ijms-logo

Journal Browser

Journal Browser

Animal and Plant Cell–Tissue, Organ Specialization and Function: Investigational, Experimental and Medical Aspects

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (31 January 2021) | Viewed by 62146

Special Issue Editors

Special Issue Information

Dear Colleagues,

The cell, subcellular and extracellular component organization at structural, molecular and biophysical levels including the grouping and interrelations of cells in tissues and organs in health and desease still needs investigations. In this special issue, article on various aspects of cell biology e.g. cell compartments, organella and membrane biogenesis and dynamics, macromolecules and their intracellular transport, whole-cell locomotion, cytoskeleton organization, signaling and regulatory cascades, the cell-cycle and cell-to-cell communication are especially welcome. Novel insights into structure, specialization, function and physiology of cells, tissues and organs together with medical aspects of cell biology are invited. Environmental and toxicologic effects on tissue and organ function will be of special interest. Integrative actions of gene and their products, regulatory mechnisms as well as their impact on the development, regeneration of tissue structural and functional status  including the use of newly described and advanced methods/techniques will be especially accepted.

Therefore, in this Special Issue of IJMS, we invite you to submit both review and original papers on the topic of widely understood cell biology.

Prof. Dr. Małgorzata Kotula-Balak
Prof. Dr. Bartosz Jan Płachno
Prof. Dr. Petr Babula
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Plant and animal cell
  • Ultrastructure
  • Cell biology
  • Cell development
  • Cell regeneration
  • Cell signaling
  • Tissue histology
  • Tissue physiology and pathology
  • Environemtal effects
  • Toxicology

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 10560 KiB  
Article
Anti-Inflammatory Effect of Very High Dose Local Vessel Wall Statin Administration: Poly(L,L-Lactide) Biodegradable Microspheres with Simvastatin for Drug Delivery System (DDS)
by Piotr Wacinski, Mariusz Gadzinowski, Wojciech Dabrowski, Justyna Szumilo, Jakub Wacinski, Nathalie Oru, Eric Vicaut, Stanislaw Czuczwar, Janusz Kocki, Teresa Basinska and Stanislaw Slomkowski
Int. J. Mol. Sci. 2021, 22(14), 7486; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22147486 - 13 Jul 2021
Cited by 2 | Viewed by 2329
Abstract
Atherosclerosis involves an ongoing inflammatory response of the vascular endothelium and vessel wall of the aorta and vein. The pleiotropic effects of statins have been well described in many in vitro and in vivo studies, but these effects are difficult to achieve in [...] Read more.
Atherosclerosis involves an ongoing inflammatory response of the vascular endothelium and vessel wall of the aorta and vein. The pleiotropic effects of statins have been well described in many in vitro and in vivo studies, but these effects are difficult to achieve in clinical practice due to the low bioavailability of statins and their first-pass metabolism in the liver. The aim of this study was to test a vessel wall local drug delivery system (DDS) using PLA microstructures loaded with simvastatin. Wistar rats were fed high cholesterol chow as a model. The rat vessels were chemically injured by repeated injections of perivascular paclitaxel and 5-fluorouracil. The vessels were then cultured and treated by the injection of several concentrations of poly(L,L-lactide) microparticles loaded with the high local HMG-CoA inhibitor simvastatin (0.58 mg/kg) concentration (SVPLA). Histopathological examinations of the harvested vessels and vital organs after 24 h, 7 days and 4 weeks were performed. Microcirculation in mice as an additional test was performed to demonstrate the safety of this approach. A single dose of SVPLA microspheres with an average diameter of 6.4 μm and a drug concentration equal to 8.1% of particles limited the inflammatory reaction of the endothelium and vessel wall and had no influence on microcirculation in vivo or in vitro. A potent pleiotropic (anti-inflammatory) effect of simvastatin after local SVPLA administration was observed. Moreover, significant concentrations of free simvastatin were observed in the vessel wall (compared to the maximum serum level). In addition, it appeared that simvastatin, once locally administered as SVPLA particles, exerted potent pleiotropic effects on chemically injured vessels and presented anti-inflammatory action. Presumably, this effect was due to the high local concentrations of simvastatin. No local or systemic side effects were observed. This approach could be useful for local simvastatin DDSs when high, local drug concentrations are difficult to obtain, or systemic side effects are present. Full article
Show Figures

