Current Research on Probiotics and Fermented Products

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals, Functional Foods, and Novel Foods".

Deadline for manuscript submissions: closed (15 January 2024) | Viewed by 28539

Special Issue Editors


E-Mail Website
Guest Editor
College of Food Science, Shenyang Agricultural University, Shenyang, China
Interests: probiotics; gut microbiota; fermented foods; dairy products; multi-omics
College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
Interests: probiotics; gut microbiota; fermented foods; dairy products; multi-omics

Special Issue Information

Dear Colleagues,

In recent years, more and more studies have revealed the beneficial roles of probiotics and fermented products in the human wellness. Therefore, their application in food, medicine and other functional products have received increasing attention. However, there are still many aspects of these probiotics and fermented products that have not been fully elucidated, such as the identification and screening of strains in fermented products, process optimization of fermented products, the succession law of flora of fermented products, the correlation between microbiota and flavour of fermented products, the roles in the preparation of many fermented foods, the different tolerances to temperature, pH and other environmental factors, and improvement strategies, and the detailed molecular mechanisms and key active ingredients of these probiotics and fermented products in the health regulation functions, etc. Additionally, submissions of relevant research on the gut microbiota are also welcome. The main purpose of this Special Issue is to recruit outstanding scientific researchers to provide high-quality manuscripts around these related fields to jointly discuss the health effects, mechanisms and product development of probiotics, fermented products, and gut microbiota.

Prof. Dr. Xiqing Yue
Dr. Mohan Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • probiotics
  • fermented products
  • flavour
  • gut microbiota
  • functional foods
  • molecular mechanisms
  • dairy products

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

6 pages, 193 KiB  
Editorial
Current Research on Probiotics and Fermented Products
by Yushi Dong, Mohan Li and Xiqing Yue
Foods 2024, 13(9), 1406; https://0-doi-org.brum.beds.ac.uk/10.3390/foods13091406 - 03 May 2024
Viewed by 451
Abstract
The history of probiotics and fermented products has evolved over millennia [...] Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)

Research

Jump to: Editorial, Review

23 pages, 4949 KiB  
Article
Oral Administration of Fermented Milk from Co-Starter Containing Lactobacillus plantarum Y44 Shows an Ameliorating Effect on Hypertension in Spontaneously Hypertensive Rats
by Jiang Yu, Mengying Sun, Shilong Jiang, Chuqi Jiang, Guangqing Mu and Yanfeng Tuo
Foods 2024, 13(5), 641; https://0-doi-org.brum.beds.ac.uk/10.3390/foods13050641 - 20 Feb 2024
Viewed by 807
Abstract
Fermented dairy foods such as yogurt exhibit some beneficial effects on consumers, including relieving the symptoms of hypertension. This study aims to obtain fermented dairy products from a co-starter that have a great flavor and the auxiliary function of reducing blood pressure after [...] Read more.
Fermented dairy foods such as yogurt exhibit some beneficial effects on consumers, including relieving the symptoms of hypertension. This study aims to obtain fermented dairy products from a co-starter that have a great flavor and the auxiliary function of reducing blood pressure after longtime consumption. Commercial starter cultures composed of Lactobacillus delbrueckii subsp. bulgaricus CICC 6047 and Streptococcus thermophilus CICC 6038 were combined with Lactobacillus plantarum strains Y44, Y12, and Y16, respectively, as a combined starter culture to ferment the mixed milk of skim milk and soybean milk. The fermented milk produced using the combined starter culture mixed with L. plantarum Y44 showed an angiotensin-converting-enzyme (ACE) inhibitory activity (53.56 ± 0.69%). Some peptides that regulate blood pressure were released in the fermented milk, such as AMKPWIQPK, GPVRGPFPII, LNVPGEIVE, NIPPLTQTPV, and YQEPVL. In spontaneously hypertensive rat (SHR) oral-administration experiments compared with the gavage unfermented milk group, the gavage feeding of SHRs with the fermented milk produced using the combined starter culture mixed with L. plantarum Y44 significantly reduced the blood pressure of the SHRs after long-term intragastric administration, shown with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) decreasing by 23.67 ± 2.49 mmHg and 15.22 ± 2.62 mmHg, respectively. Moreover, the abundance of short-chain fatty acids (SCFA), bacterial diversity in the gut microbiota, and SCFA levels including acetic acid, propionic acid, and butyric acid in the feces of the SHRs were increased via oral administration of the fermented milk produced using the combined starter culture containing L. plantarum Y44. Furthermore, the ACE-angiotensin II (Ang II)-angiotensin type 1 (AT 1) axis was downregulated, the angiotensin-converting-enzyme 2 (ACE 2)-angiotensin(1-7) (Ang1-7)-Mas receptor axis of the SHRs was upregulated, and then the RAS signal was rebalanced. The fermented milk obtained from the combined starter culture shows the potential to be a functional food with antihypertension properties. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Graphical abstract

