ijms-logo

Journal Browser

Journal Browser

New Sources, Differentiation, and Therapeutic Uses of Mesenchymal Stem Cells

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (28 February 2021) | Viewed by 47702

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
Interests: cell therapy; differentiation; muscle; lysosomal storage disease; Schwann cells; peripheral neuropathy; mesenchymal stem cells
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mesenchymal stem cells (MSCs) are multipotent cells derived from various tissues including bone marrow and adipose tissues. MSCs have the capacity to differentiate into mesodermal lineages, including chondroblasts, osteoblasts, and adiocytes. Recently, novel tissue sources and various differentiation capacities of MSCs have been reported. However, progress in the clinical application and therapeutic use of MSCs is limited and further behind than expected. In the case of cell therapy using differentiated cells, the optimization of the quality of cell therapy candidates is very difficult. Besides MSCs themselves, the importance of the characterization and therapeutic use of extracellular vesicles derived from MSCs has increased. This Special Issue will include studies on novel tissue sources for MSCs, the differentiation potential of MSCs derived from various sources, optimization of the quality of MSCs, including cells differentiated from MSCs, and other therapeutic candidates derived from MSCs, such as extracellular vesicles and MSC spheroids. In the case of therapeutic applications, the molecular characteristics of nondifferentiated/differentiated MSCs and their mode of action for clinical efficacy will be described.

Prof. Dr. Sung-Chul Jung
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mesenchymal stem cells
  • tissues
  • novel sources
  • differentiation
  • quality control
  • optimization
  • extracellular vesicles
  • secretome
  • spheroids
  • therapeutics

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 173 KiB  
Editorial
New Sources, Differentiation, and Therapeutic Uses of Mesenchymal Stem Cells
by Saeyoung Park and Sung-Chul Jung
Int. J. Mol. Sci. 2021, 22(10), 5288; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22105288 - 18 May 2021
Cited by 7 | Viewed by 1653
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells derived from various tissues including bone marrow and adipose tissues [...] Full article

Research

Jump to: Editorial, Review

17 pages, 10617 KiB  
Article
Therapeutic Potential for Regulation of the Nuclear Factor Kappa-B Transcription Factor p65 to Prevent Cellular Senescence and Activation of Pro-Inflammatory in Mesenchymal Stem Cells
by Rocío Mato-Basalo, Miriam Morente-López, Onno J Arntz, Fons A. J. van de Loo, Juan Fafián-Labora and María C. Arufe
Int. J. Mol. Sci. 2021, 22(7), 3367; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22073367 - 25 Mar 2021
Cited by 20 | Viewed by 3326
Abstract
Mesenchymal stem cells have an important potential in the treatment of age-related diseases. In the last years, small extracellular vesicles derived from these stem cells have been proposed as cell-free therapies. Cellular senescence and proinflammatory activation are involved in the loss of therapeutic [...] Read more.
Mesenchymal stem cells have an important potential in the treatment of age-related diseases. In the last years, small extracellular vesicles derived from these stem cells have been proposed as cell-free therapies. Cellular senescence and proinflammatory activation are involved in the loss of therapeutic capacity and in the phenomenon called inflamm-aging. The regulators of these two biological processes in mesenchymal stem cells are not well-known. In this study, we found that p65 is activated during cellular senescence and inflammatory activation in human umbilical cord-derived mesenchymal stem cell. To demonstrate the central role of p65 in these two processes, we used small-molecular inhibitors of p65, such as JSH-23, MG-132 and curcumin. We found that the inhibition of p65 prevents the cellular senescence phenotype in human umbilical cord-derived mesenchymal stem cells. Besides, p65 inhibition produced the inactivation of proinflammatory molecules as components of a senescence-associated secretory phenotype (SASP) (interleukin-6 and interleukin-8 (IL-6 and IL-8)). Additionally, we found that the inhibition of p65 prevents the transmission of paracrine senescence between mesenchymal stem cells and the proinflammatory message through small extracellular vesicles. Our work highlights the important role of p65 and its inhibition to restore the loss of functionality of small extracellular vesicles from senescent mesenchymal stem cells and their inflamm-aging signature. Full article
Show Figures

Figure 1

16 pages, 4012 KiB  
Article
Identification of Novel FNIN2 and FNIN3 Fibronectin-Derived Peptides That Promote Cell Adhesion, Proliferation and Differentiation in Primary Cells and Stem Cells
by Eun-Ju Lee, Khurshid Ahmad, Shiva Pathak, SunJu Lee, Mohammad Hassan Baig, Jee-Heon Jeong, Kyung-Oh Doh, Dong-Mok Lee and Inho Choi
Int. J. Mol. Sci. 2021, 22(6), 3042; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22063042 - 16 Mar 2021
Cited by 17 | Viewed by 5121
Abstract
In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) [...] Read more.
In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5β1, αvβ3, and αIIbβ3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30–40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture. Full article
Show Figures