Graphical abstract

22 pages, 9709 KiB  
Article
The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer—A Preliminary Study
by Przemysław Kołodziej, Marcin Nicoś, Paweł A. Krawczyk, Jacek Bogucki, Agnieszka Karczmarczyk, Daniel Zalewski, Tomasz Kubrak, Elżbieta Kołodziej, Anna Makuch-Kocka, Barbara Madej-Czerwonka, Bartosz J. Płachno, Janusz Kocki and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2021, 22(4), 2061; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22042061 - 19 Feb 2021
Cited by 7 | Viewed by 3131
Abstract
There is an urgent need to seek new molecular biomarkers helpful in diagnosing and treating breast cancer. In this elaboration, we performed a molecular analysis of mutations and expression of genes within the PI3K/Akt/mTOR pathway in patients with ductal breast cancer of various [...] Read more.
There is an urgent need to seek new molecular biomarkers helpful in diagnosing and treating breast cancer. In this elaboration, we performed a molecular analysis of mutations and expression of genes within the PI3K/Akt/mTOR pathway in patients with ductal breast cancer of various malignancy levels. We recognized significant correlations between the expression levels of the studied genes. We also performed a bioinformatics analysis of the data available on the international database TCGA and compared them with our own research. Studies on mutations and expression of genes were conducted using High-Resolution Melt PCR (HRM-PCR), Allele-Specific-quantitative PCR (ASP-qPCR), Real-Time PCR molecular methods in a group of women with ductal breast cancer. Bioinformatics analysis was carried out using web source Ualcan and bc-GenExMiner. In the studied group of women, it was observed that the prevalence of mutations in the studied PIK3CA and AKT1 genes was 29.63%. It was stated that the average expression level of the PIK3CA, PIK3R1, PTEN genes in the group of breast cancer patients is lower in comparison to the control group, while the average expression level of the AKT1 and mTOR genes in the studied group was higher in comparison to the control group. It was also indicated that in the group of patients with mutations in the area of the PIK3CA and AKT1 genes, the PIK3CA gene expression level is statistically significantly lower than in the group without mutations. According to our knowledge, we demonstrate, for the first time, that there is a very strong positive correlation between the levels of AKT1 and mTOR gene expression in the case of patients with mutations and without mutations. Full article
Show Figures

Figure 1

25 pages, 23385 KiB  
Article
The BIRC Family Genes Expression in Patients with Triple Negative Breast Cancer
by Anna Makuch-Kocka, Janusz Kocki, Anna Brzozowska, Jacek Bogucki, Przemysław Kołodziej, Bartosz J. Płachno and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2021, 22(4), 1820; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22041820 - 12 Feb 2021
Cited by 10 | Viewed by 2506
Abstract
The BIRC (baculoviral IAP repeat-containing; BIRC) family genes encode for Inhibitor of Apoptosis (IAP) proteins. The dysregulation of the expression levels of the genes in question in cancer tissue as compared to normal tissue suggests that the apoptosis process in cancer cells was [...] Read more.
The BIRC (baculoviral IAP repeat-containing; BIRC) family genes encode for Inhibitor of Apoptosis (IAP) proteins. The dysregulation of the expression levels of the genes in question in cancer tissue as compared to normal tissue suggests that the apoptosis process in cancer cells was disturbed, which may be associated with the development and chemoresistance of triple negative breast cancer (TNBC). In our study, we determined the expression level of eight genes from the BIRC family using the Real-Time PCR method in patients with TNBC and compared the obtained results with clinical data. Additionally, using bioinformatics tools (Ualcan and The Breast Cancer Gene-Expression Miner v4.5 (bc-GenExMiner v4.5)), we compared our data with the data in the Cancer Genome Atlas (TCGA) database. We observed diverse expression pattern among the studied genes in breast cancer tissue. Comparing the expression level of the studied genes with the clinical data, we found that in patients diagnosed with breast cancer under the age of 50, the expression levels of all studied genes were higher compared to patients diagnosed after the age of 50. We observed that in patients with invasion of neoplastic cells into lymphatic vessels and fat tissue, the expression levels of BIRC family genes were lower compared to patients in whom these features were not noted. Statistically significant differences in gene expression were also noted in patients classified into three groups depending on the basis of the Scarff-Bloom and Richardson (SBR) Grading System. Full article
Show Figures

Figure 1

16 pages, 4056 KiB  
Article
Fatty Acids and a High-Fat Diet Induce Epithelial–Mesenchymal Transition by Activating TGFβ and β-Catenin in Liver Cells
by Oliwia Kwapisz, Judyta Górka, Agata Korlatowicz, Jerzy Kotlinowski, Agnieszka Waligórska, Paulina Marona, Natalia Pydyn, Jurek W. Dobrucki, Jolanta Jura and Katarzyna Miekus
Int. J. Mol. Sci. 2021, 22(3), 1272; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22031272 - 28 Jan 2021
Cited by 8 | Viewed by 2861
Abstract
Nonalcoholic fatty liver disease is defined as the accumulation of excessive fat in the liver in the absence of excessive alcohol consumption or any secondary cause. Although the disease generally remains asymptomatic, chronic liver inflammation leads to fibrosis, liver cirrhosis, and even to [...] Read more.
Nonalcoholic fatty liver disease is defined as the accumulation of excessive fat in the liver in the absence of excessive alcohol consumption or any secondary cause. Although the disease generally remains asymptomatic, chronic liver inflammation leads to fibrosis, liver cirrhosis, and even to the development of hepatocellular carcinoma (HCC). Fibrosis results from epithelial–mesenchymal transition (EMT), which leads to dedifferentiation of epithelial cells into cells with a mesenchymal-like phenotype. During EMT, epithelial cells with high expression of E-cadherin, influenced by growth factors, cytokines, and inflammatory processes, undergo morphological changes via enhanced expression of, e.g., vimentin, fibronectin, and N-cadherin. An inducer of EMT and, consequently, of fibrosis development is transforming growth factor beta (TGFβ), a pleiotropic cytokine associated with the progression of hepatocarcinogenesis. However, the understanding of the molecular events that direct the development of steatosis into steatohepatitis and liver fibrosis remains incomplete. Our study revealed that both prolonged exposure of hepatocarcinoma cells to fatty acids in vitro and high-fat diet in mice (20 weeks) result in inflammation. Prolonged treatment with fatty acids increased the levels of TGFβ, MMP9, and β-catenin, important EMT inducers. Moreover, the livers of mice fed a high-fat diet exhibited features of liver fibrosis with increased TGFβ and IL-1 levels. Increased expression of IL-1 correlated with a decrease in monocyte chemoattractant protein-induced protein 1 (MCPIP1), a negative regulator of the inflammatory response that regulates the stability of proinflammatory transcripts encoding IL-1. Our study showed that a high-fat diet induced EMT by increasing the levels of EMT-activating transcription factors, including Zeb1, Zeb2, and Snail and changed the protein profile to a profile characteristic of the mesenchymal phenotype. Full article
Show Figures

