article
Show Figures

Figure 1

10 pages, 1535 KiB  
Article
Protective Effect of Diet-Supplemented and Endogenously Produced Omega-3 Fatty Acids against HFD-Induced Colon Inflammation in Mice
by Shalom Sara Thomas, Youn-Soo Cha and Kyung-Ah Kim
Foods 2022, 11(14), 2124; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11142124 - 18 Jul 2022
Cited by 3 | Viewed by 1603
Abstract
Perilla (Perilla frutescens) oil reduces high-fat-diet-induced colon inflammation by suppressing the NF-κB pathway. In the current study, we compared the effect of endogenously produced and externally supplemented omega-3 fatty acids on high-fat-diet-induced colon inflammation. The fat-1 transgenic mice that endogenously synthesize [...] Read more.
Perilla (Perilla frutescens) oil reduces high-fat-diet-induced colon inflammation by suppressing the NF-κB pathway. In the current study, we compared the effect of endogenously produced and externally supplemented omega-3 fatty acids on high-fat-diet-induced colon inflammation. The fat-1 transgenic mice that endogenously synthesize omega-3 fatty acids were backcrossed with C57BL/6J wild-type mice to obtain transgenic (TR) and wild-type (WT) littermates. Five-week-old male littermates were divided into five groups: two groups fed 10% normal diet (WTLD, TRLD) and three groups fed with a 60% fat high-fat diet (WTHD, TRHD, and WTPO). In the WTPO group, 8% (w/w) of perilla oil was added. Perilla oil supplemented WT mice and fat-1 transgenic mice suppressed high-fat-diet-induced body weight and improved serum lipid levels. Furthermore, the WTPO and TRHD groups exhibited increased colon length, lower macroscopic scores, and reduced levels of pro-inflammatory markers and improved epithelial integrity barrier markers. The expression of GPR120 was increased in the WTPO group. Altogether, our results indicated that perilla oil could improve the symptoms of colon inflammation as an alternate omega-3 fatty acid supplement. Full article
Show Figures

Figure 1

15 pages, 3289 KiB  
Article
Heat-Killed Enterococcus faecalis EF-2001 Attenuate Lipid Accumulation in Diet-Induced Obese (DIO) Mice by Activating AMPK Signaling in Liver
by Meiqi Fan, Young-Jin Choi, Nishala Erandi Wedamulla, Yujiao Tang, Kwon Il Han, Ji-Young Hwang and Eun-Kyung Kim
Foods 2022, 11(4), 575; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11040575 - 16 Feb 2022
Cited by 6 | Viewed by 2060
Abstract
To explore the inhibitory mechanism of heat-killed Enterococcus faecalis, EF-2001 on hepatic lipid deposition, a diet-induced obese (DIO) animal model was established by high-fat diet (HFD). The DIO C57BL/6 mice were divided into four groups: the normal group without HFD (ND, n [...] Read more.
To explore the inhibitory mechanism of heat-killed Enterococcus faecalis, EF-2001 on hepatic lipid deposition, a diet-induced obese (DIO) animal model was established by high-fat diet (HFD). The DIO C57BL/6 mice were divided into four groups: the normal group without HFD (ND, n = 8), obesity group (HFD, n = 8), experimental group (HFD + EF-2001, 200 mg/kg, n = 8), and positive control group (HFD + Orlistat, 60 mg/kg, n = 8). After 4 weeks, liver and adipose tissue were fixed in 10% paraformaldehyde, followed by embedding in paraffin for tissue sectioning. The differences in body mass, body fat ratio, fatty cell area, and lipid profiling of the liver (TC, LDL, and HDL) were also determined. Moreover, Western blot was performed to analyze the expression of lipid accumulation-related proteins, including AMPK, PPARγ, SREBP-1, ACC, and FAS. Compared with the HFD group, the HFD + EF-2001 group exhibited decreased fat mass, liver index, adipocyte area, TC, and LDL, and an increased level of HDL. The results of liver hematoxylin and eosin (H&E), and oil red O staining showed that the mice in each intervention group were improved on hepatic lipid accumulation, and the mice in the HFD + EF-2001 group were the most similar to those in the normal group when compared with the HFD group. From the Western blot results, we proved that EF-2001 activated the AMPK signaling pathway. EF-2001 significantly upregulated the expressions of p-AMPK and p-ACC and downregulated PPARγ, SREBP-1, and FAS in murine liver. Taken together, these results suggest that EF-2001 decrease lipid accumulation in the DIO model mice through the AMPK pathway and ameliorate liver damage by HFD. Full article
Show Figures