17 pages, 3645 KiB  
Article
Innovative Insights for Establishing a Synbiotic Relationship with Bacillus coagulans: Viability, Bioactivity, and In Vitro-Simulated Gastrointestinal Digestion
by Saranya Suwanangul, Pannapapol Jaichakan, Nukrob Narkprasom, Supaluck Kraithong, Kanjana Narkprasom and Papungkorn Sangsawad
Foods 2023, 12(19), 3692; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12193692 - 08 Oct 2023
Viewed by 1639
Abstract
This study investigates the use of encapsulating agents for establishing a synbiotic relationship with Bacillus coagulans (TISTR 1447). Various ratios of wall materials, such as skim milk powder, maltodextrin, and cellulose acetate phthalate (represented as SMC1, SMC3, SMC5, and SMC7), were examined. In [...] Read more.
This study investigates the use of encapsulating agents for establishing a synbiotic relationship with Bacillus coagulans (TISTR 1447). Various ratios of wall materials, such as skim milk powder, maltodextrin, and cellulose acetate phthalate (represented as SMC1, SMC3, SMC5, and SMC7), were examined. In all formulations, 5% inulin was included as a prebiotic. The research assessed their impact on cell viability and bioactive properties during both the spray-drying process and in vitro gastrointestinal digestion. The results demonstrate that these encapsulating agents efficiently protect B. coagulans spores during the spray-drying process, resulting in spore viability exceeding 6 log CFU/g. Notably, SMC5 and SMC7 displayed the highest spore viability values. Moreover, SMC5 showcased the most notable antioxidant activity, encompassing DPPH, hydroxy radical, and superoxide radical scavenging, as well as significant antidiabetic effects via the inhibition of α-amylase and α-glucosidase. Furthermore, during the simulated gastrointestinal digestion, both SMC5 and SMC7 exhibited a slight reduction in spore viability over the 6 h simulation. Consequently, SMC5 was identified as the optimal condition for synbiotic production, offering protection to B. coagulans spores during microencapsulation and gastrointestinal digestion while maintaining bioactive properties post-encapsulation. Synbiotic microcapsules containing SMC5 showcased a remarkable positive impact, suggesting its potential as an advanced food delivery system and a functional ingredient for various food products. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Graphical abstract