Figure 1

20 pages, 8964 KiB  
Article
The Postnatal Offspring of Finasteride-Treated Male Rats Shows Hyperglycaemia, Elevated Hepatic Glycogen Storage and Altered GLUT2, IR, and AR Expression in the Liver
by Paulina Kur, Agnieszka Kolasa-Wołosiuk, Marta Grabowska, Andrzej Kram, Maciej Tarnowski, Irena Baranowska-Bosiacka, Sylwia Rzeszotek, Małgorzata Piasecka and Barbara Wiszniewska
Int. J. Mol. Sci. 2021, 22(3), 1242; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22031242 - 27 Jan 2021
Cited by 6 | Viewed by 3374
Abstract
Background: A growing body of data indicates that the physiology of the liver is sex-hormone dependent, with some types of liver failure occurring more frequently in males, and some in females. In males, in physiological conditions, testosterone acts via androgen receptors (AR) to [...] Read more.
Background: A growing body of data indicates that the physiology of the liver is sex-hormone dependent, with some types of liver failure occurring more frequently in males, and some in females. In males, in physiological conditions, testosterone acts via androgen receptors (AR) to increase insulin receptor (IR) expression and glycogen synthesis, and to decrease glucose uptake controlled by liver-specific glucose transporter 2 (GLUT-2). Our previous study indicated that this mechanism may be impaired by finasteride, a popular drug used in urology and dermatology, inhibiting 5α-reductase 2, which converts testosterone (T) into dihydrotestosterone (DHT). Our research has also shown that the offspring of rats exposed to finasteride have an altered T–DHT ratio and show changes in their testes and epididymides. Therefore, the goal of this study was to assess whether the administration of finasteride had an trans-generational effect on (i) GLUT-2 dependent accumulation of glycogen in the liver, (ii) IR and AR expression in the hepatocytes of male rat offspring, (iii) a relation between serum T and DHT levels and the expression of GLUT2, IR, and AR mRNAs, (iv) a serum glucose level and it correlation with GLUT-2 mRNA. Methods: The study was conducted on the liver (an androgen-dependent organ) from 7, 14, 21, 28, and 90-day old Wistar male rats (F1:Fin) born by females fertilized by finasteride-treated rats. The control group was the offspring (F1:Control) of untreated Wistar parents. In the histological sections of liver the Periodic Acid Schiff (PAS) staining (to visualize glycogen) and IHC (to detect GLUT-2, IR, and AR) were performed. The liver homogenates were used in qRT-PCR to assess GLUT2, IR, and AR mRNA expression. The percentage of PAS-positive glycogen areas were correlated with the immunoexpression of GLUT-2, serum levels of T and DHT were correlated with GLUT-2, IR, and AR transcript levels, and serum glucose concentration was correlated with the age of animals and with the GLUT-2 mRNA by Spearman’s rank correlation coefficients. Results: In each age group of F1:Fin rats, the accumulation of glycogen was elevated but did not correlate with changes in GLUT-2 expression. The levels of GLUT-2, IR, and AR transcripts and their immunoreactivity statistically significantly decreased in F1:Fin animals. In F1:Fin rats the serum levels of T and DHT negatively correlated with androgen receptor mRNA. The animals from F1:Fin group have statistically elevated level of glucose. Additionally, in adult F1:Fin rats, steatosis was observed in the liver (see Appendix A). Conclusions: It seems that treating male adult rats with finasteride causes changes in the carbohydrate metabolism in the liver of their offspring. This can lead to improper hepatic energy homeostasis or even hyperglycaemia, insulin resistance, as well as some symptoms of metabolic syndrome and liver steatosis. Full article
Show Figures