Figure 1

21 pages, 25530 KiB  
Article
Neural-Induced Human Adipose Tissue-Derived Stem Cells Conditioned Medium Ameliorates Rotenone-Induced Toxicity in SH-SY5Y Cells
by Mahesh Ramalingam, Sujeong Jang and Han-Seong Jeong
Int. J. Mol. Sci. 2021, 22(5), 2322; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22052322 - 26 Feb 2021
Cited by 8 | Viewed by 2632
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different [...] Read more.
Parkinson’s disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different biological signaling pathways. In this study, we evaluated the therapeutic role of NI-hADSC-conditioned medium (NI-hADSC-CM) in rotenone (ROT)-induced toxicity in SH-SY5Y cells. Increasing concentrations of ROT led to decreased cell survival at 24 and 48 h in a dose- and time-dependent manner. Treatment of NI-hADSC-CM (50% dilution in DMEM) against ROT (0.5 μM) significantly increased the cell survival. ROT toxicity decreased the expression of tyrosine hydroxylase (TH). Western blot analysis of the Triton X-100-soluble fraction revealed that ROT significantly decreased the oligomeric, dimeric, and monomeric phosphorylated Serine129 (p-S129) α-syn, as well as the total monomeric α-syn expression levels. ROT toxicity increased the oligomeric, but decreased the dimeric and monomeric p-S129 α-syn expression levels. Total α-syn expression (in all forms) was increased in the Triton X-100-insoluble fraction, compared to the control. NI-hADSC-CM treatment enhanced the TH expression, stabilized α-syn monomers, reduced the levels of toxic insoluble p-S129 α-syn, improved the expression of neuronal functional proteins, regulated the Bax/Bcl-2 ratio, and upregulated the expression of pro-caspases, along with PARP-1 inactivation. Moreover, hADSC-CM treatment decreased the cell numbers and have no effect against ROT toxicity on SH-SY5Y cells. The therapeutic effects of NI-hADSC-CM was higher than the beneficial effects of hADSC-CM on cellular signaling. From these results, we conclude that NI-hADSC-CM exerts neuroregenerative effects on ROT-induced PD-like impairments in SH-SY5Y cells. Full article
Show Figures

Figure 1

23 pages, 8072 KiB  
Article
Intrinsic Angiogenic Potential and Migration Capacity of Human Mesenchymal Stromal Cells Derived from Menstrual Blood and Bone Marrow
by Rosana de Almeida Santos, Karina Dutra Asensi, Julia Helena Oliveira de Barros, Rafael Campos Silva de Menezes, Ingrid Rosenburg Cordeiro, José Marques de Brito Neto, Tais Hanae Kasai-Brunswick and Regina Coeli dos Santos Goldenberg
Int. J. Mol. Sci. 2020, 21(24), 9563; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21249563 - 15 Dec 2020
Cited by 11 | Viewed by 5416
Abstract
Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the [...] Read more.
Several therapies are being developed to increase blood circulation in ischemic tissues. Despite bone marrow-derived mesenchymal stromal cells (bmMSC) are still the most studied, an interesting and less invasive MSC source is the menstrual blood, which has shown great angiogenic capabilities. Therefore, the aim of this study was to evaluate the angiogenic properties of menstrual blood-derived mesenchymal stromal cells (mbMSC) in vitro and in vivo and compared to bmMSC. MSC’s intrinsic angiogenic capacity was assessed by sprouting and migration assays. mbMSC presented higher invasion and longer sprouts in 3D culture. Additionally, both MSC-spheroids showed cells expressing CD31. mbMSC and bmMSC were able to migrate after scratch wound in vitro, nonetheless, only mbMSC demonstrated ability to engraft in the chick embryo, migrating to perivascular, perineural, and chondrogenic regions. In order to study the paracrine effects, mbMSC and bmMSC conditioned mediums were capable of stimulating HUVEC’s tube-like formation and migration. Both cells expressed VEGF-A and FGF2. Meanwhile, PDGF-B was expressed exclusively in mbMSC. Our results indicated that mbMSC and bmMSC presented a promising angiogenic potential. However, mbMSC seems to have additional advantages since it can be obtained by non-invasive procedure and expresses PDGF-B, an important molecule for vascular formation and remodeling. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

34 pages, 1834 KiB  
Review
Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine
by Silvia Fernández-Francos, Noemi Eiro, Luis A. Costa, Sara Escudero-Cernuda, María Luisa Fernández-Sánchez and Francisco J. Vizoso
Int. J. Mol. Sci. 2021, 22(7), 3576; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22073576 - 30 Mar 2021
Cited by 49 | Viewed by 8429
Abstract
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, [...] Read more.
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology. Full article
Show Figures

Figure 1

21 pages, 398 KiB  
Review
Strategies to Potentiate Paracrine Therapeutic Efficacy of Mesenchymal Stem Cells in Inflammatory Diseases
by Yoojin Seo, Min-Jung Kang and Hyung-Sik Kim
Int. J. Mol. Sci. 2021, 22(7), 3397; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22073397 - 25 Mar 2021
Cited by 14 | Viewed by 2457
Abstract
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy [...] Read more.
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering. Full article
19 pages, 1597 KiB  
Review
Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation
by Hantae Jo, Sofia Brito, Byeong Mun Kwak, Sangkyu Park, Mi-Gi Lee and Bum-Ho Bin
Int. J. Mol. Sci. 2021, 22(5), 2410; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22052410 - 27 Feb 2021
Cited by 85 | Viewed by 14323
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. [...] Read more.
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy. Full article
Show Figures

Figure 1

27 pages, 393 KiB  
Review
MSC Based Therapies to Prevent or Treat BPD—A Narrative Review on Advances and Ongoing Challenges
by Maurizio J. Goetz, Sarah Kremer, Judith Behnke, Birte Staude, Tayyab Shahzad, Lena Holzfurtner, Cho-Ming Chao, Rory E. Morty, Saverio Bellusci and Harald Ehrhardt
Int. J. Mol. Sci. 2021, 22(3), 1138; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22031138 - 24 Jan 2021
Cited by 14 | Viewed by 3142
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of [...] Read more.
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting. Full article
Back to TopTop