14 pages, 3230 KiB  
Article
Kombucha and Water Kefir Grains Microbiomes’ Symbiotic Contribution to Postbiotics Enhancement
by Marina Pihurov, Bogdan Păcularu-Burada, Mihaela Cotârleț, Leontina Grigore-Gurgu, Daniela Borda, Nicoleta Stănciuc, Maciej Kluz and Gabriela Elena Bahrim
Foods 2023, 12(13), 2581; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12132581 - 02 Jul 2023
Cited by 1 | Viewed by 1779
Abstract
Wild artisanal cultures, such as a symbiotic culture of bacteria and yeasts (SCOBY) and water kefir grains (WKG), represent a complex microorganism consortia that is composed of yeasts and lactic and acetic acid bacteria, with large strains of diversity and abundance. The fermented [...] Read more.
Wild artisanal cultures, such as a symbiotic culture of bacteria and yeasts (SCOBY) and water kefir grains (WKG), represent a complex microorganism consortia that is composed of yeasts and lactic and acetic acid bacteria, with large strains of diversity and abundance. The fermented products (FPs) obtained by the microbiome’s contribution can be included in functional products due to their meta-biotics (pre-, pro-, post-, and paraprobiotics) as a result of complex and synergistic associations as well as due to the metabolic functionality. In this study, consortia of both SCOBY and WKG were involved in the co-fermentation of a newly formulated substrate that was further analysed, aiming at increasing the postbiotic composition of the FPs. Plackett–Burman (PBD) and Response Surface Methodology (RSM) techniques were employed for the experimental designs to select and optimise several parameters that have an influence on the lyophilised starter cultures of SCOBY and WKG activity as a multiple inoculum. Tea concentration (1–3%), sugar concentration (5–10%), raisins concentration (3–6%), SCOBY lyophilised culture concentration (0.2–0.5%), WKG lyophilised culture concentration (0.2–0.5%), and fermentation time (5–7 days) were considered the independent variables for mathematical analysis and fermentation conditions’ optimisation. Antimicrobial activity against Bacillus subtilis MIUG B1, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Aspergillus niger MIUG M5, antioxidant capacity (DPPH), pH and the total acidity (TA) were evaluated as responses. The rich postbiotic bioactive composition of the FP obtained in optimised biotechnological conditions highlighted the usefulness of the artisanal co-cultures, through their symbiotic metabolic interactions for the improvement of bioactive potential. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

18 pages, 17201 KiB  
Article
Anti-Obesity Effects of SPY Fermented with Lactobacillus rhamnosus BST-L.601 via Suppression of Adipogenesis and Lipogenesis in High-Fat Diet-Induced Obese Mice
by Taewook Kang, Jin Ree, Joo-Woong Park, Hyewon Choe and Yong Il Park
Foods 2023, 12(11), 2202; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12112202 - 30 May 2023
Cited by 3 | Viewed by 1584
Abstract
In this research, the potential anti-obesity efficacy of Lactobacillus rhamnosus BST-L.601 and its fermented product (named SPY) with mashed sweet potato paste were investigated using 3T3-L1 preadipocytes and high-fat diet (HD)-induced obese mice. SPY (0–0.5 mg/mL) dose-dependently and significantly reduced lipid accumulation and [...] Read more.
In this research, the potential anti-obesity efficacy of Lactobacillus rhamnosus BST-L.601 and its fermented product (named SPY) with mashed sweet potato paste were investigated using 3T3-L1 preadipocytes and high-fat diet (HD)-induced obese mice. SPY (0–0.5 mg/mL) dose-dependently and significantly reduced lipid accumulation and TG content and the expression of adipogenic markers (C/EBPα, PPAR-γ, and aP2) and fatty acid synthetic pathway proteins (ACC and FAS) in 3T3-L1 adipocytes, demonstrating that SPY suppresses adipocyte differentiation and lipogenesis. Oral administration of SPY (4 × 107 CFU/kg body weight) to HD-induced obese mice for 12 weeks significantly reduced the body and liver weight, the size of adipocytes, and the weight of epididymal, visceral, and subcutaneous fat tissues. SPY was more effective in decreasing body weight gain in HD mice than in treatment with BST-L.601 alone. Administration of SPY or BST-L.601 also reduced the serum level of total cholesterol and LDL cholesterol and leptin secretion at a similar level. These results revealed that both SPY and BST-L.601 effectively suppress HD-induced adipogenesis and lipogenesis, suggesting that these materials would be useful in the functional foods industry to ameliorate and/or prevent obesity. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Graphical abstract