Figure 1

15 pages, 30123 KiB  
Article
Development of 3D Printed Bruch’s Membrane-Mimetic Substance for the Maturation of Retinal Pigment Epithelial Cells
by Jongmin Kim, Ju Young Park, Jeong Sik Kong, Hyungseok Lee, Jae Yon Won and Dong Woo Cho
Int. J. Mol. Sci. 2021, 22(3), 1095; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22031095 - 22 Jan 2021
Cited by 19 | Viewed by 3902
Abstract
Retinal pigment epithelium (RPE) is a monolayer of the pigmented cells that lies on the thin extracellular matrix called Bruch’s membrane. This monolayer is the main component of the outer blood–retinal barrier (BRB), which plays a multifunctional role. Due to their crucial roles, [...] Read more.
Retinal pigment epithelium (RPE) is a monolayer of the pigmented cells that lies on the thin extracellular matrix called Bruch’s membrane. This monolayer is the main component of the outer blood–retinal barrier (BRB), which plays a multifunctional role. Due to their crucial roles, the damage of this epithelium causes a wide range of diseases related to retinal degeneration including age-related macular degeneration, retinitis pigmentosa, and Stargardt disease. Unfortunately, there is presently no cure for these diseases. Clinically implantable RPE for humans is under development, and there is no practical examination platform for drug development. Here, we developed porcine Bruch’s membrane-derived bioink (BM-ECM). Compared to conventional laminin, the RPE cells on BM-ECM showed enhanced functionality of RPE. Furthermore, we developed the Bruch’s membrane-mimetic substrate (BMS) via the integration of BM-ECM and 3D printing technology, which revealed structure and extracellular matrix components similar to those of natural Bruch’s membrane. The developed BMS facilitated the appropriate functions of RPE, including barrier and clearance functions, the secretion of anti-angiogenic growth factors, and enzyme formation for phototransduction. Moreover, it could be used as a basement frame for RPE transplantation. We established BMS using 3D printing technology to grow RPE cells with functions that could be used for an in vitro model and RPE transplantation. Full article
Show Figures

Graphical abstract

13 pages, 1000 KiB  
Article
Polymorphisms of Encoding Genes IL1RN and P2RX7 in Apical Root Resorption in Patients after Orthodontic Treatment
by Agata Ciurla, Jolanta Szymańska, Bartosz J. Płachno and Anna Bogucka-Kocka
Int. J. Mol. Sci. 2021, 22(2), 777; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22020777 - 14 Jan 2021
Cited by 4 | Viewed by 2643
Abstract
External apical root resorption (EARR) is one of the most serious complications associated with orthodontic treatment. The aim of the study was to analyze the relationships between selected single nucleotide polymorphisms (SNPs) in Interleukin 1 receptor antagonist (IL1RN), purinoreceptor P2X7 ( [...] Read more.
External apical root resorption (EARR) is one of the most serious complications associated with orthodontic treatment. The aim of the study was to analyze the relationships between selected single nucleotide polymorphisms (SNPs) in Interleukin 1 receptor antagonist (IL1RN), purinoreceptor P2X7 (P2RX7) and EARR in patients after orthodontic treatment. The study comprised 101 patients who underwent a complex orthodontic treatment with a combination of fixed appliances. Roots were measured based on orthopantomograms and lateral cephalometric radiographs taken before and at the end of the treatment using diagnostic software. Proportional measurements of selected teeth were made using the modified Linge and Linge methods. Based on the presence or absence of EARR, patients were divided into two groups: control group, 61 patients without EARR (with 0.90 ≤ rRCR ≤ 1.00), and EARR group, 40 patients with EARR (rRCR < 0.90). Root resorption in selected groups was also evaluated with the scores of Malmgren and Levander. SNP analysis was performed using the real-time polymerase chain reaction (PCR) method. The analysis indicated that a specific haplotype of P2RX7 (rs208294) and IL1RN (rs419598) modified the risk of EARR development (p < 0.05), with a Bonferroni correction. The analysis of the P2RX7 and IL1RN gene polymorphisms showed that the presence of SNPs of these genes may predispose individuals to EARR. These findings indicate that EARR is a complex condition influenced not only by environmental factors and needs further study on the genetic risk factors. Full article
Show Figures

Figure 1

21 pages, 6911 KiB  
Article
Immunodetection of Pectic Epitopes, Arabinogalactan Proteins, and Extensins in Mucilage Cells from the Ovules of Pilosella officinarum Vaill. and Taraxacum officinale Agg. (Asteraceae)
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Świątek, Piotr Stolarczyk and Janusz Kocki
Int. J. Mol. Sci. 2020, 21(24), 9642; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21249642 - 17 Dec 2020
Cited by 13 | Viewed by 2545
Abstract
The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species—Pilosella officinarum and Taraxacum officinale—in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. [...] Read more.
The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species—Pilosella officinarum and Taraxacum officinale—in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. Both the Taracacum and Pilosella genera have been used recently as models for understanding the mechanisms of apomixis. Knowledge of the presence of signal molecules (pectic epitopes, arabinogalactan proteins, and extensins) can help better understand the developmental processes in these plants during seed growth. The results showed that in Pilosella officinarum, there was an accumulation of pectins in the mucilage, including both weakly and highly esterified pectins, which was in contrast to the mucilage of Taraxacum officinale, which had low amounts of these pectins. However, Taraxacum protoplasts of mucilage cells were rich in weakly methyl-esterified pectins. While the mucilage contained arabinogalactan proteins in both of the studied species, the types of arabinogalactan proteins were different. In both of the studied species, extensins were recorded in the transmitting tissues. Arabinogalactan proteins as well as weakly and highly esterified pectins and extensins occurred in close proximity to calcium oxalate crystals in both Taraxacum and Pilosella cells. Full article
Show Figures