Figure 1

15 pages, 2649 KiB  
Article
The Effects of Anthocyanin-Rich Bilberry Extract on Transintestinal Cholesterol Excretion
by Jimin Hong, Minji Kim and Bohkyung Kim
Foods 2021, 10(11), 2852; https://0-doi-org.brum.beds.ac.uk/10.3390/foods10112852 - 18 Nov 2021
Cited by 6 | Viewed by 2174
Abstract
Hypercholesterolemia is one of the modifiable and primary risk factors for cardiovascular diseases (CVD). Emerging evidence suggests the stimulation of transintestinal cholesterol excretion (TICE), the nonbiliary cholesterol excretion, using natural products can be an effective way to reduce CVD. Bilberry (Vaccinium myrtillus [...] Read more.
Hypercholesterolemia is one of the modifiable and primary risk factors for cardiovascular diseases (CVD). Emerging evidence suggests the stimulation of transintestinal cholesterol excretion (TICE), the nonbiliary cholesterol excretion, using natural products can be an effective way to reduce CVD. Bilberry (Vaccinium myrtillus L.) has been reported to have cardioprotective effects by ameliorating oxidative stress, inflammation, and dyslipidemia. However, the role of bilberry in intestinal cholesterol metabolism is not well understood. To examine the effects of bilberry in intestinal cholesterol metabolism, we measured the genes for cholesterol flux and de novo synthesis in anthocyanin-rich bilberry extract (BE)-treated Caco-2 cells. BE significantly decreased the genes for cholesterol absorption, i.e., Niemann-Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, BE significantly upregulated ABCG8, the apical transporter for cholesterol. There was a significant induction of low-density lipoprotein receptors, with a concomitant increase in cellular uptake of cholesterol in BE-treated cells. The expression of genes for lipogenesis and sirtuins was altered by BE treatment. In the present study, BE altered the genes for cholesterol flux from basolateral to the apical membrane of enterocytes, potentially stimulating TICE. These results support the potential of BE in the prevention of hypercholesterolemia. Full article
Show Figures

Graphical abstract

14 pages, 4923 KiB  
Article
Ethanol-Induced Hepatotoxicity and Alcohol Metabolism Regulation by GABA-Enriched Fermented Smilax china Root Extract in Rats
by Naila Boby, Eon-Bee Lee, Muhammad Aleem Abbas, Na-Hye Park, Sam-Pin Lee, Md. Sekendar Ali, Seung-Jin Lee and Seung-Chun Park
Foods 2021, 10(10), 2381; https://0-doi-org.brum.beds.ac.uk/10.3390/foods10102381 - 08 Oct 2021
Cited by 7 | Viewed by 3738
Abstract
Chronic alcohol consumption can cause hepatic injury and alcohol-induced toxicities. Extracts from Smilax china root have been widely used in traditional medicine and for their potential pharmacological benefits. We aimed to determine if fermented Smilax china extract (FSC) regulates alcoholic fatty liver and [...] Read more.
Chronic alcohol consumption can cause hepatic injury and alcohol-induced toxicities. Extracts from Smilax china root have been widely used in traditional medicine and for their potential pharmacological benefits. We aimed to determine if fermented Smilax china extract (FSC) regulates alcoholic fatty liver and liver injury using two in vivo experiments. Sprague-Dawley rats were administered ethanol (3 g/kg b.w.; po) with or without FSC pretreatment to induce an acute hangover. In another experiment, rats were fed either a normal or Lieber-DeCarli ethanol (6.7%) diet with or without FSC pretreatment (125, 250, and 500 mg/kg b.w.; po) for 28 days. Serum biomarkers, liver histopathology, and the mRNA levels of anti-inflammatory, antioxidant, lipogenic, and lipolytic genes were analyzed. FSC pretreatment significantly reduced blood alcohol and acetaldehyde concentrations, upregulated the mRNA expression of alcohol dehydrogenase, aldehyde dehydrogenase, and superoxide dismutase, and decreased the activities of liver enzymes in a dose-dependent manner. It also downregulated SERBP-1c and upregulated PPAR-α and reduced the gene expression of the anti-inflammatory cytokine IL-6 in the liver. The final extract after fermentation had increased GABA content. Furthermore, FSC was found to be safe with no acute oral toxicity in female rats. Thus, FSC increases alcohol metabolism and exhibits antioxidant and anti-inflammatory effects to induce hepatoprotection against alcohol-induced damage. It may be used as a functional food ingredient after excess alcohol consumption. Full article
Show Figures