19 pages, 3474 KiB  
Article
Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains
by Konstantin V. Moiseenko, Anna V. Begunova, Olga S. Savinova, Olga A. Glazunova, Irina V. Rozhkova and Tatyana V. Fedorova
Foods 2023, 12(1), 223; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12010223 - 03 Jan 2023
Cited by 6 | Viewed by 2326
Abstract
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part [...] Read more.
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part of a symbiotic consortium within formulations. The present study contributes to the exploration of different strains of L. paracasei derived from non-conventional isolation sources—the South African traditional fermented drink mahewu (strains MA2 and MA3) and kefir grains (strains KF1 and ABK). The performed microbiological, biochemical and genomic comparative analyses of the studied strains demonstrated correlation between properties of the strains and their isolation source, which suggests the presence of at least partial strain adaptation to the isolation environments. Additionally, for the studied strains, antagonistic activities against common pathogens and against each other were observed, and the ability to release bioactive peptides with antioxidant and angiotensin I-converting enzyme inhibitory (ACE-I) properties during milk fermentation was investigated. The obtained results may be useful for a deeper understanding of the nomadic lifestyle of L. paracasei and for the development of new starter cultures and probiotic preparations based on this LAB in the future. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

12 pages, 1764 KiB  
Article
Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt
by So-Young Yang and Ki-Sun Yoon
Foods 2022, 11(23), 3799; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11233799 - 25 Nov 2022
Cited by 9 | Viewed by 6025
Abstract
Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus bulgaricus, [...] Read more.
Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus gasseri BNR17, and Lactobacillus plantarum HY7714). Effects of probiotic LAB on quality, sensory, and microbiological characteristics of Greek yogurt were then compared. Among samples, Greek yogurt fermented by S. thermophilus and L. bulgaricus showed the highest changes of pH and titratable acidity during 21 d of storage at 4 °C. Greek yogurt fermented with L. plantarum HY7714 had a higher viscosity than other samples. Greek yogurt fermented with S. thermophilus, L. bulgaricus, L. gasseri BNR17, and L. plantarum HY7714 showed superior physicochemical properties and received the highest preference score from sensory evaluation among samples. Overall, the population of enterohaemorrhagic Escherichia coli (EHEC) was more effectively reduced in Greek yogurt fermented with probiotic LAB than in commercial Greek yogurt during storage at 4, 10, and 25 °C. Thus, the addition of L. gasseri BNR17 and L. plantarum HY7714 as starter cultures could enhance the microbial safety of Greek yogurt and sensory acceptance by consumers. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

15 pages, 681 KiB  
Article
Vegan Ice Cream Made from Soy Extract, Soy Kefir and Jaboticaba Peel: Antioxidant Capacity and Sensory Profile
by Giovana M. N. Mendonça, Estela M. D. Oliveira, Alessandro O. Rios, Carlos H. Pagno and Daniela C. U. Cavallini
Foods 2022, 11(19), 3148; https://0-doi-org.brum.beds.ac.uk/10.3390/foods11193148 - 10 Oct 2022
Cited by 4 | Viewed by 3119
Abstract
Considering the need for functional foods and the use of by-products of the food industry, a potentially functional ice cream was developed, using soy extract, soy kefir and dehydrated jaboticaba peel. Five ice creams were produced using soy kefir (K) and soy extract [...] Read more.
Considering the need for functional foods and the use of by-products of the food industry, a potentially functional ice cream was developed, using soy extract, soy kefir and dehydrated jaboticaba peel. Five ice creams were produced using soy kefir (K) and soy extract (S): (1) GS—100% S; (2) GK1-75% S/25% K; (3) GK2-50% S/50% K; (4) GK3-25% S/75% K and (5) GK-100% K; The products were evaluated by physicochemical, microbiological and sensory (check all that apply) analyses. The addition of kefir was found to increase the acidity of the products. The concentrations of total phenolic compounds in the formulations with kefir were approximately ten times higher than the GS formulation. All products presented concentrations of thermotolerant coliforms <3 NMP/g and absence of Salmonella ssp. The viability of Lactobacillus ssp., Streptococcus spp. and Bifidobacterium ssp. was higher than 10 log CFU/g during the whole storage period. The GS and GK1 formulations had the lowest scores, while GK ice cream was preferred. The formulations showed distinct sensory profiles in the CATA, and the ice cream with 100% kefir was associated with desirable attributes. The ice creams exhibited microbiological and sensory characteristics that meet the expectations of the product’s target audience. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