Graphical abstract

18 pages, 4575 KiB  
Article
Morphological, Anatomical, and Phytochemical Studies of Carlina acaulis L. Cypsela
by Maciej Strzemski, Bartosz J. Płachno, Barbara Mazurek, Weronika Kozłowska, Ireneusz Sowa, Krzysztof Lustofin, Daniel Załuski, Łukasz Rydzik, Dariusz Szczepanek, Jan Sawicki and Magdalena Wójciak
Int. J. Mol. Sci. 2020, 21(23), 9230; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21239230 - 03 Dec 2020
Cited by 6 | Viewed by 2613
Abstract
Carlina acaulis L. has a long tradition of use in folk medicine. The chemical composition of the roots and green parts of the plant is quite well known. There is the lowest amount of data on the cypsela (fruit) of this plant. In [...] Read more.
Carlina acaulis L. has a long tradition of use in folk medicine. The chemical composition of the roots and green parts of the plant is quite well known. There is the lowest amount of data on the cypsela (fruit) of this plant. In this study, the microscopic structures and the chemical composition of the cypsela were investigated. Preliminary cytochemical studies of the structure of the Carlina acaulis L. cypsela showed the presence of substantial amounts of protein and lipophilic substances. The chemical composition of the cypsela was investigated using spectrophotometry, gas chromatography with mass spectrometry, and high-performance liquid chromatography with spectrophotometric and fluorescence detection. The cypsela has been shown to be a rich source of macro- and microelements, vegetable oil (25%), α-tocopherol (approx. 2 g/kg of oil), protein (approx. 36% seed weight), and chlorogenic acids (approx. 22 g/kg seed weight). It also contains a complex set of volatile compounds. The C. acaulis cypsela is, therefore, a valuable source of nutrients and bioactive substances. Full article
Show Figures

Figure 1

22 pages, 10279 KiB  
Article
Crosstalk between Androgen-ZIP9 Signaling and Notch Pathway in Rodent Sertoli Cells
by Alicja Kamińska, Sylwia Marek, Laura Pardyak, Małgorzata Brzoskwinia, Barbara Bilinska and Anna Hejmej
Int. J. Mol. Sci. 2020, 21(21), 8275; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21218275 - 05 Nov 2020
Cited by 14 | Viewed by 2192
Abstract
Our recent study demonstrated altered expression of Notch ligands, receptors, and effector genes in testes of pubertal rats following reduced androgen production or signaling. Herein we aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor (Zrt- and Irt-like [...] Read more.
Our recent study demonstrated altered expression of Notch ligands, receptors, and effector genes in testes of pubertal rats following reduced androgen production or signaling. Herein we aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor (Zrt- and Irt-like protein 9; ZIP9) in the regulation of Notch pathway activation in rodent Sertoli cells. Experiments were performed using TM4 and 15P-1 Sertoli cell lines and rat primary Sertoli cells (PSC). We found that testosterone (10−8 M–10−6 M) increased the expression of Notch1 receptor, its active form Notch1 intracellular domain (N1ICD) (p < 0.05, p < 0.01, p < 0.001), and the effector genes Hey1 (p < 0.05, p < 0.01, p < 0.001) and Hes1 (p < 0.05, p < 0.001) in Sertoli cells. Knockdown of AR or ZIP9 as well as antiandrogen exposure experiments revealed that (i) action of androgens via both AR and ZIP9 controls Notch1/N1ICD expression and transcriptional activity of recombination signal binding protein (RBP-J), (ii) AR-dependent signaling regulates Hey1 expression, (iii) ZIP9-dependent pathway regulates Hes1 expression. Our findings indicate a crosstalk between androgen and Notch signaling in Sertoli cells and point to cooperation of classical and non-classical androgen signaling pathways in controlling Sertoli cell function. Full article
Show Figures