Graphical abstract

14 pages, 5653 KiB  
Article
AGL9: A Novel Hepatoprotective Peptide from the Larvae of Edible Insects Alleviates Obesity-Induced Hepatic Inflammation by Regulating AMPK/Nrf2 Signaling
by Meiqi Fan, Young-Jin Choi, Yujiao Tang, Ji Hye Kim, Byung-gyu Kim, Bokyung Lee, Sung Mun Bae and Eun-Kyung Kim
Foods 2021, 10(9), 1973; https://0-doi-org.brum.beds.ac.uk/10.3390/foods10091973 - 24 Aug 2021
Cited by 6 | Viewed by 2807
Abstract
In this study, we investigated the anti-obesity properties of the novel peptide Ala-Gly-Leu-Gln-Phe-Pro-Val-Gly-Arg (AGL9), isolated from the enzymatic hydrolysate of Allomyrinadichotoma larvae. To investigate the preventive effects of AGL9 against hepatic steatosis and its possible mechanisms of action, we established an nonalcoholic [...] Read more.
In this study, we investigated the anti-obesity properties of the novel peptide Ala-Gly-Leu-Gln-Phe-Pro-Val-Gly-Arg (AGL9), isolated from the enzymatic hydrolysate of Allomyrinadichotoma larvae. To investigate the preventive effects of AGL9 against hepatic steatosis and its possible mechanisms of action, we established an nonalcoholic fatty liver disease (NAFLD) model by feeding C57BL/6 mice a high-fat diet. NAFLD mice were administered 100 mg/kg AGL9 and 60 mg/kg orlistat via gavage (10 mL/kg) for 5 weeks, followed by the collection of blood and liver tissues. We found that AGL9 normalized the levels of serum alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, high-density lipoprotein, very low-density lipoprotein (LDL)/LDL, adiponectin, and leptin in these mice. Additionally, AGL9 activated the protein-level expression of 5′ AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation and the transcript-level expression of sterol regulatory element-binding protein-1c, fatty acid synthase, superoxide dismutase, glutathione peroxidase, glucocorticoid receptor, nuclear respiratory factor 2, tumor necrosis factor-α, interleukin-1β, interleukin-6, and monocyte chemoattractant protein-1 in hepatocytes. These results showed that AGL9 exhibited hepatoprotective effects by attenuating lipid deposition, oxidative stress, and inflammation via inhibition of AMPK/Nrf2 signaling, thereby reducing the production of hepatic proinflammatory mediators and indicating AGL9 as a potential therapeutic strategy for NAFLD. Full article
Show Figures

Graphical abstract

16 pages, 2604 KiB  
Article
Anti-Obesity Effects of Morus alba L. and Aronia melanocarpa in a High-Fat Diet-Induced Obese C57BL/6J Mouse Model
by Na-Yeon Kim, Shalom Sara Thomas, Dae-Il Hwang, Ji-Hye Lee, Kyung-Ah Kim and Youn-Soo Cha
Foods 2021, 10(8), 1914; https://0-doi-org.brum.beds.ac.uk/10.3390/foods10081914 - 18 Aug 2021
Cited by 6 | Viewed by 3282
Abstract
The present study investigated the synergic effect of extracts of Morus alba (MA) and Aronia melanocarpa (Michx.) (AR) against high-fat diet induced obesity. Four-week-old male C57BL/6J mice were randomly divided into five groups that were fed for 14 weeks with a normal diet [...] Read more.
The present study investigated the synergic effect of extracts of Morus alba (MA) and Aronia melanocarpa (Michx.) (AR) against high-fat diet induced obesity. Four-week-old male C57BL/6J mice were randomly divided into five groups that were fed for 14 weeks with a normal diet (ND), high-fat diet (HD), HD with M. alba 400 mg/kg body weight (MA), HD with A. melanocarpa 400 mg/kg body weight (AR), or HD with a mixture (1:1, v/v) of M. alba and A. melanocarpa (400 mg/kg) (MA + AR). Treatment with MA, AR, and MA + AR for 14 weeks reduced high fat diet-induced weight gain and improved serum lipid levels, and histological analysis revealed that MA and AR treatment markedly decreased lipid accumulation in the liver and adipocyte size in epididymal fat. Furthermore, micro-CT images showed MA + AR significantly reduced abdominal fat volume. Expression levels of genes involved in lipid anabolism, such as SREBP-1c, PPAR-γ, CEBPα, FAS, and CD36 were decreased by MA + AR treatment whereas PPAR-α, ACOX1, and CPT-1a levels were increased by MA + AR treatment. Protein expression of p-AMPK and p-ACC were increased in the MA + AR group, indicating that MA + AR ameliorated obesity by upregulating AMPK signaling. Together, our findings indicate that MA and AR exert a synergistic effect against diet-induced obesity and are promising agents for managing obesity. Full article
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 1129 KiB  
Review
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State
by Hyunju Kang and Bohkyung Kim
Foods 2023, 12(5), 925; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12050925 - 22 Feb 2023
Cited by 8 | Viewed by 45404
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance [...] Read more.
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2–related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs. Full article
Show Figures

Figure 1

Back to TopTop