19 pages, 1142 KiB  
Review
Research Progress for Probiotics Regulating Intestinal Flora to Improve Functional Dyspepsia: A Review
by Xinyu Shen, Aijun Xie, Zijing Li, Chengxi Jiang, Jiaqi Wu, Mohan Li and Xiqing Yue
Foods 2024, 13(1), 151; https://0-doi-org.brum.beds.ac.uk/10.3390/foods13010151 - 02 Jan 2024
Cited by 7 | Viewed by 2009
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic [...] Read more.
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

25 pages, 1035 KiB  
Review
A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies
by Aijun Xie, Yushi Dong, Zifei Liu, Zhiwei Li, Junhua Shao, Mohan Li and Xiqing Yue
Foods 2023, 12(21), 3952; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12213952 - 29 Oct 2023
Cited by 10 | Viewed by 2990
Abstract
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has [...] Read more.
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has expanded rapidly. Each variety has unique characteristics in terms of flavor, texture, and nutritional composition, offering consumers a diverse range of choices tailored to meet individual preferences and dietary needs. In this review, we aimed to provide a comprehensive overview of the various types of plant-based drinks and explore potential considerations including their nutritional compositions, health benefits, and processing technologies, as well as the challenges facing the plant-based drink processing industry. We delve into scientific evidence supporting the consumption of plant-based drinks, discuss their potential roles in meeting dietary requirements, and address current limitations and concerns regarding their use. We hope to illuminate the growing significance of plant-based drinks as sustainable and nutritious alternatives to dairy milk, and assist individuals in making informed choices regarding their dietary habits, expanding potential applications for plant-based drinks, and providing necessary theoretical and technical support for the development of a plant-based drink processing industry. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

22 pages, 689 KiB  
Review
A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry
by Bibi Nabihah Abdul Hakim, Ng Jia Xuan and Siti Nur Hazwani Oslan
Foods 2023, 12(15), 2850; https://0-doi-org.brum.beds.ac.uk/10.3390/foods12152850 - 27 Jul 2023
Cited by 17 | Viewed by 3799
Abstract
Lactic acid bacteria (LAB) are beneficial microbes known for their health-promoting properties. LAB are well known for their ability to produce substantial amounts of bioactive compounds during fermentation. Peptides, exopolysaccharides (EPS), bacteriocins, some amylase, protease, lipase enzymes, and lactic acid are the most [...] Read more.
Lactic acid bacteria (LAB) are beneficial microbes known for their health-promoting properties. LAB are well known for their ability to produce substantial amounts of bioactive compounds during fermentation. Peptides, exopolysaccharides (EPS), bacteriocins, some amylase, protease, lipase enzymes, and lactic acid are the most important bioactive compounds generated by LAB activity during fermentation. Additionally, the product produced by LAB is dependent on the type of fermentation used. LAB derived from the genera Lactobacillus and Enterococcus are the most popular probiotics at present. Consuming fermented foods has been previously connected to a number of health-promoting benefits such as antibacterial activity and immune system modulation. Furthermore, functional food implementations lead to the application of LAB in therapeutic nutrition such as prebiotic, immunomodulatory, antioxidant, anti-tumor, blood glucose lowering actions. Understanding the characteristics of LAB in diverse sources and its potential as a functional food is crucial for therapeutic applications. This review presents an overview of functional food knowledge regarding interactions between LAB isolated from dairy products (dairy LAB) and fermented foods, as well as the prospect of functioning LAB in human health. Finally, the health advantages of LAB bioactive compounds are emphasized. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

Back to TopTop