Figure 1

15 pages, 5807 KiB  
Article
Implication of Membrane Androgen Receptor (ZIP9) in Cell Senescence in Regressed Testes of the Bank Vole
by Magdalena Profaska-Szymik, Anna Galuszka, Anna J. Korzekwa, Anna Hejmej, Ewelina Gorowska-Wojtowicz, Piotr Pawlicki, Małgorzata Kotula-Balak, Kazimierz Tarasiuk and Ryszard Tuz
Int. J. Mol. Sci. 2020, 21(18), 6888; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21186888 - 19 Sep 2020
Cited by 11 | Viewed by 2263
Abstract
Here, we studied the impact of exposure to short daylight conditions on the expression of senescence marker (p16), membrane androgen receptor (ZIP9) and extracellular signal-regulated kinase (ERK 1/2), as well as cyclic AMP (cAMP) and testosterone levels in the testes of mature bank [...] Read more.
Here, we studied the impact of exposure to short daylight conditions on the expression of senescence marker (p16), membrane androgen receptor (ZIP9) and extracellular signal-regulated kinase (ERK 1/2), as well as cyclic AMP (cAMP) and testosterone levels in the testes of mature bank voles. Animals were assigned to groups based on an analysis of testis diameter, weight, seminiferous tubule diameter and the interstitial tissue area: group 1, not fully regressed (the highest parameters); group 2 (medium parameters); or group 3, regressed (the lowest parameters). Cells positive for p16 were observed only in the seminiferous tubule epithelium. However, in groups 1 and 2, these were mostly cells sloughed into the tubule lumen. In group 3, senescent cells resided in between cells of the seminiferous epithelium. Staining for ZIP9 was found in Sertoli cells. Western blot analysis showed a trend towards a decreased expression of p16 and ZIP9 in the testes of the voles in groups 2 and 3, compared to group 1. In addition, a trend towards an increased expression of ERK, as well as an increase of cAMP and testosterone levels, was revealed in group 2. In the regressed testes, a functional link exists between senescence and androgen levels with implication of ZIP9 and cAMP/ERK signaling pathways. Full article
Show Figures

Figure 1

20 pages, 7965 KiB  
Article
Structural Features of Carnivorous Plant (Genlisea, Utricularia) Tubers as Abiotic Stress Resistance Organs
by Bartosz J. Płachno, Saura R. Silva, Piotr Świątek, Kingsley W. Dixon, Krzystof Lustofin, Guilherme C. Seber and Vitor F. O. Miranda
Int. J. Mol. Sci. 2020, 21(14), 5143; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21145143 - 21 Jul 2020
Cited by 4 | Viewed by 5215
Abstract
Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus [...] Read more.
Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments. Full article
Show Figures

Graphical abstract

22 pages, 5554 KiB  
Article
Expression Profiling and Functional Characterization of miR-26a and miR-130a in Regulating Zhongwei Goat Hair Development via the TGF-β/SMAD Pathway
by Yangyang Ding, Xianglan Xue, Zhanfa Liu, Yong Ye, Ping Xiao, Yabin Pu, Weijun Guan, Joram Mwashigadi Mwacharo, Yuehui Ma and Qianjun Zhao
Int. J. Mol. Sci. 2020, 21(14), 5076; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21145076 - 18 Jul 2020
Cited by 12 | Viewed by 4241
Abstract
The Zhongwei goat is an important and unique goat breed indigenous to China. It has a natural hair curling phenotype at birth, but the degree of curling gradually decreases with growth. The molecular mechanism underlying the dynamic changes in the wool curvature in [...] Read more.
The Zhongwei goat is an important and unique goat breed indigenous to China. It has a natural hair curling phenotype at birth, but the degree of curling gradually decreases with growth. The molecular mechanism underlying the dynamic changes in the wool curvature in Zhongwei goats is poorly understood. MicroRNAs (miRNAs) play important roles in many biological processes, including hair growth and development. In this study, we selected skins from Zhongwei goats at different ages (45 and 108 days) that exhibited different levels of hair curvature and performed miRNA sequencing to explore the molecular mechanism of hair bending. In total, 28 significantly differentially expressed miRNAs (DE miRNAs) were identified in the three groups of samples between the two developmental stages. An analysis of the target genes of the above-mentioned DE miRNAs by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the DE miRNAs were involved in signal pathways which were previously associated with hair bending and hair follicle development, such as the TGF-β/SMAD, PI3K-Akt, JAK-STAT, and MAPK pathways. A comprehensive analysis of the correlations between the miRNA-seq results and issued transcriptional findings indicated that SMAD1 was a target gene of miR-26a and SMAD5 was a target gene of miR-130a. Furthermore, goat dermal papilla cells were successfully isolated and purified to determine the role of miRNAs in follicle development in vitro. The study results demonstrated that miR-130a and miR-26a had significant effects on the proliferation of dermal papilla cells. In addition, the detection results of mRNA and protein levels indicate that the overexpression of miR-26a can promote the expression of related genes in the TGF-β/SMAD pathway, while miR-130a has the opposite substitution effect. The dual luciferase report test showed that miR-26a targeted the SMAD1 gene and reduced the expression of the SMAD1 protein in hair papillary cells. Our results identified DE microRNAs which perhaps change at the time of hair straightening in Zhongwei goats and explore the role of miR-26a and miR-130a in dermal papilla cells proliferation. The present study provided a theoretical basis to explore the mechanisms underlying the Zhongwei hair growth and curly phenotype. Full article
Show Figures

Figure 1

16 pages, 5424 KiB  
Article
Cartilage Homeostasis Affects Femoral Head Necrosis Induced by Methylprednisolone in Broilers
by Yaling Yu, Shujie Wang and Zhenlei Zhou
Int. J. Mol. Sci. 2020, 21(14), 4841; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21144841 - 08 Jul 2020
Cited by 10 | Viewed by 3012
Abstract
(1) Background: Since the large-scale poultry industry has been established, femoral head necrosis (FHN) has always been a major leg disease in fast-growing broilers worldwide. Previous research suggested that cartilage homeostasis could be taken into consideration in the cause of FHN, but the [...] Read more.
(1) Background: Since the large-scale poultry industry has been established, femoral head necrosis (FHN) has always been a major leg disease in fast-growing broilers worldwide. Previous research suggested that cartilage homeostasis could be taken into consideration in the cause of FHN, but the evidence is insufficient. (2) Methods: One-day-old broiler chickens were randomly divided into three groups, 16 broilers per group. The birds in group L were injected intramuscularly with methylprednisolone (MP) twice a week for four weeks (12.5 mg·kg−1). The birds in group H were injected intramuscularly with MP (20 mg·kg−1·d−1) for 7 d (impulse treatment). The birds in group C were treated with sterile saline as a control group. Broilers were sacrificed at 42 and 56 d. Blood samples were collected from the jugular vein for ELISA and biochemical analysis. Bone samples, including femur, tibia, and humerus, were collected for histopathological analysis, bone parameters detection, and real-time quantitative PCR detection. (3) Results: The FHN broilers in group L and H both showed lower body weight (BW) and reduced bone parameters. In addition, the MP treatment resulted in reduced extracellular matrix (ECM) anabolism and enhanced ECM catabolism. Meanwhile, the autophagy and apoptosis of chondrocytes were enhanced, which led to the destruction of cartilage homeostasis. Moreover, the impulse MP injection increased the portion of birds with severer FHN, whereas the MP injection over a long period caused a more evident change in serum cytokine concentrations and bone metabolism indicators. (4) Conclusions: The imbalance of cartilage homeostasis may play a critical role in the development of FHN in broilers. FHN broilers induced by MP showed a more pronounced production of catabolic factors and suppressed the anabolic factors, which might activate the genes of the WNT signal pathway and hypoxia-inducible factors (HIFs), and then upregulate the transcription expression of ECM to restore homeostasis. Full article
Show Figures

Figure 1

20 pages, 7318 KiB  
Article
Cytotoxic Effect of Vanicosides A and B from Reynoutria sachalinensis against Melanotic and Amelanotic Melanoma Cell Lines and in silico Evaluation for Inhibition of BRAFV600E and MEK1
by Izabela Nawrot-Hadzik, Anna Choromańska, Renata Abel, Robert Preissner, Jolanta Saczko, Adam Matkowski and Jakub Hadzik
Int. J. Mol. Sci. 2020, 21(13), 4611; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21134611 - 29 Jun 2020
Cited by 11 | Viewed by 2593
Abstract
Vanicosides A and B are the esters of hydroxycinnamic acids with sucrose, occurring in a few plant species from the Polygonaceae family. So far, vanicosides A and B have not been evaluated for anticancer activity against human malignant melanoma. In this study, we [...] Read more.
Vanicosides A and B are the esters of hydroxycinnamic acids with sucrose, occurring in a few plant species from the Polygonaceae family. So far, vanicosides A and B have not been evaluated for anticancer activity against human malignant melanoma. In this study, we tested these two natural products, isolated from Reynoutria sachalinensis rhizomes, against two human melanoma cell lines (amelanotic C32 cell line and melanotic A375 cell line, both bearing endogenous BRAFV600E mutation) and two normal human cell lines—keratinocytes (HaCaT) and the primary fibroblast line. Additionally, a molecular docking of vanicoside A and vanicoside B with selected targets involved in melanoma progression was performed. Cell viability was studied using an MTT assay. A RealTime-Glo™ Annexin V Apoptosis and Necrosis assay was used for monitoring programmed cell death (PCD). Vanicoside A demonstrated strong cytotoxicity against the amelanotic C32 cell line (viability of the C32 cell line was decreased to 55% after 72 h incubation with 5.0 µM of vanicoside A), significantly stronger than vanicoside B. This stronger cytotoxic activity can be attributed to an additional acetyl group in vanicoside A. No significant differences in the cytotoxicity of vanicosides were observed against the less sensitive A375 cell line. Moreover, vanicosides caused the death of melanoma cells at concentrations from 2.5 to 50 µM, without harming the primary fibroblast line. The keratinocyte cell line (HaCaT) was more sensitive to vanicosides than fibroblasts, showing a clear decrease in viability after incubation with 25 µM of vanicoside A as well as a significant phosphatidylserine (PS) exposure, but without a measurable cell death-associated fluorescence. Vanicosides induced an apoptotic death pathway in melanoma cell lines, but because of the initial loss of cell membrane integrity, an additional cell death mechanism might be involved like permeability transition pore (PTP)-mediated necrosis that needs to be explored in the future. Molecular docking indicated that both compounds bind to the active site of the BRAFV600E kinase and MEK-1 kinase; further experiments on their specific inhibitory activity of these targets should be considered. Full article
Show Figures

Figure 1

18 pages, 15445 KiB  
Article
Life in the Current: Anatomy and Morphology of Utricularia neottioides
by Bartosz J. Płachno, Lubomír Adamec, Piotr Świątek, Małgorzata Kapusta and Vitor F. O. Miranda
Int. J. Mol. Sci. 2020, 21(12), 4474; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21124474 - 23 Jun 2020
Cited by 11 | Viewed by 3958
Abstract
Rheophytism is extremely rare in the Utricularia genus (there are four strictly rheophytic species out of a total of about 260). Utricularia neottioides is an aquatic rheophytic species exclusively growing attached to bedrocks in the South American streams. Utricularia neottioides was considered to [...] Read more.
Rheophytism is extremely rare in the Utricularia genus (there are four strictly rheophytic species out of a total of about 260). Utricularia neottioides is an aquatic rheophytic species exclusively growing attached to bedrocks in the South American streams. Utricularia neottioides was considered to be trap-free by some authors, suggesting that it had given up carnivory due to its specific habitat. Our aim was to compare the anatomy of rheophytic U. neottioides with an aquatic Utricularia species with a typical linear monomorphic shoot from the section Utricularia, U. reflexa, which grows in standing or very slowly streaming African waters. Additionally, we compared the immunodetection of cell wall components of both species. Light microscopy, histochemistry, scanning, and transmission electron microscopy were used to address our aims. In U. neottioides, two organ systems can be distinguished: organs (stolons, inflorescence stalk) which possess sclerenchyma and are thus resistant to water currents, and organs without sclerenchyma (leaf-like shoots), which are submissive to the water streaming/movement. Due to life in the turbulent habitat, U. neottioides evolved specific characters including an anchor system with stolons, which have asymmetric structures, sclerenchyma and they form adhesive trichomes on the ventral side. This anchor stolon system performs additional multiple functions including photosynthesis, nutrient storage, vegetative reproduction. In contrast with typical aquatic Utricularia species from the section Utricularia growing in standing waters, U. neottioides stems have a well-developed sclerenchyma system lacking large gas spaces. Plants produce numerous traps, so they should still be treated as a fully carnivorous plant. Full article
Show Figures

Graphical abstract

14 pages, 1743 KiB  
Article
Tolerance of Facultative Metallophyte Carlina acaulis to Cadmium Relies on Chelating and Antioxidative Metabolites
by Sławomir Dresler, Maciej Strzemski, Jozef Kováčik, Jan Sawicki, Michał Staniak, Magdalena Wójciak, Ireneusz Sowa and Barbara Hawrylak-Nowak
Int. J. Mol. Sci. 2020, 21(8), 2828; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21082828 - 18 Apr 2020
Cited by 9 | Viewed by 1959
Abstract
The impact of long-term chronic cadmium stress (ChS, 0.1 µM Cd, 85 days) or short-term acute cadmium stress (AS, 10 µM Cd, 4 days) on Carlina acaulis (Asteraceae) metabolites was compared to identify specific traits. The content of Cd was higher under AS [...] Read more.
The impact of long-term chronic cadmium stress (ChS, 0.1 µM Cd, 85 days) or short-term acute cadmium stress (AS, 10 µM Cd, 4 days) on Carlina acaulis (Asteraceae) metabolites was compared to identify specific traits. The content of Cd was higher under AS in all organs in comparison with ChS (130 vs. 16 µg·g−1 DW, 7.9 vs. 3.2 µg·g−1 DW, and 11.5 vs. 2.4 µg·g−1 DW in roots, leaves, and trichomes, respectively) while shoot bioaccumulation factor under ChS (ca. 280) indicates efficient Cd accumulation. High content of Cd in the trichomes from the AS treatment may be an anatomical adaptation mechanism. ChS evoked an increase in root biomass (hormesis), while the impact on shoot biomass was not significant in any treatment. The amounts of ascorbic acid and sum of phytochelatins were higher in the shoots but organic (malic and citric) acids dominated in the roots of plants from the ChS treatment. Chlorogenic acid, but not ursolic and oleanolic acids, was elevated by ChS. These data indicate that both chelation and enhancement of antioxidative power contribute to protection of plants exposed to long-term (chronic) Cd presence with subsequent hormetic effect. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

16 pages, 3254 KiB  
Review
The Potential of Nail Mini-Organ Stem Cells in Skin, Nail and Digit Tips Regeneration
by Anna Pulawska-Czub, Tomasz D. Pieczonka, Paula Mazurek and Krzysztof Kobielak
Int. J. Mol. Sci. 2021, 22(6), 2864; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms22062864 - 11 Mar 2021
Cited by 6 | Viewed by 8449
Abstract
Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells [...] Read more.
Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future. Full article
Show Figures

Figure 1

Back to TopTop